summaryrefslogtreecommitdiff
path: root/devel/perlasm/ghash-x86.pl
diff options
context:
space:
mode:
Diffstat (limited to 'devel/perlasm/ghash-x86.pl')
l---------[-rw-r--r--]devel/perlasm/ghash-x86.pl1392
1 files changed, 1 insertions, 1391 deletions
diff --git a/devel/perlasm/ghash-x86.pl b/devel/perlasm/ghash-x86.pl
index e6b9663c13..5a234e3ec8 100644..120000
--- a/devel/perlasm/ghash-x86.pl
+++ b/devel/perlasm/ghash-x86.pl
@@ -1,1391 +1 @@
-#!/usr/bin/env perl
-#
-# ====================================================================
-# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
-# project. The module is, however, dual licensed under OpenSSL and
-# CRYPTOGAMS licenses depending on where you obtain it. For further
-# details see http://www.openssl.org/~appro/cryptogams/.
-# ====================================================================
-#
-# March, May, June 2010
-#
-# The module implements "4-bit" GCM GHASH function and underlying
-# single multiplication operation in GF(2^128). "4-bit" means that it
-# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
-# code paths: vanilla x86 and vanilla SSE. Former will be executed on
-# 486 and Pentium, latter on all others. SSE GHASH features so called
-# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
-# of per-key storage [+512 bytes shared table]. Performance results
-# are for streamed GHASH subroutine and are expressed in cycles per
-# processed byte, less is better:
-#
-# gcc 2.95.3(*) SSE assembler x86 assembler
-#
-# Pentium 105/111(**) - 50
-# PIII 68 /75 12.2 24
-# P4 125/125 17.8 84(***)
-# Opteron 66 /70 10.1 30
-# Core2 54 /67 8.4 18
-# Atom 105/105 16.8 53
-# VIA Nano 69 /71 13.0 27
-#
-# (*) gcc 3.4.x was observed to generate few percent slower code,
-# which is one of reasons why 2.95.3 results were chosen,
-# another reason is lack of 3.4.x results for older CPUs;
-# comparison with SSE results is not completely fair, because C
-# results are for vanilla "256B" implementation, while
-# assembler results are for "528B";-)
-# (**) second number is result for code compiled with -fPIC flag,
-# which is actually more relevant, because assembler code is
-# position-independent;
-# (***) see comment in non-MMX routine for further details;
-#
-# To summarize, it's >2-5 times faster than gcc-generated code. To
-# anchor it to something else SHA1 assembler processes one byte in
-# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
-# in particular, see comment at the end of the file...
-
-# May 2010
-#
-# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
-# The question is how close is it to theoretical limit? The pclmulqdq
-# instruction latency appears to be 14 cycles and there can't be more
-# than 2 of them executing at any given time. This means that single
-# Karatsuba multiplication would take 28 cycles *plus* few cycles for
-# pre- and post-processing. Then multiplication has to be followed by
-# modulo-reduction. Given that aggregated reduction method [see
-# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
-# white paper by Intel] allows you to perform reduction only once in
-# a while we can assume that asymptotic performance can be estimated
-# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
-# and Naggr is the aggregation factor.
-#
-# Before we proceed to this implementation let's have closer look at
-# the best-performing code suggested by Intel in their white paper.
-# By tracing inter-register dependencies Tmod is estimated as ~19
-# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
-# processed byte. As implied, this is quite optimistic estimate,
-# because it does not account for Karatsuba pre- and post-processing,
-# which for a single multiplication is ~5 cycles. Unfortunately Intel
-# does not provide performance data for GHASH alone. But benchmarking
-# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
-# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
-# the result accounts even for pre-computing of degrees of the hash
-# key H, but its portion is negligible at 16KB buffer size.
-#
-# Moving on to the implementation in question. Tmod is estimated as
-# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
-# 2.16. How is it possible that measured performance is better than
-# optimistic theoretical estimate? There is one thing Intel failed
-# to recognize. By serializing GHASH with CTR in same subroutine
-# former's performance is really limited to above (Tmul + Tmod/Naggr)
-# equation. But if GHASH procedure is detached, the modulo-reduction
-# can be interleaved with Naggr-1 multiplications at instruction level
-# and under ideal conditions even disappear from the equation. So that
-# optimistic theoretical estimate for this implementation is ...
-# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
-# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
-# where Tproc is time required for Karatsuba pre- and post-processing,
-# is more realistic estimate. In this case it gives ... 1.91 cycles.
-# Or in other words, depending on how well we can interleave reduction
-# and one of the two multiplications the performance should be betwen
-# 1.91 and 2.16. As already mentioned, this implementation processes
-# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
-# - in 2.02. x86_64 performance is better, because larger register
-# bank allows to interleave reduction and multiplication better.
-#
-# Does it make sense to increase Naggr? To start with it's virtually
-# impossible in 32-bit mode, because of limited register bank
-# capacity. Otherwise improvement has to be weighed agiainst slower
-# setup, as well as code size and complexity increase. As even
-# optimistic estimate doesn't promise 30% performance improvement,
-# there are currently no plans to increase Naggr.
-#
-# Special thanks to David Woodhouse <dwmw2@infradead.org> for
-# providing access to a Westmere-based system on behalf of Intel
-# Open Source Technology Centre.
-
-# January 2010
-#
-# Tweaked to optimize transitions between integer and FP operations
-# on same XMM register, PCLMULQDQ subroutine was measured to process
-# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
-# The minor regression on Westmere is outweighed by ~15% improvement
-# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
-# similar manner resulted in almost 20% degradation on Sandy Bridge,
-# where original 64-bit code processes one byte in 1.95 cycles.
-
-#####################################################################
-# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
-# 32-bit mode and 1.89 in 64-bit.
-
-# February 2013
-#
-# Overhaul: aggregate Karatsuba post-processing, improve ILP in
-# reduction_alg9. Resulting performance is 1.96 cycles per byte on
-# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
-
-$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-push(@INC,"${dir}","${dir}../../perlasm");
-require "x86asm.pl";
-
-&asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
-
-$sse2=0;
-for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
-
-($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
-$inp = "edi";
-$Htbl = "esi";
-
-$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
- # than unrolled, which has to be weighted against
- # 2.5x x86-specific code size reduction.
