1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
Working Group Name I. Hajjeh
Internet Draft INEOVATION
M. Badra
LIMOS Laboratory
Intended status: Experimental December 13, 2007
Expires: June 2008
Credential Protection Ciphersuites for Transport Layer Security
draft-hajjeh-tls-identity-protection-02.txt
Status of this Memo
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html
This Internet-Draft will expire on June 13, 2007.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
TLS defines several ciphersuites providing authentication, data
protection and session key exchange between two communicating
entities. Some of these ciphersuites are used for completely
anonymous key exchange, in which neither party is authenticated.
Hajjeh & Badra Expires June 2008 [Page 1]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
However, they are vulnerable to man-in-the-middle attacks and are
therefore deprecated.
This document defines a set of ciphersuites to add client credential
protection to the Transport Layer Security (TLS) protocol.
Table of Contents
1. Introduction................................................2
2. TLS credential protection overview..........................3
3. CP_RSA Key Exchange Algorithm...............................5
4. CP_DHE and CP_DH Key Exchange Algorithms....................6
5. CP_ECDH and CP_ECDHE Key Exchange Algorithm.................6
6. Security Considerations.....................................7
7. IANA Considerations.........................................7
8. References..................................................9
8.1. Normative References...................................9
8.2. Informative References.................................9
Author's Addresses............................................10
Intellectual Property Statement...............................10
Disclaimer of Validity........................................10
1. Introduction
TLS is the most deployed security protocol for securing exchanges. It
provides end-to-end secure communications between two entities with
authentication and data protection.
TLS supports three authentication modes: authentication of both
parties, only server-side authentication, and anonymous key exchange.
For each mode, TLS specifies a set of ciphersuites. However,
anonymous ciphersuites are strongly discouraged because they cannot
prevent man-in-the-middle attacks.
Client credential protection may be established by changing the order
of the messages that the client sends after receiving ServerHelloDone
[CORELLA]. This is done by sending the ChangeCipherSpec message
before the Certificate and the CertificateVerify messages and after
the ClientKeyExchange message. However, it requires a major change to
TLS machine state as long as a new TLS version.
Client credential protection may also be done through a DHE exchange
before establishing an ordinary handshake with identity information
[SSLTLS]. This wouldn't however be secure enough against active
attackers, which will be able to disclose the client's credentials
Hajjeh & Badra Expires June 2008 [Page 2]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
and wouldn't be favorable for some environments (e.g. mobile), due to
the additional cryptographic computations.
Client credential protection may also be possible, assuming that the
client permits renegotiation after the first server authentication
[TLS]. However, this requires more cryptographic computations and
augments significantly the number of rounds trips. In fact,
renegotiation refers back to an asymmetric encryption/decryption and
to a full previously certificate chain verified public key, whose
chain was verified properly during the first handshake and stored in
the client session context. In addition, computation overhead
increases due to all second handshake messages encryption/decryption.
Where for round trips, their number increases dramatically when small
data packets are used to convey TLS messages. Furthermore, it is
mandatory for the server to complete a first TLS handshake before it
becomes able to confirm if the client has a certificate or not.
Client credential protection may as well be realized by exchanging a
TLS extension that negotiates the symmetric encryption algorithm to
be used for client certificate encrypting/decrypting [EAPIP]. This
solution may suffer from interoperability issues related to TLS
Extensions, TLS 1.0 and TLS 1.1 implementations, as described in
[INTEROP].
This document defines a set of ciphersuites to add client credential
protection to TLS protocol. Client credential protection is provided
by symmetrically encrypting the client certificate with a key derived
from the SecurityParameters.master_secret,
SecurityParameters.server_random and
SecurityParameters.client_random. The symmetric encryption algorithm
is set to the cipher algorithm of the ServerHello.cipher_suite.
1.1. Conventions used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [RFC2119].
2. TLS credential protection overview
This document specifies a set of ciphersuites for TLS. These
ciphersuites reuse existing key exchange algorithms that require
based-certificates authentication, and reuse also existing MAC, and
bloc ciphers algorithms from [TLS] and [TLSCTR], [TLSECC], [TLSAES]
and [TLSCAM]. Their names include the text "CP" to refer to the
client credential protection. An example is shown below.
