diff options
author | Simon Josefsson <simon@josefsson.org> | 2007-05-24 11:42:53 +0000 |
---|---|---|
committer | Simon Josefsson <simon@josefsson.org> | 2007-05-24 11:42:53 +0000 |
commit | 9d9a376dd296d4eed407c43a453ab5abf249e410 (patch) | |
tree | e5f04efeb3f3c81f6a8e138e0aff8671dcc31077 /lgl/vasnprintf.c | |
parent | 15d2a5e54c7694aa7a4eeef3a6eebd6855874f07 (diff) | |
download | gnutls-9d9a376dd296d4eed407c43a453ab5abf249e410.tar.gz |
Update.
Diffstat (limited to 'lgl/vasnprintf.c')
-rw-r--r-- | lgl/vasnprintf.c | 1684 |
1 files changed, 1667 insertions, 17 deletions
diff --git a/lgl/vasnprintf.c b/lgl/vasnprintf.c index aa26280c92..8080aa1c46 100644 --- a/lgl/vasnprintf.c +++ b/lgl/vasnprintf.c @@ -53,6 +53,21 @@ /* Checked size_t computations. */ #include "xsize.h" +#if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL +# include <math.h> +# include "float+.h" +#endif + +#if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL +# include <math.h> +# include "isnan.h" +#endif + +#if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL +# include <math.h> +# include "isnanl-nolibm.h" +#endif + #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL # include <math.h> # include "isnan.h" @@ -111,7 +126,14 @@ local_wcslen (const wchar_t *s) # define DIRECTIVE char_directive # define DIRECTIVES char_directives # define PRINTF_PARSE printf_parse -# define USE_SNPRINTF (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) +# /* Use snprintf if it exists under the name 'snprintf' or '_snprintf'. + But don't use it on BeOS, since BeOS snprintf produces no output if the + size argument is >= 0x3000000. */ +# if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__ +# define USE_SNPRINTF 1 +# else +# define USE_SNPRINTF 0 +# endif # if HAVE_DECL__SNPRINTF /* Windows. */ # define SNPRINTF _snprintf @@ -152,6 +174,967 @@ decimal_point_char () # endif #endif +#if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL + +/* Equivalent to !isfinite(x) || x == 0, but does not require libm. */ +static int +is_infinite_or_zero (double x) +{ + return isnan (x) || x + x == x; +} + +#endif + +#if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL + +/* Equivalent to !isfinite(x), but does not require libm. */ +static int +is_infinitel (long double x) +{ + return isnanl (x) || (x + x == x && x != 0.0L); +} + +#endif + +#if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL + +/* Converting 'long double' to decimal without rare rounding bugs requires + real bignums. We use the naming conventions of GNU gmp, but vastly simpler + (and slower) algorithms. */ + +typedef unsigned int mp_limb_t; +# define GMP_LIMB_BITS 32 +typedef int mp_limb_verify[2 * (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS) - 1]; + +typedef unsigned long long mp_twolimb_t; +# define GMP_TWOLIMB_BITS 64 +typedef int mp_twolimb_verify[2 * (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS) - 1]; + +/* Representation of a bignum >= 0. */ +typedef struct +{ + size_t nlimbs; + mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */ +} mpn_t; + +/* Compute the product of two bignums >= 0. + Return the allocated memory in case of success, NULL in case of memory + allocation failure. */ +static void * +multiply (mpn_t src1, mpn_t src2, mpn_t *dest) +{ + const mp_limb_t *p1; + const mp_limb_t *p2; + size_t len1; + size_t len2; + + if (src1.nlimbs <= src2.nlimbs) + { + len1 = src1.nlimbs; + p1 = src1.limbs; + len2 = src2.nlimbs; + p2 = src2.limbs; + } + else + { + len1 = src2.nlimbs; + p1 = src2.limbs; + len2 = src1.nlimbs; + p2 = src1.limbs; + } + /* Now 0 <= len1 <= len2. */ + if (len1 == 0) + { + /* src1 or src2 is zero. */ + dest->nlimbs = 0; + dest->limbs = (mp_limb_t *) malloc (1); + } + else + { + /* Here 1 <= len1 <= len2. */ + size_t dlen; + mp_limb_t *dp; + size_t k, i, j; + + dlen = len1 + len2; + dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t)); + if (dp == NULL) + return NULL; + for (k = len2; k > 0; ) + dp[--k] = 0; + for (i = 0; i < len1; i++) + { + mp_limb_t digit1 = p1[i]; + mp_twolimb_t carry = 0; + for (j = 0; j < len2; j++) + { + mp_limb_t digit2 = p2[j]; + carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2; + carry += dp[i + j]; + dp[i + j] = (mp_limb_t) carry; + carry = carry >> GMP_LIMB_BITS; + } + dp[i + len2] = (mp_limb_t) carry; + } + /* Normalise. */ + while (dlen > 0 && dp[dlen - 1] == 0) + dlen--; + dest->nlimbs = dlen; + dest->limbs = dp; + } + return dest->limbs; +} + +/* Compute the quotient of a bignum a >= 0 and a bignum b > 0. + a is written as a = q * b + r with 0 <= r < b. q is the quotient, r + the remainder. + Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd, + q is incremented. + Return the allocated memory in case of success, NULL in case of memory + allocation failure. */ +static void * +divide (mpn_t a, mpn_t b, mpn_t *q) +{ + /* Algorithm: + First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]] + with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS). + If m<n, then q:=0 and r:=a. + If m>=n=1, perform a single-precision division: + r:=0, j:=m, + while j>0 do + {Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j = + = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta} + j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j]. + Normalise [q[m-1],...,q[0]], yields q. + If m>=n>1, perform a multiple-precision division: + We have a/b < beta^(m-n+1). + s:=intDsize-1-(hightest bit in b[n-1]), 0<=s<intDsize. + Shift a and b left by s bits, copying them. r:=a. + r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2. + For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).} + Compute q* : + q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]). + In case of overflow (q* >= beta) set q* := beta-1. + Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2] + and c3 := b[n-2] * q*. + {We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow + occurred. Furthermore 0 <= c3 < beta^2. + If there was overflow and + r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2, + the next test can be skipped.} + While c3 > c2, {Here 0 <= c2 < c3 < beta^2} + Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2]. + If q* > 0: + Put r := r - b * q* * beta^j. In detail: + [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]]. + hence: u:=0, for i:=0 to n-1 do + u := u + q* * b[i], + r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry), + u:=u div beta (+ 1, if carry in subtraction) + r[n+j]:=r[n+j]-u. + {Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1 + < q* + 1 <= beta, + the carry u does not overflow.} + If a negative carry occurs, put q* := q* - 1 + and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]]. + Set q[j] := q*. + Normalise [q[m-n],..,q[0]]; this yields the quotient q. + Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the + rest r. + The room for q[j] can be allocated at the memory location of r[n+j]. + Finally, round-to-even: + Shift r left by 1 bit. + If r > b or if r = b and q[0] is odd, q := q+1. + */ + const mp_limb_t *a_ptr = a.limbs; + size_t a_len = a.nlimbs; + const mp_limb_t *b_ptr = b.limbs; + size_t b_len = b.nlimbs; + mp_limb_t *roomptr; + mp_limb_t *tmp_roomptr = NULL; + mp_limb_t *q_ptr; + size_t q_len; + mp_limb_t *r_ptr; + size_t r_len; + + /* Allocate room for a_len+2 digits. + (Need a_len+1 digits for the real division and 1 more digit for the + final rounding of q.) */ + roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t)); + if (roomptr == NULL) + return NULL; + + /* Normalise a. */ + while (a_len > 0 && a_ptr[a_len - 1] == 0) + a_len--; + + /* Normalise b. */ + for (;;) + { + if (b_len == 0) + /* Division by zero. */ + abort (); + if (b_ptr[b_len - 1] == 0) + b_len--; + else + break; + } + + /* Here m = a_len >= 0 and n = b_len > 0. */ + + if (a_len < b_len) + { + /* m<n: trivial case. q=0, r := copy of a. */ + r_ptr = roomptr; + r_len = a_len; + memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t)); + q_ptr = roomptr + a_len; + q_len = 