-
-sub x86_loop {
- my $off = shift;
- my $rem = "eax";
-
- &mov ($Zhh,&DWP(4,$Htbl,$Zll));
- &mov ($Zhl,&DWP(0,$Htbl,$Zll));
- &mov ($Zlh,&DWP(12,$Htbl,$Zll));
- &mov ($Zll,&DWP(8,$Htbl,$Zll));
- &xor ($rem,$rem); # avoid partial register stalls on PIII
-
- # shrd practically kills P4, 2.5x deterioration, but P4 has
- # MMX code-path to execute. shrd runs tad faster [than twice
- # the shifts, move's and or's] on pre-MMX Pentium (as well as
- # PIII and Core2), *but* minimizes code size, spares register
- # and thus allows to fold the loop...
- if (!$unroll) {
- my $cnt = $inp;
- &mov ($cnt,15);
- &jmp (&label("x86_loop"));
- &set_label("x86_loop",16);
- for($i=1;$i<=2;$i++) {
- &mov (&LB($rem),&LB($Zll));
- &shrd ($Zll,$Zlh,4);
- &and (&LB($rem),0xf);
- &shrd ($Zlh,$Zhl,4);
- &shrd ($Zhl,$Zhh,4);
- &shr ($Zhh,4);
- &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
-
- &mov (&LB($rem),&BP($off,"esp",$cnt));
- if ($i&1) {
- &and (&LB($rem),0xf0);
- } else {
- &shl (&LB($rem),4);
- }
-
- &xor ($Zll,&DWP(8,$Htbl,$rem));
- &xor ($Zlh,&DWP(12,$Htbl,$rem));
- &xor ($Zhl,&DWP(0,$Htbl,$rem));
- &xor ($Zhh,&DWP(4,$Htbl,$rem));
-
- if ($i&1) {
- &dec ($cnt);
- &js (&label("x86_break"));
- } else {
- &jmp (&label("x86_loop"));
- }
- }
- &set_label("x86_break",16);
- } else {
- for($i=1;$i<32;$i++) {
- &comment($i);
- &mov (&LB($rem),&LB($Zll));
- &shrd ($Zll,$Zlh,4);
- &and (&LB($rem),0xf);
- &shrd ($Zlh,$Zhl,4);
- &shrd ($Zhl,$Zhh,4);
- &shr ($Zhh,4);
- &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
-
- if ($i&1) {
- &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
- &and (&LB($rem),0xf0);
- } else {
- &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
- &shl (&LB($rem),4);
- }
-
- &xor ($Zll,&DWP(8,$Htbl,$rem));
- &xor ($Zlh,&DWP(12,$Htbl,$rem));
- &xor ($Zhl,&DWP(0,$Htbl,$rem));
- &xor ($Zhh,&DWP(4,$Htbl,$rem));
- }
- }
- &bswap ($Zll);
- &bswap ($Zlh);
- &bswap ($Zhl);
- if (!$x86only) {
- &bswap ($Zhh);
- } else {
- &mov ("eax",$Zhh);
- &bswap ("eax");
- &mov ($Zhh,"eax");
- }
-}
-
-if ($unroll) {
- &function_begin_B("_x86_gmult_4bit_inner");
- &x86_loop(4);
- &ret ();
- &function_end_B("_x86_gmult_4bit_inner");
-}
-
-sub deposit_rem_4bit {
- my $bias = shift;
-
- &mov (&DWP($bias+0, "esp"),0x0000<<16);
- &mov (&DWP($bias+4, "esp"),0x1C20<<16);
- &mov (&DWP($bias+8, "esp"),0x3840<<16);
- &mov (&DWP($bias+12,"esp"),0x2460<<16);
- &mov (&DWP($bias+16,"esp"),0x7080<<16);
- &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
- &mov (&DWP($bias+24,"esp"),0x48C0<<16);
- &mov (&DWP($bias+28,"esp"),0x54E0<<16);
- &mov (&DWP($bias+32,"esp"),0xE100<<16);
- &mov (&DWP($bias+36,"esp"),0xFD20<<16);
- &mov (&DWP($bias+40,"esp"),0xD940<<16);
- &mov (&DWP($bias+44,"esp"),0xC560<<16);
- &mov (&DWP($bias+48,"esp"),0x9180<<16);
- &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
- &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
- &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
-}
-
-$suffix = $x86only ? "" : "_x86";
-
-&function_begin("gcm_gmult_4bit".$suffix);
- &stack_push(16+4+1); # +1 for stack alignment
- &mov ($inp,&wparam(0)); # load Xi
- &mov ($Htbl,&wparam(1)); # load Htable
-
- &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
- &mov ($Zhl,&DWP(4,$inp));
- &mov ($Zlh,&DWP(8,$inp));
- &mov ($Zll,&DWP(12,$inp));
-
- &deposit_rem_4bit(16);
-
- &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
- &mov (&DWP(4,"esp"),$Zhl);
- &mov (&DWP(8,"esp"),$Zlh);
- &mov (&DWP(12,"esp"),$Zll);
- &shr ($Zll,20);
- &and ($Zll,0xf0);
-
- if ($unroll) {
- &call ("_x86_gmult_4bit_inner");
- } else {
- &x86_loop(0);
- &mov ($inp,&wparam(0));
- }
-
- &mov (&DWP(12,$inp),$Zll);
- &mov (&DWP(8,$inp),$Zlh);
- &mov (&DWP(4,$inp),$Zhl);
- &mov (&DWP(0,$inp),$Zhh);
- &stack_pop(16+4+1);
-&function_end("gcm_gmult_4bit".$suffix);
-
-&function_begin("gcm_ghash_4bit".$suffix);
- &stack_push(16+4+1); # +1 for 64-bit alignment
- &mov ($Zll,&wparam(0)); # load Xi
- &mov ($Htbl,&wparam(1)); # load Htable