Hajjeh & Badra Expires June 2008 [Page 3]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
CipherSuite Key Exchange Cipher Hash
TLS_CP_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4_40 MD5
TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA DHE AES_128_CBC SHA
If the client has not a certificate with a type appropriate for one
of the supported cipher key exchange algorithms or if the client will
not be able to send such a certificate, the client MUST NOT include
any credential protection ciphersuite in the
ClientHello.cipher_suites.
If the server selects a ciphersuite with client credential
protection, the server MUST request a certificate from the client.
If the server selects one of the ciphersuites defined in this
document, the client MUST encrypt the Certificate and the
CertificateVerify messages using the symmetric algorithm selected by
the server from the list in ClientHello.cipher_suites and a key
derived from the SecurityParameters.master_secret. This key is the
same key used to encrypt data written by the client.
If a stream cipher encryption algorithm has been selected, the client
symmetrically encrypts Certificate and CertificateVerify messages
without any padding byte.
If a block cipher encryption algorithm has been selected, the client
uses an explicit IV and adds padding value to force the length of the
plaintext to be an integral multiple of the block cipher's block
length, as it is described in section 6.2.3.2 of [TLS].
For DHE key exchange algorithm, the client always sends the
ClientKeyExchange message conveying its ephemeral DH public key Yc.
For ECDHE key exchange algorithm, the client always sends the
ClientKeyExchange message conveying its ephemeral ECDH public key Yc.
Current TLS specifications note that if the client certificate
already contains a suitable DH or ECDH public key, then Yc is
implicit and does not need to be sent again and consequently, the
client key exchange message will be sent, but it MUST be empty.
Implementations of this document MUST send ClientKeyExchange message
but always carrying the client Yc, whatever the PublicValueEncoding
is implicit or explicit. Note that it is possible to correlate
sessions by the same client when DH or ECDH are in use.
Hajjeh & Badra Expires June 2008 [Page 4]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
Client Server
ClientHello -------->
ServerHello
Certificate
ServerKeyExchange*
<-------- CertificateRequest
{Certificate}
ClientKeyExchange
{CertificateVerify}
ChangeCipherSpec
Finished -------->
ChangeCipherSpec
<-------- Finished
Application Data <-------> Application Data
* Indicates optional or situation-dependent messages that are not
always sent.
{} Indicates messages that are symmetrically encrypted.
The ciphersuites in Section 3 (CP_RSA Key Exchange Algorithm) use RSA
based certificates to mutually authenticate a RSA exchange with the
client credential protection.
The ciphersuites in Section 4 (CP_DHE and CP_DH Key Exchange
Algorithm) use DHE_RSA, DH_RSA, DHE_DSS or DH_DSS to mutually
authenticate a (Ephemeral) Diffie-Hellman exchange.
The ciphersuites in Section 5 (CP_ECDH and CP_ECDHE Key Exchange
Algorithms) use ECDH_ECDSA, ECDHE_ECDSA, ECDH_RSA or ECDHE_RSA to
mutually authenticate a (Ephemeral) EC Diffie-Hellman exchange.
3. CP_RSA Key Exchange Algorithm
This section defines additional ciphersuites that use RSA based
certificates to authenticate a RSA exchange. These ciphersuites give
client credential protection.
CipherSuite Key Exchange Cipher Hash
TLS_CP_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4_40 MD5
TLS_CP_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5
TLS_CP_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA
TLS_CP_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA RC2_CBC_40 MD5
TLS_CP_RSA_WITH_IDEA_CBC_SHA RSA IDEA_CBC SHA
TLS_CP_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40_CBC SHA
Hajjeh & Badra Expires June 2008 [Page 5]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
TLS_CP_RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA
TLS_CP_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE SHA
TLS_CP_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA
TLS_CP_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA
TLS_CP_RSA_WITH_AES_128_CTR_SHA RSA AES_128_CTR SHA
TLS_CP_RSA_WITH_CAMELLIA_128_CBC_SHA RSA CAMELLIA_128_CBC SHA
TLS_CP_RSA_WITH_AES_256_CTR_SHA RSA AES_256_CTR SHA
TLS_CP_RSA_WITH_CAMELLIA_256_CBC_SHA RSA CAMELLIA_256_CBC SHA
4. CP_DHE and CP_DH Key Exchange Algorithms
This section defines additional ciphersuites that use DH and DHE as
key exchange algorithms, with RSA or DSS based certificates to
authenticate a (Ephemeral) Diffie-Hellman exchange. These
ciphersuites give client credential protection.