0; + } + else if (b_len == 1) + { + /* n=1: single precision division. + beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */ + r_ptr = roomptr; + q_ptr = roomptr + 1; + { + mp_limb_t den = b_ptr[0]; + mp_limb_t remainder = 0; + const mp_limb_t *sourceptr = a_ptr + a_len; + mp_limb_t *destptr = q_ptr + a_len; + size_t count; + for (count = a_len; count > 0; count--) + { + mp_twolimb_t num = + ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr; + *--destptr = num / den; + remainder = num % den; + } + /* Normalise and store r. */ + if (remainder > 0) + { + r_ptr[0] = remainder; + r_len = 1; + } + else + r_len = 0; + /* Normalise q. */ + q_len = a_len; + if (q_ptr[q_len - 1] == 0) + q_len--; + } + } + else + { + /* n>1: multiple precision division. + beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==> + beta^(m-n-1) <= a/b < beta^(m-n+1). */ + /* Determine s. */ + size_t s; + { + mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */ + s = 31; + if (msd >= 0x10000) + { + msd = msd >> 16; + s -= 16; + } + if (msd >= 0x100) + { + msd = msd >> 8; + s -= 8; + } + if (msd >= 0x10) + { + msd = msd >> 4; + s -= 4; + } + if (msd >= 0x4) + { + msd = msd >> 2; + s -= 2; + } + if (msd >= 0x2) + { + msd = msd >> 1; + s -= 1; + } + } + /* 0 <= s < GMP_LIMB_BITS. + Copy b, shifting it left by s bits. */ + if (s > 0) + { + tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t)); + if (tmp_roomptr == NULL) + { + free (roomptr); + return NULL; + } + { + const mp_limb_t *sourceptr = b_ptr; + mp_limb_t *destptr = tmp_roomptr; + mp_twolimb_t accu = 0; + size_t count; + for (count = b_len; count > 0; count--) + { + accu += (mp_twolimb_t) *sourceptr++ << s; + *destptr++ = (mp_limb_t) accu; + accu = accu >> GMP_LIMB_BITS; + } + /* accu must be zero, since that was how s was determined. */ + if (accu != 0) + abort (); + } + b_ptr = tmp_roomptr; + } + /* Copy a, shifting it left by s bits, yields r. + Memory layout: + At the beginning: r = roomptr[0..a_len], + at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */ + r_ptr = roomptr; + if (s == 0) + { + memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t)); + r_ptr[a_len] = 0; + } + else + { + const mp_limb_t *sourceptr = a_ptr; + mp_limb_t *destptr = r_ptr; + mp_twolimb_t accu = 0; + size_t count; + for (count = a_len; count > 0; count--) + { + accu += (mp_twolimb_t) *sourceptr++ << s; + *destptr++ = (mp_limb_t) accu; + accu = accu >> GMP_LIMB_BITS; + } + *destptr++ = (mp_limb_t) accu; + } + q_ptr = roomptr + b_len; + q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */ + { + size_t j = a_len - b_len; /* m-n */ + mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */ + mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */ + mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */ + ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd; + /* Division loop, traversed m-n+1 times. + j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */ + for (;;) + { + mp_limb_t q_star; + mp_limb_t c1; + if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */ + { + /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */ + mp_twolimb_t num = + ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS) + | r_ptr[j + b_len - 1]; + q_star = num / b_msd; + c1 = num % b_msd; + } + else + { + /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */ + q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */ + /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta + <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta + <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) + {<= beta !