- &mov ($inp,&wparam(2)); # load in
- &mov ("ecx",&wparam(3)); # load len
- &add ("ecx",$inp);
- &mov (&wparam(3),"ecx");
-
- &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
- &mov ($Zhl,&DWP(4,$Zll));
- &mov ($Zlh,&DWP(8,$Zll));
- &mov ($Zll,&DWP(12,$Zll));
-
- &deposit_rem_4bit(16);
-
- &set_label("x86_outer_loop",16);
- &xor ($Zll,&DWP(12,$inp)); # xor with input
- &xor ($Zlh,&DWP(8,$inp));
- &xor ($Zhl,&DWP(4,$inp));
- &xor ($Zhh,&DWP(0,$inp));
- &mov (&DWP(12,"esp"),$Zll); # dump it on stack
- &mov (&DWP(8,"esp"),$Zlh);
- &mov (&DWP(4,"esp"),$Zhl);
- &mov (&DWP(0,"esp"),$Zhh);
-
- &shr ($Zll,20);
- &and ($Zll,0xf0);
-
- if ($unroll) {
- &call ("_x86_gmult_4bit_inner");
- } else {
- &x86_loop(0);
- &mov ($inp,&wparam(2));
- }
- &lea ($inp,&DWP(16,$inp));
- &cmp ($inp,&wparam(3));
- &mov (&wparam(2),$inp) if (!$unroll);
- &jb (&label("x86_outer_loop"));
-
- &mov ($inp,&wparam(0)); # load Xi
- &mov (&DWP(12,$inp),$Zll);
- &mov (&DWP(8,$inp),$Zlh);
- &mov (&DWP(4,$inp),$Zhl);
- &mov (&DWP(0,$inp),$Zhh);
- &stack_pop(16+4+1);
-&function_end("gcm_ghash_4bit".$suffix);
-
-if (!$x86only) {{{
-
-&static_label("rem_4bit");
-
-if (!$sse2) {{ # pure-MMX "May" version...
-
-$S=12; # shift factor for rem_4bit
-
-&function_begin_B("_mmx_gmult_4bit_inner");
-# MMX version performs 3.5 times better on P4 (see comment in non-MMX
-# routine for further details), 100% better on Opteron, ~70% better
-# on Core2 and PIII... In other words effort is considered to be well
-# spent... Since initial release the loop was unrolled in order to
-# "liberate" register previously used as loop counter. Instead it's
-# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
-# The path involves move of Z.lo from MMX to integer register,
-# effective address calculation and finally merge of value to Z.hi.
-# Reference to rem_4bit is scheduled so late that I had to >>4
-# rem_4bit elements. This resulted in 20-45% procent improvement
-# on contemporary µ-archs.
-{
- my $cnt;
- my $rem_4bit = "eax";
- my @rem = ($Zhh,$Zll);
- my $nhi = $Zhl;
- my $nlo = $Zlh;
-
- my ($Zlo,$Zhi) = ("mm0","mm1");
- my $tmp = "mm2";
-
- &xor ($nlo,$nlo); # avoid partial register stalls on PIII
- &mov ($nhi,$Zll);
- &mov (&LB($nlo),&LB($nhi));
- &shl (&LB($nlo),4);
- &and ($nhi,0xf0);
- &movq ($Zlo,&QWP(8,$Htbl,$nlo));
- &movq ($Zhi,&QWP(0,$Htbl,$nlo));
- &movd ($rem[0],$Zlo);
-
- for ($cnt=28;$cnt>=-2;$cnt--) {
- my $odd = $cnt&1;
- my $nix = $odd ? $nlo : $nhi;
-
- &shl (&LB($nlo),4) if ($odd);
- &psrlq ($Zlo,4);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nix));
- &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
- &psllq ($tmp,60);
- &and ($nhi,0xf0) if ($odd);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
- &and ($rem[0],0xf);
- &pxor ($Zhi,&QWP(0,$Htbl,$nix));
- &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
- &movd ($rem[1],$Zlo);
- &pxor ($Zlo,$tmp);
-
- push (@rem,shift(@rem)); # "rotate" registers
- }
-
- &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
-
- &psrlq ($Zlo,32); # lower part of Zlo is already there
- &movd ($Zhl,$Zhi);
- &psrlq ($Zhi,32);
- &movd ($Zlh,$Zlo);
- &movd ($Zhh,$Zhi);
- &shl ($inp,4); # compensate for rem_4bit[i] being >>4
-
- &bswap ($Zll);
- &bswap ($Zhl);
- &bswap ($Zlh);
- &xor ($Zhh,$inp);
- &bswap ($Zhh);
-
- &ret ();
-}
-&function_end_B("_mmx_gmult_4bit_inner");
-
-&function_begin("gcm_gmult_4bit_mmx");
- &mov ($inp,&wparam(0)); # load Xi
- &mov ($Htbl,&wparam(1)); # load Htable
-
- &call (&label("pic_point"));
- &set_label("pic_point");
- &blindpop("eax");
- &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
-
- &movz ($Zll,&BP(15,$inp));
-
- &call ("_mmx_gmult_4bit_inner");
-
- &mov ($inp,&wparam(0)); # load Xi
- &emms ();
- &mov (&DWP(12,$inp),$Zll);
- &mov (&DWP(4,$inp),$Zhl);
- &mov (&DWP(8,$inp),$Zlh);
- &mov (&DWP(0,$inp),$Zhh);
-&function_end("gcm_gmult_4bit_mmx");
-
-# Streamed version performs 20% better on P4, 7% on Opteron,
-# 10% on Core2 and PIII...