CipherSuite Key Exchange Cipher Hash
TLS_CP_DHE_DSS_WITH_DES_CBC_SHA DHE DES_CBC SHA
TLS_CP_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE 3DES_EDE_CBC SHA
TLS_CP_DHE_RSA_WITH_DES_CBC_SHA DHE DES_CBC SHA
TLS_CP_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE 3DES_EDE_CBC SHA
TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA DHE AES_128_CBC SHA
TLS_CP_DHE_RSA_WITH_AES_128_CBC_SHA DHE AES_128_CBC SHA
TLS_CP_DHE_DSS_WITH_AES_256_CBC_SHA DHE AES_256_CBC SHA
TLS_CP_DHE_RSA_WITH_AES_256_CBC_SHA DHE AES_256_CBC SHA
TLS_CP_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA DHE CAMELLIA_128_CBC SHA
TLS_CP_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA DHE CAMELLIA_128_CBC SHA
TLS_CP_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA DHE CAMELLIA_256_CBC SHA
TLS_CP_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA DHE CAMELLIA_256_CBC SHA
TLS_CP_DHE_DSS_WITH_AES_128_CTR_SHA DHE AES_128_CTR SHA
TLS_CP_DHE_RSA_WITH_AES_128_CTR_SHA DHE AES_128_CTR SHA
TLS_CP_DHE_DSS_WITH_AES_256_CTR_SHA DHE AES_256_CTR SHA
TLS_CP_DHE_RSA_WITH_AES_256_CTR_SHA DHE AES_256_CTR SHA
TLS_CP_DH_DSS_WITH_DES_CBC_SHA DH DES_CBC SHA
TLS_CP_DH_DSS_WITH_3DES_EDE_CBC_SHA DH 3DES_EDE_CBC SHA
TLS_CP_DH_RSA_WITH_DES_CBC_SHA DH DES_CBC SHA
TLS_CP_DH_RSA_WITH_3DES_EDE_CBC_SHA DH 3DES_EDE_CBC SHA
TLS_CP_DH_DSS_WITH_AES_128_CBC_SHA DH AES_128_CBC SHA
TLS_CP_DH_RSA_WITH_AES_128_CBC_SHA DH AES_128_CBC SHA
TLS_CP_DH_DSS_WITH_AES_256_CBC_SHA DH AES_256_CBC SHA
TLS_CP_DH_RSA_WITH_AES_256_CBC_SHA DH AES_256_CBC SHA
5. CP_ECDH and CP_ECDHE Key Exchange Algorithm
This section defines additional ciphersuites that use ECDH and ECDHE
as key exchange algorithms, with RSA or ECDSA based certificates to
Hajjeh & Badra Expires June 2008 [Page 6]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
authenticate a (Ephemeral) ECDH exchange. These ciphersuites give
client credential protection.
CipherSuite Key Exchange Cipher Hash
TLS_CP_ECDH_ECDSA_WITH_RC4_128_SHA ECDH RC4_128 SHA
TLS_CP_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA ECDH 3DES_EDE_CBC SHA
TLS_CP_ECDH_ECDSA_WITH_AES_128_CBC_SHA ECDH AES_128_CBC SHA
TLS_CP_ECDH_ECDSA_WITH_AES_256_CBC_SHA ECDHE AES_256_CBC SHA
TLS_CP_ECDHE_ECDSA_WITH_RC4_128_SHA ECDHE RC4_128 SHA
TLS_CP_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ECDHE 3DES_EDE_CBC SHA
TLS_CP_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE AES_128_CBC SHA
TLS_CP_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE AES_256_CBC SHA
TLS_CP_ECDH_RSA_WITH_RC4_128_SHA ECDH RC4_128 SHA
TLS_CP_ECDH_RSA_WITH_3DES_EDE_CBC_SHA ECDH 3DES_EDE_CBC SHA
TLS_CP_ECDH_RSA_WITH_AES_128_CBC_SHA ECDH AES_256_CBC SHA
TLS_CP_ECDH_RSA_WITH_AES_256_CBC_SHA ECDH AES_256_CBC SHA
TLS_CP_ECDHE_RSA_WITH_RC4_128_SHA ECDHE RC4_128 SHA
TLS_CP_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ECDHE 3DES_EDE_CBC SHA
TLS_CP_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE AES_256_CBC SHA
TLS_CP_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDHE AES_256_CBC SHA
6. Security Considerations
The security considerations described throughout [TLS], [DTLS],
[TLSAES], [TLSECC] and [TLSAES] apply here as well.