-&function_begin("gcm_ghash_4bit_mmx");
- &mov ($Zhh,&wparam(0)); # load Xi
- &mov ($Htbl,&wparam(1)); # load Htable
- &mov ($inp,&wparam(2)); # load in
- &mov ($Zlh,&wparam(3)); # load len
-
- &call (&label("pic_point"));
- &set_label("pic_point");
- &blindpop("eax");
- &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
-
- &add ($Zlh,$inp);
- &mov (&wparam(3),$Zlh); # len to point at the end of input
- &stack_push(4+1); # +1 for stack alignment
-
- &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
- &mov ($Zhl,&DWP(4,$Zhh));
- &mov ($Zlh,&DWP(8,$Zhh));
- &mov ($Zhh,&DWP(0,$Zhh));
- &jmp (&label("mmx_outer_loop"));
-
- &set_label("mmx_outer_loop",16);
- &xor ($Zll,&DWP(12,$inp));
- &xor ($Zhl,&DWP(4,$inp));
- &xor ($Zlh,&DWP(8,$inp));
- &xor ($Zhh,&DWP(0,$inp));
- &mov (&wparam(2),$inp);
- &mov (&DWP(12,"esp"),$Zll);
- &mov (&DWP(4,"esp"),$Zhl);
- &mov (&DWP(8,"esp"),$Zlh);
- &mov (&DWP(0,"esp"),$Zhh);
-
- &mov ($inp,"esp");
- &shr ($Zll,24);
-
- &call ("_mmx_gmult_4bit_inner");
-
- &mov ($inp,&wparam(2));
- &lea ($inp,&DWP(16,$inp));
- &cmp ($inp,&wparam(3));
- &jb (&label("mmx_outer_loop"));
-
- &mov ($inp,&wparam(0)); # load Xi
- &emms ();
- &mov (&DWP(12,$inp),$Zll);
- &mov (&DWP(4,$inp),$Zhl);
- &mov (&DWP(8,$inp),$Zlh);
- &mov (&DWP(0,$inp),$Zhh);
-
- &stack_pop(4+1);
-&function_end("gcm_ghash_4bit_mmx");
-
-}} else {{ # "June" MMX version...
- # ... has slower "April" gcm_gmult_4bit_mmx with folded
- # loop. This is done to conserve code size...
-$S=16; # shift factor for rem_4bit
-
-sub mmx_loop() {
-# MMX version performs 2.8 times better on P4 (see comment in non-MMX
-# routine for further details), 40% better on Opteron and Core2, 50%
-# better on PIII... In other words effort is considered to be well
-# spent...
- my $inp = shift;
- my $rem_4bit = shift;
- my $cnt = $Zhh;
- my $nhi = $Zhl;
- my $nlo = $Zlh;
- my $rem = $Zll;
-
- my ($Zlo,$Zhi) = ("mm0","mm1");
- my $tmp = "mm2";
-
- &xor ($nlo,$nlo); # avoid partial register stalls on PIII
- &mov ($nhi,$Zll);
- &mov (&LB($nlo),&LB($nhi));
- &mov ($cnt,14);
- &shl (&LB($nlo),4);
- &and ($nhi,0xf0);
- &movq ($Zlo,&QWP(8,$Htbl,$nlo));
- &movq ($Zhi,&QWP(0,$Htbl,$nlo));
- &movd ($rem,$Zlo);
- &jmp (&label("mmx_loop"));
-
- &set_label("mmx_loop",16);
- &psrlq ($Zlo,4);
- &and ($rem,0xf);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
- &mov (&LB($nlo),&BP(0,$inp,$cnt));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &dec ($cnt);
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
- &mov ($nhi,$nlo);
- &pxor ($Zlo,$tmp);
- &js (&label("mmx_break"));
-
- &shl (&LB($nlo),4);
- &and ($rem,0xf);
- &psrlq ($Zlo,4);
- &and ($nhi,0xf0);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
- &pxor ($Zlo,$tmp);
- &jmp (&label("mmx_loop"));
-
- &set_label("mmx_break",16);
- &shl (&LB($nlo),4);
- &and ($rem,0xf);
- &psrlq ($Zlo,4);
- &and ($nhi,0xf0);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
- &pxor ($Zlo,$tmp);
-
- &psrlq ($Zlo,4);
- &and ($rem,0xf);
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
- &psllq ($tmp,60);
- &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
- &movd ($rem,$Zlo);
- &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
- &pxor ($Zlo,$tmp);
-
- &psrlq ($Zlo,32); # lower part of Zlo is already there
- &movd ($Zhl,$Zhi);
- &psrlq ($Zhi,32);
- &movd ($Zlh,$Zlo);
- &movd ($Zhh,$Zhi);
-
- &bswap ($Zll);
- &bswap ($Zhl);
- &bswap ($Zlh);
- &bswap ($Zhh);
-}
-
-&function_begin("gcm_gmult_4bit_mmx");
- &mov ($inp,&wparam(0)); # load Xi
- &mov ($Htbl,&wparam(1)); # load Htable
-
- &call (&label("pic_point"));
- &set_label("pic_point");
- &blindpop("eax");
- &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
-
- &movz ($Zll,&BP(15,$inp));
-
- &mmx_loop($inp,"eax");
-
- &emms ();
- &mov (&DWP(12,$inp),$Zll);
- &mov (&DWP(4,$inp),$Zhl);
- &mov (&DWP(8,$inp),$Zlh);
- &mov (&DWP(0,$inp),$Zhh);
-&function_end("gcm_gmult_4bit_mmx");
-
-######################################################################
-# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
-# (see gcm128.c for details). It provides further 20-40% performance
-# improvement over above mentioned "May" version.
-
-&static_label("rem_8bit");
-
-&function_begin("gcm_ghash_4bit_mmx");
-{ my ($Zlo,$Zhi) = ("mm7","mm6");
- my $rem_8bit = "esi";
- my $Htbl = "ebx";
-
- # parameter block
- &mov ("eax",&wparam(0)); # Xi
- &mov ("ebx",&wparam(1)); # Htable
- &mov ("ecx",&wparam(2)); # inp
- &mov ("edx",&wparam(3)); # len
- &mov ("ebp","esp"); # original %esp
- &call (&label("pic_point"));
- &set_label ("pic_point");
- &blindpop ($rem_8bit);
- &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
-
- &sub ("esp",512+16+16); # allocate stack frame...