7. IANA Considerations
This section provides guidance to the IANA regarding registration of
values related to the credential protection ciphersuites.
CipherSuite TLS_CP_RSA_EXPORT_WITH_RC4_40_MD5 ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_RC4_128_MD5 ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_RC4_128_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_EXPORT_WITH_RC2_CBC_40_MD5 ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_IDEA_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_EXPORT_WITH_DES40_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_DES_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_AES_128_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_CAMELLIA_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_AES_256_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_RSA_WITH_CAMELLIA_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_DES_CBC_SHA ={ 0xXX,0xXX };
Hajjeh & Badra Expires June 2008 [Page 7]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
CipherSuite TLS_CP_DHE_DSS_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_DES_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_AES_128_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_AES_128_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_DSS_WITH_AES_256_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DHE_RSA_WITH_AES_256_CTR_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_DSS_WITH_DES_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_DSS_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_RSA_WITH_DES_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_RSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_DSS_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_RSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_DSS_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_DH_RSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_ECDSA_WITH_RC4_128_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_ECDSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_ECDSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_ECDSA_WITH_RC4_128_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_RSA_WITH_RC4_128_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_RSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_RSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDH_RSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_RSA_WITH_RC4_128_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_RSA_WITH_AES_128_CBC_SHA ={ 0xXX,0xXX };
CipherSuite TLS_CP_ECDHE_RSA_WITH_AES_256_CBC_SHA ={ 0xXX,0xXX };
Note: For implementation and deployment facilities, it is helpful to
reserve a specific registry sub-range (minor, major) for credential
protection ciphersuites.
Hajjeh & Badra Expires June 2008 [Page 8]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[TLS] Dierks, T. and E. Rescorla, "The TLS Protocol Version
1.1", RFC 4346, April 2005.
[DTLS] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security", RFC 4347, April 2006.
[TLSCAM] Moriai, S., Kato, A., Kanda M., "Addition of Camellia
Cipher Suites to Transport Layer Security (TLS)", RFC 4132,
July 2005.
[TLSAES] Chown, P., "Advanced Encryption Standard (AES) Ciphersuites
for Transport Layer Security (TLS)", RFC 3268, June 2002.
[TLSECC] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C.,
Moeller, B., "Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)", RFC 4492, May
2006
[TLSCTR] Modadugu, N. and E. Rescorla, "AES Counter Mode Cipher
Suites for TLS and DTLS", draft-ietf-tls-ctr-01.txt
(expired), June 2006.
8.2. Informative References
[SSLTLS] Rescorla, E., "SSL and TLS: Designing and Building Secure
Systems", Addison-Wesley, March 2001.
[CORELLA] Corella, F., "adding client identity protection to TLS",
message on ietf-tls@lists.certicom.com mailing list,
http://www.imc.org/ietf-tls/mail-archive/msg02004.html,
August 2000.
[INTEROP] Pettersen, Y., "Clientside interoperability experiences for
the SSL and TLS protocols",draft-ietf-tls-interoperability-
00 (expired), October 2006.
[EAPIP] Urien, P. and M. Badra, "Identity Protection within EAP-
TLS", draft-urien-badra-eap-tls-identity-protection-01.txt
(expired), October 2006.
Hajjeh & Badra Expires June 2008 [Page 9]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
Author's Addresses
Ibrahim Hajjeh
INEOVATION
France
Email: hajjeh@ineovation.com
Mohamad Badra
LIMOS Laboratory - UMR6158, CNRS
France
Email: badra@isima.fr
Intellectual Property Statement
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Disclaimer of Validity
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
Hajjeh & Badra Expires June 2008 [Page 10]
Internet-Draft Credential Protection Ciphersuites for TLS December 2007
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
Acknowledgment
Funding for the RFC Editor function is currently provided by the
Internet Society.
Hajjeh & Badra Expires June 2008 [Page 11]
|