- &and ("esp",-64); # ...and align it
- &sub ("esp",16); # place for (u8)(H[]<<4)
-
- &add ("edx","ecx"); # pointer to the end of input
- &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
- &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
- &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
-
- { my @lo = ("mm0","mm1","mm2");
- my @hi = ("mm3","mm4","mm5");
- my @tmp = ("mm6","mm7");
- my ($off1,$off2,$i) = (0,0,);
-
- &add ($Htbl,128); # optimize for size
- &lea ("edi",&DWP(16+128,"esp"));
- &lea ("ebp",&DWP(16+256+128,"esp"));
-
- # decompose Htable (low and high parts are kept separately),
- # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
- for ($i=0;$i<18;$i++) {
-
- &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
- &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
- &psllq ($tmp[1],60) if ($i>1);
- &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
- &por ($lo[2],$tmp[1]) if ($i>1);
- &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
- &psrlq ($lo[1],4) if ($i>0 && $i<17);
- &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
- &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
- &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
- &psrlq ($hi[1],4) if ($i>0 && $i<17);
- &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
- &shl ("edx",4) if ($i<16);
- &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
-
- unshift (@lo,pop(@lo)); # "rotate" registers
- unshift (@hi,pop(@hi));
- unshift (@tmp,pop(@tmp));
- $off1 += 8 if ($i>0);
- $off2 += 8 if ($i>1);
- }
- }
-
- &movq ($Zhi,&QWP(0,"eax"));
- &mov ("ebx",&DWP(8,"eax"));
- &mov ("edx",&DWP(12,"eax")); # load Xi
-
-&set_label("outer",16);
- { my $nlo = "eax";
- my $dat = "edx";
- my @nhi = ("edi","ebp");
- my @rem = ("ebx","ecx");
- my @red = ("mm0","mm1","mm2");
- my $tmp = "mm3";
-
- &xor ($dat,&DWP(12,"ecx")); # merge input data
- &xor ("ebx",&DWP(8,"ecx"));
- &pxor ($Zhi,&QWP(0,"ecx"));
- &lea ("ecx",&DWP(16,"ecx")); # inp+=16
- #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
- &mov (&DWP(528+8,"esp"),"ebx");
- &movq (&QWP(528+0,"esp"),$Zhi);
- &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
-
- &xor ($nlo,$nlo);
- &rol ($dat,8);
- &mov (&LB($nlo),&LB($dat));
- &mov ($nhi[1],$nlo);
- &and (&LB($nlo),0x0f);
- &shr ($nhi[1],4);
- &pxor ($red[0],$red[0]);
- &rol ($dat,8); # next byte
- &pxor ($red[1],$red[1]);
- &pxor ($red[2],$red[2]);
-
- # Just like in "May" verson modulo-schedule for critical path in
- # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
- # is scheduled so late that rem_8bit[] has to be shifted *right*
- # by 16, which is why last argument to pinsrw is 2, which
- # corresponds to <<32=<<48>>16...
- for ($j=11,$i=0;$i<15;$i++) {
-
- if ($i>0) {
- &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
- &rol ($dat,8); # next byte
- &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
-
- &pxor ($Zlo,$tmp);
- &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
- &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
- } else {
- &movq ($Zlo,&QWP(16,"esp",$nlo,8));
- &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
- }
-
- &mov (&LB($nlo),&LB($dat));
- &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
-
- &movd ($rem[0],$Zlo);
- &movz ($rem[1],&LB($rem[1])) if ($i>0);
- &psrlq ($Zlo,8); # Z>>=8
-
- &movq ($tmp,$Zhi);
- &mov ($nhi[0],$nlo);
- &psrlq ($Zhi,8);
-
- &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
- &and (&LB($nlo),0x0f);
- &psllq ($tmp,56);
-
- &pxor ($Zhi,$red[1]) if ($i>1);
- &shr ($nhi[0],4);
- &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
-
- unshift (@red,pop(@red)); # "rotate" registers
- unshift (@rem,pop(@rem));
- unshift (@nhi,pop(@nhi));
- }
-
- &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
- &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
- &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
-
- &pxor ($Zlo,$tmp);
- &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
- &movz ($rem[1],&LB($rem[1]));
-
- &pxor ($red[2],$red[2]); # clear 2nd word
- &psllq ($red[1],4);
-
- &movd ($rem[0],$Zlo);
- &psrlq ($Zlo,4); # Z>>=4
-
- &movq ($tmp,$Zhi);
- &psrlq ($Zhi,4);
- &shl ($rem[0],4); # rem<<4
-
- &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
- &psllq ($tmp,60);
- &movz ($rem[0],&LB($rem[0]));
-
- &pxor ($Zlo,$tmp);
- &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
-
- &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
- &pxor ($Zhi,$red[1]);
-
- &movd ($dat,$Zlo);
- &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
-
- &psllq ($red[0],12); # correct by <<16>>4
- &pxor ($Zhi,$red[0]);
- &psrlq ($Zlo,32);
- &pxor ($Zhi,$red[2]);
-
- &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
- &movd ("ebx",$Zlo);
- &movq ($tmp,$Zhi); # 01234567
- &psllw ($Zhi,8); # 1.3.5.7.
- &psrlw ($tmp,8); # .0.2.4.6
- &por ($Zhi,$tmp); # 10325476
- &bswap ($dat);
- &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
- &bswap ("ebx");
-
- &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
- &jne (&label("outer"));
- }
-
- &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
- &mov (&DWP(12,"eax"),"edx");
- &mov (&DWP(8,"eax"),"ebx");
- &movq (&QWP(0,"eax"),$Zhi);
-
- &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
- &emms ();
-}
-&function_end("gcm_ghash_4bit_mmx");
-}}
-
-if ($sse2) {{
-######################################################################
-# PCLMULQDQ version.
-
-$Xip="eax";
-$Htbl="edx";
-$const="ecx";
-$inp="esi";
-$len="ebx";
-
-($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
-($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
-($Xn,$Xhn)=("xmm6","xmm7");
-
-&static_label("bswap");
-
-sub clmul64x64_T2 { # minimal "register" pressure
-my ($Xhi,$Xi,$Hkey,$HK)=@_;
-
- &movdqa ($Xhi,$Xi); #
- &pshufd ($T1,$Xi,0b01001110);
- &pshufd ($T2,$Hkey,0b01001110) if (!defined($HK));
- &pxor ($T1,$Xi); #
- &pxor ($T2,$Hkey) if (!defined($HK));
- $HK=$T2 if (!defined($HK));
-
- &pclmulqdq ($Xi,$Hkey,0x00); #######
- &pclmulqdq ($Xhi,$Hkey,0x11); #######
- &pclmulqdq ($T1,$HK,0x00); #######
- &xorps ($T1,$Xi); #
- &xorps ($T1,$Xhi); #
-
- &movdqa ($T2,$T1); #
- &psrldq ($T1,8);
- &pslldq ($T2,8); #
- &pxor ($Xhi,$T1);
- &pxor ($Xi,$T2); #
-}
-
-sub clmul64x64_T3 {
-# Even though this subroutine offers visually better ILP, it
-# was empirically found to be a tad slower than above version.
-# At least in gcm_ghash_clmul context. But it's just as well,
-# because loop modulo-scheduling is possible only thanks to
-# minimized "register" pressure...
-my ($Xhi,$Xi,$Hkey)=@_;
-
- &movdqa ($T1,$Xi); #
- &movdqa ($Xhi,$Xi);
- &pclmulqdq ($Xi,$Hkey,0x00); #######
- &pclmulqdq ($Xhi,$Hkey,0x11); #######
- &pshufd ($T2,$T1,0b01001110); #
- &pshufd ($T3,$Hkey,0b01001110);
- &pxor ($T2,$T1); #
- &pxor ($T3,$Hkey);
- &pclmulqdq ($T2,$T3,0x00); #######
- &pxor ($T2,$Xi); #
- &pxor ($T2,$Xhi); #
-
- &movdqa ($T3,$T2); #
- &psrldq ($T2,8);
- &pslldq ($T3,8); #
- &pxor ($Xhi,$T2);
- &pxor ($Xi,$T3); #
-}
-
-if (1) { # Algorithm 9 with <<1 twist.
- # Reduction is shorter and uses only two
- # temporary registers, which makes it better
- # candidate for interleaving with 64x64
- # multiplication. Pre-modulo-scheduled loop
- # was found to be ~20% faster than Algorithm 5
- # below. Algorithm 9 was therefore chosen for
- # further optimization...
-
-sub reduction_alg9 { # 17/11 times faster than Intel version
-my ($Xhi,$Xi) = @_;
-
- # 1st phase
- &movdqa ($T2,$Xi); #
- &movdqa ($T1,$Xi);
- &psllq ($Xi,5);
- &pxor ($T1,$Xi); #
- &psllq ($Xi,1);
- &pxor ($Xi,$T1); #
- &psllq ($Xi,57); #
- &movdqa ($T1,$Xi); #
- &pslldq ($Xi,8);
- &psrldq ($T1,8); #
- &pxor ($Xi,$T2);
- &pxor ($Xhi,$T1); #
-
- # 2nd phase
- &movdqa ($T2,$Xi);
- &psrlq ($Xi,1);
- &pxor ($Xhi,$T2); #
- &pxor ($T2,$Xi);
- &psrlq ($Xi,5);
- &pxor ($Xi,$T2); #
- &psrlq ($Xi,1); #
- &pxor ($Xi,$Xhi) #
-}
-
-&function_begin_B("gcm_init_clmul");
- &mov ($Htbl,&wparam(0));
- &mov ($Xip,&wparam(1));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Hkey,&QWP(0,$Xip));
- &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
-
- # <<1 twist
- &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
- &movdqa ($T1,$Hkey);
- &psllq ($Hkey,1);
- &pxor ($T3,$T3); #
- &psrlq ($T1,63);
- &pcmpgtd ($T3,$T2); # broadcast carry bit
- &pslldq ($T1,8);
- &por ($Hkey,$T1); # H<<=1
-
- # magic reduction
- &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
- &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
-
- # calculate H^2
- &movdqa ($Xi,$Hkey);
- &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
- &reduction_alg9 ($Xhi,$Xi);
-
- &pshufd ($T1,$Hkey,0b01001110);
- &pshufd ($T2,$Xi,0b01001110);
- &pxor ($T1,$Hkey); # Karatsuba pre-processing
- &movdqu (&QWP(0,$Htbl),$Hkey); # save H
- &pxor ($T2,$Xi); # Karatsuba pre-processing
- &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
- &palignr ($T2,$T1,8); # low part is H.lo^H.hi
- &movdqu (&QWP(32,$Htbl),$T2); # save Karatsuba "salt"
-
- &ret ();
-&function_end_B("gcm_init_clmul");
-
-&function_begin_B("gcm_gmult_clmul");
- &mov ($Xip,&wparam(0));
- &mov ($Htbl,&wparam(1));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Xi,&QWP(0,$Xip));
- &movdqa ($T3,&QWP(0,$const));
- &movups ($Hkey,&QWP(0,$Htbl));
- &pshufb ($Xi,$T3);
- &movups ($T2,&QWP(32,$Htbl));
-
- &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
- &reduction_alg9 ($Xhi,$Xi);
-
- &pshufb ($Xi,$T3);
- &movdqu (&QWP(0,$Xip),$Xi);
-
- &ret ();
-&function_end_B("gcm_gmult_clmul");
-
-&function_begin("gcm_ghash_clmul");
- &mov ($Xip,&wparam(0));
- &mov ($Htbl,&wparam(1));
- &mov ($inp,&wparam(2));
- &mov ($len,&wparam(3));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Xi,&QWP(0,$Xip));
- &movdqa ($T3,&QWP(0,$const));
- &movdqu ($Hkey,&QWP(0,$Htbl));
- &pshufb ($Xi,$T3);
-
- &sub ($len,0x10);
- &jz (&label("odd_tail"));
-
- #######
- # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
- # [(H*Ii+1) + (H*Xi+1)] mod P =
- # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
- #
- &movdqu ($T1,&QWP(0,$inp)); # Ii
- &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
- &pshufb ($T1,$T3);
- &pshufb ($Xn,$T3);
- &movdqu ($T3,&QWP(32,$Htbl));
- &pxor ($Xi,$T1); # Ii+Xi
-
- &pshufd ($T1,$Xn,0b01001110); # H*Ii+1
- &movdqa ($Xhn,$Xn);
- &pxor ($T1,$Xn); #
-
- &pclmulqdq ($Xn,$Hkey,0x00); #######
- &pclmulqdq ($Xhn,$Hkey,0x11); #######
- &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
- &pclmulqdq ($T1,$T3,0x00); #######
-
- &lea ($inp,&DWP(32,$inp)); # i+=2
- &sub ($len,0x20);
- &jbe (&label("even_tail"));
- &jmp (&label("mod_loop"));
-
-&set_label("mod_loop",32);
- &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
- &movdqa ($Xhi,$Xi);
- &pxor ($T2,$Xi); #
-
- &pclmulqdq ($Xi,$Hkey,0x00); #######
- &pclmulqdq ($Xhi,$Hkey,0x11); #######
- &movups ($Hkey,&QWP(0,$Htbl)); # load H
- &pclmulqdq ($T2,$T3,0x10); #######
- &movdqa ($T3,&QWP(0,$const));
-
- &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
- &xorps ($Xhi,$Xhn);
- &movdqu ($Xhn,&QWP(0,$inp)); # Ii
- &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
- &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
- &pxor ($T1,$Xhi); #
-
- &pxor ($T2,$T1); #
- &pshufb ($Xhn,$T3);
-
- &movdqa ($T1,$T2); #
- &psrldq ($T2,8);
- &pslldq ($T1,8); #
- &pxor ($Xhi,$T2);
- &pxor ($Xi,$T1); #
- &pshufb ($Xn,$T3);
- &pxor ($Xhi,$Xhn); # "Ii+Xi", consume early
-
- &movdqa ($Xhn,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
- &movdqa ($T2,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase
- &movdqa ($T1,$Xi);
- &psllq ($Xi,5);
- &pxor ($T1,$Xi); #
- &psllq ($Xi,1);
- &pxor ($Xi,$T1); #
- &movups ($T3,&QWP(32,$Htbl));
- &pclmulqdq ($Xn,$Hkey,0x00); #######
- &psllq ($Xi,57); #
- &movdqa ($T1,$Xi); #
- &pslldq ($Xi,8);
- &psrldq ($T1,8); #
- &pxor ($Xi,$T2);
- &pxor ($Xhi,$T1); #
- &pshufd ($T1,$Xhn,0b01001110);
- &movdqa ($T2,$Xi); # 2nd phase
- &psrlq ($Xi,1);
- &pxor ($T1,$Xhn);
- &pclmulqdq ($Xhn,$Hkey,0x11); #######
- &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
- &pxor ($Xhi,$T2); #
- &pxor ($T2,$Xi);
- &psrlq ($Xi,5);
- &pxor ($Xi,$T2); #
- &psrlq ($Xi,1); #
- &pxor ($Xi,$Xhi) #
- &pclmulqdq ($T1,$T3,0x00); #######
-
- &lea ($inp,&DWP(32,$inp));
- &sub ($len,0x20);
- &ja (&label("mod_loop"));
-
-&set_label("even_tail");
- &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
- &movdqa ($Xhi,$Xi);
- &pxor ($T2,$Xi); #
-
- &pclmulqdq ($Xi,$Hkey,0x00); #######
- &pclmulqdq ($Xhi,$Hkey,0x11); #######
- &pclmulqdq ($T2,$T3,0x10); #######
- &movdqa ($T3,&QWP(0,$const));
-
- &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
- &xorps ($Xhi,$Xhn);
- &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
- &pxor ($T1,$Xhi); #
-
- &pxor ($T2,$T1); #
-
- &movdqa ($T1,$T2); #
- &psrldq ($T2,8);
- &pslldq ($T1,8); #
- &pxor ($Xhi,$T2);
- &pxor ($Xi,$T1); #
-
- &reduction_alg9 ($Xhi,$Xi);
-
- &test ($len,$len);
- &jnz (&label("done"));
-
- &movups ($Hkey,&QWP(0,$Htbl)); # load H
-&set_label("odd_tail");
- &movdqu ($T1,&QWP(0,$inp)); # Ii
- &pshufb ($T1,$T3);
- &pxor ($Xi,$T1); # Ii+Xi
-
- &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
- &reduction_alg9 ($Xhi,$Xi);
-
-&set_label("done");
- &pshufb ($Xi,$T3);
- &movdqu (&QWP(0,$Xip),$Xi);
-&function_end("gcm_ghash_clmul");
-
-} else { # Algorith 5. Kept for reference purposes.
-
-sub reduction_alg5 { # 19/16 times faster than Intel version
-my ($Xhi,$Xi)=@_;
-
- # <<1
- &movdqa ($T1,$Xi); #
- &movdqa ($T2,$Xhi);
- &pslld ($Xi,1);
- &pslld ($Xhi,1); #
- &psrld ($T1,31);
- &psrld ($T2,31); #
- &movdqa ($T3,$T1);
- &pslldq ($T1,4);
- &psrldq ($T3,12); #
- &pslldq ($T2,4);
- &por ($Xhi,$T3); #
- &por ($Xi,$T1);
- &por ($Xhi,$T2); #
-
- # 1st phase
- &movdqa ($T1,$Xi);
- &movdqa ($T2,$Xi);
- &movdqa ($T3,$Xi); #
- &pslld ($T1,31);
- &pslld ($T2,30);
- &pslld ($Xi,25); #
- &pxor ($T1,$T2);
- &pxor ($T1,$Xi); #
- &movdqa ($T2,$T1); #
- &pslldq ($T1,12);
- &psrldq ($T2,4); #
- &pxor ($T3,$T1);
-
- # 2nd phase
- &pxor ($Xhi,$T3); #
- &movdqa ($Xi,$T3);
- &movdqa ($T1,$T3);
- &psrld ($Xi,1); #
- &psrld ($T1,2);
- &psrld ($T3,7); #
- &pxor ($Xi,$T1);
- &pxor ($Xhi,$T2);
- &pxor ($Xi,$T3); #
- &pxor ($Xi,$Xhi); #
-}
-
-&function_begin_B("gcm_init_clmul");
- &mov ($Htbl,&wparam(0));
- &mov ($Xip,&wparam(1));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Hkey,&QWP(0,$Xip));
- &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
-
- # calculate H^2
- &movdqa ($Xi,$Hkey);
- &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
- &reduction_alg5 ($Xhi,$Xi);
-
- &movdqu (&QWP(0,$Htbl),$Hkey); # save H
- &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
-
- &ret ();
-&function_end_B("gcm_init_clmul");
-
-&function_begin_B("gcm_gmult_clmul");
- &mov ($Xip,&wparam(0));
- &mov ($Htbl,&wparam(1));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Xi,&QWP(0,$Xip));
- &movdqa ($Xn,&QWP(0,$const));
- &movdqu ($Hkey,&QWP(0,$Htbl));
- &pshufb ($Xi,$Xn);
-
- &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
- &reduction_alg5 ($Xhi,$Xi);
-
- &pshufb ($Xi,$Xn);
- &movdqu (&QWP(0,$Xip),$Xi);
-
- &ret ();
-&function_end_B("gcm_gmult_clmul");
-
-&function_begin("gcm_ghash_clmul");
- &mov ($Xip,&wparam(0));
- &mov ($Htbl,&wparam(1));
- &mov ($inp,&wparam(2));
- &mov ($len,&wparam(3));
-
- &call (&label("pic"));
-&set_label("pic");
- &blindpop ($const);
- &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
-
- &movdqu ($Xi,&QWP(0,$Xip));
- &movdqa ($T3,&QWP(0,$const));
- &movdqu ($Hkey,&QWP(0,$Htbl));
- &pshufb ($Xi,$T3);
-
- &sub ($len,0x10);
- &jz (&label("odd_tail"));
-
- #######
- # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
- # [(H*Ii+1) + (H*Xi+1)] mod P =
- # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
- #
- &movdqu ($T1,&QWP(0,$inp)); # Ii
- &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
- &pshufb ($T1,$T3);
- &pshufb ($Xn,$T3);
- &pxor ($Xi,$T1); # Ii+Xi
-
- &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
- &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
-
- &sub ($len,0x20);
- &lea ($inp,&DWP(32,$inp)); # i+=2
- &jbe (&label("even_tail"));
-
-&set_label("mod_loop");
- &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
- &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
-
- &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
- &pxor ($Xhi,$Xhn);
-
- &reduction_alg5 ($Xhi,$Xi);
-
- #######
- &movdqa ($T3,&QWP(0,$const));
- &movdqu ($T1,&QWP(0,$inp)); # Ii
- &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
- &pshufb ($T1,$T3);
- &pshufb ($Xn,$T3);
- &pxor ($Xi,$T1); # Ii+Xi
-
- &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
- &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
-
- &sub ($len,0x20);
- &lea ($inp,&DWP(32,$inp));
- &ja (&label("mod_loop"));
-
-&set_label("even_tail");
- &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
-
- &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
- &pxor ($Xhi,$Xhn);
-
- &reduction_alg5 ($Xhi,$Xi);
-
- &movdqa ($T3,&QWP(0,$const));
- &test ($len,$len);
- &jnz (&label("done"));
-
- &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
-&set_label("odd_tail");
- &movdqu ($T1,&QWP(0,$inp)); # Ii
- &pshufb ($T1,$T3);
- &pxor ($Xi,$T1); # Ii+Xi
-
- &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
- &reduction_alg5 ($Xhi,$Xi);
-
- &movdqa ($T3,&QWP(0,$const));
-&set_label("done");
- &pshufb ($Xi,$T3);
- &movdqu (&QWP(0,$Xip),$Xi);
-&function_end("gcm_ghash_clmul");
-
-}
-
-&set_label("bswap",64);
- &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
- &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
-&set_label("rem_8bit",64);
- &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
- &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
- &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
- &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
- &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
- &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
- &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
- &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
- &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
- &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
- &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
- &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
- &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
- &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
- &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
- &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
- &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
- &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
- &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
- &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
- &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
- &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
- &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
- &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
- &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
- &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
- &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
- &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
- &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
- &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
- &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
- &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
-}} # $sse2
-
-&set_label("rem_4bit",64);
- &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
- &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
- &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
- &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
-}}} # !$x86only
-
-&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
-&asm_finish();
-
-# A question was risen about choice of vanilla MMX. Or rather why wasn't
-# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
-# CPUs such as PIII, "4-bit" MMX version was observed to provide better
-# performance than *corresponding* SSE2 one even on contemporary CPUs.
-# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
-# implementation featuring full range of lookup-table sizes, but with
-# per-invocation lookup table setup. Latter means that table size is
-# chosen depending on how much data is to be hashed in every given call,
-# more data - larger table. Best reported result for Core2 is ~4 cycles
-# per processed byte out of 64KB block. This number accounts even for
-# 64KB table setup overhead. As discussed in gcm128.c we choose to be
-# more conservative in respect to lookup table sizes, but how do the
-# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
-# on same platform. As also discussed in gcm128.c, next in line "8-bit
-# Shoup's" or "4KB" method should deliver twice the performance of
-# "256B" one, in other words not worse than ~6 cycles per byte. It
-# should be also be noted that in SSE2 case improvement can be "super-
-# linear," i.e. more than twice, mostly because >>8 maps to single
-# instruction on SSE2 register. This is unlike "4-bit" case when >>4
-# maps to same amount of instructions in both MMX and SSE2 cases.
-# Bottom line is that switch to SSE2 is considered to be justifiable
-# only in case we choose to implement "8-bit" method...
+../openssl/./crypto/modes/asm/ghash-x86.pl \ No newline at end of file