}. + If yes, jump directly to the subtraction loop. + (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta + <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */ + if (r_ptr[j + b_len] > b_msd + || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd) + /* r[j+n] >= b[n-1]+1 or + r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a + carry. */ + goto subtract; + } + /* q_star = q*, + c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */ + { + mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */ + ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2]; + mp_twolimb_t c3 = /* b[n-2] * q* */ + (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star; + /* While c2 < c3, increase c2 and decrease c3. + Consider c3-c2. While it is > 0, decrease it by + b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2 + this can happen only twice. */ + if (c3 > c2) + { + q_star = q_star - 1; /* q* := q* - 1 */ + if (c3 - c2 > b_msdd) + q_star = q_star - 1; /* q* := q* - 1 */ + } + } + if (q_star > 0) + subtract: + { + /* Subtract r := r - b * q* * beta^j. */ + mp_limb_t cr; + { + const mp_limb_t *sourceptr = b_ptr; + mp_limb_t *destptr = r_ptr + j; + mp_twolimb_t carry = 0; + size_t count; + for (count = b_len; count > 0; count--) + { + /* Here 0 <= carry <= q*. */ + carry = + carry + + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++ + + (mp_limb_t) ~(*destptr); + /* Here 0 <= carry <= beta*q* + beta-1. */ + *destptr++ = ~(mp_limb_t) carry; + carry = carry >> GMP_LIMB_BITS; /* <= q* */ + } + cr = (mp_limb_t) carry; + } + /* Subtract cr from r_ptr[j + b_len], then forget about + r_ptr[j + b_len]. */ + if (cr > r_ptr[j + b_len]) + { + /* Subtraction gave a carry. */ + q_star = q_star - 1; /* q* := q* - 1 */ + /* Add b back. */ + { + const mp_limb_t *sourceptr = b_ptr; + mp_limb_t *destptr = r_ptr + j; + mp_limb_t carry = 0; + size_t count; + for (count = b_len; count > 0; count--) + { + mp_limb_t source1 = *sourceptr++; + mp_limb_t source2 = *destptr; + *destptr++ = source1 + source2 + carry; + carry = + (carry + ? source1 >= (mp_limb_t) ~source2 + : source1 > (mp_limb_t) ~source2); + } + } + /* Forget about the carry and about r[j+n]. */ + } + } + /* q* is determined. Store it as q[j]. */ + q_ptr[j] = q_star; + if (j == 0) + break; + j--; + } + } + r_len = b_len; + /* Normalise q. */ + if (q_ptr[q_len - 1] == 0) + q_len--; +# if 0 /* Not needed here, since we need r only to compare it with b/2, and + b is shifted left by s bits. */ + /* Shift r right by s bits. */ + if (s > 0) + { + mp_limb_t ptr = r_ptr + r_len; + mp_twolimb_t accu = 0; + size_t count; + for (count = r_len; count > 0; count--) + { + accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS; + accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s); + *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS); + } + } +# endif + /* Normalise r. */ + while (r_len > 0 && r_ptr[r_len - 1] == 0) + r_len--; + } + /* Compare r << 1 with b. */ + if (r_len > b_len) + goto increment_q; + { + size_t i; + for (i = b_len;;) + { + mp_limb_t r_i = + (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0) + | (i < r_len ? r_ptr[i] << 1 : 0); + mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0); + if (r_i > b_i) + goto increment_q; + if (r_i < b_i) + goto keep_q; + if (i == 0) + break; + i--; + } + } + if (q_len > 0 && ((q_ptr[0] & 1) != 0)) + /* q is odd. */ + increment_q: + { + size_t i; + for (i = 0; i < q_len; i++) + if (++(q_ptr[i]) != 0) + goto keep_q; + q_ptr[q_len++] = 1; + } + keep_q: + if (tmp_roomptr != NULL) + free (tmp_roomptr); + q->limbs = q_ptr; + q->nlimbs = q_len; + return roomptr; +} + +/* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal + representation. + Destroys the contents of a. + Return the allocated memory - containing the decimal digits in low-to-high + order, terminated with a NUL character - in case of success, NULL in case + of memory allocation failure. */ +static char * +convert_to_decimal (mpn_t a, size_t extra_zeroes) +{ + mp_limb_t *a_ptr = a.limbs; + size_t a_len = a.nlimbs; + /* 0.03345 is slightly larger than log(2)/(9*log(10)). */ + size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1); + char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes)); + if (c_ptr != NULL) + { + char *d_ptr = c_ptr; + for (; extra_zeroes > 0; extra_zeroes--) + *d_ptr++ = '0'; + while (a_len > 0) + { + /* Divide a by 10^9, in-place. */ + mp_limb_t remainder = 0; + mp_limb_t *ptr = a_ptr + a_len; + size_t count; + for (count = a_len; count > 0; count--) + { + mp_twolimb_t num = + ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr; + *ptr = num / 1000000000; + remainder = num % 1000000000; + } + /* Store the remainder as 9 decimal digits. */ + for (count = 9; count > 0; count--) + { + *d_ptr++ = '0' + (remainder % 10); + remainder = remainder / 10; + } + /* Normalize a. */ + if (a_ptr[a_len - 1] == 0) + a_len--; + } + /* Remove leading zeroes. */ + while (d_ptr > c_ptr && d_ptr[-1] == '0') + d_ptr--; + /* But keep at least one zero. */ + if (d_ptr == c_ptr) + *d_ptr++ = '0'; + /* Terminate the string. */ + *d_ptr = '\0'; + } + return c_ptr; +} + +/* Assuming x is finite and >= 0: + write x as x = 2^e * m, where m is a bignum. + Return the allocated memory in case of success, NULL in case of memory + allocation failure. */ +static void * +decode_long_double (long double x, int *ep, mpn_t *mp) +{ + mpn_t m; + int exp; + long double y; + size_t i; + + /* Allocate memory for result. */ + m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS; + m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t)); + if (m.limbs == NULL) + return NULL; + /* Split into exponential part and mantissa. */ + y = frexpl (x, &exp); + if (!(y >= 0.0L && y < 1.0L)) + abort (); + /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * LDBL_MANT_BIT), and the + latter is an integer. */ + /* Convert the mantissa (y * LDBL_MANT_BIT) to a sequence of limbs. + I'm not sure whether it's safe to cast a 'long double' value between + 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only + 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int', + doesn't matter). */ +# if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0 +# if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2 + { + mp_limb_t hi, lo; + y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2)); + hi = (int) y; + y -= hi; + if (!(y >= 0.0L && y < 1.0L)) + abort (); + y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); + lo = (int) y; + y -= lo; + if (!(y >= 0.0L && y < 1.0L)) + abort (); + m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo; + } +# else + { + mp_limb_t d; + y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS); + d = (int) y; + y -= d; + if (!(y >= 0.0L && y < 1.0L)) + abort (); + m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d; + } +# endif +# endif + for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; ) + { + mp_limb_t hi, lo; + y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); + hi = (int) y; + y -= hi; + if (!(y >= 0.0L && y < 1.0L)) + abort (); + y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); + lo = (int) y; + y -= lo; + if (!(y >= 0.0L && y < 1.0L)) + abort (); + m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo; + } + if (!(y == 0.0L)) + abort (); + /* Normalise. */ + while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0) + m.nlimbs--; + *mp = m; + *ep = exp - LDBL_MANT_BIT; + return m.limbs; +} + +/* Assuming x is finite and >= 0, and n is an integer: + Returns the decimal representation of round (x * 10^n). + Return the allocated memory - containing the decimal digits in low-to-high + order, terminated with a NUL character - in case of success, NULL in case + of memory allocation failure. */ +static char * +scale10_round_decimal_long_double (long double x, int n) +{ + int e; + mpn_t m; + void *memory = decode_long_double (x, &e, &m); + int s; + size_t extra_zeroes; + unsigned int abs_n; + unsigned int abs_s; + mp_limb_t *pow5_ptr; + size_t pow5_len; + unsigned int s_limbs; + unsigned int s_bits; + mpn_t pow5; + mpn_t z; + void *z_memory; + char *digits; + + if (memory == NULL) + return NULL; + /* x = 2^e * m, hence + y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m) + = round (2^s * 5^n * m). */ + s = e + n; + extra_zeroes = 0; + /* Factor out a common power of 10 if possible. */ + if (s > 0 && n > 0) + { + extra_zeroes = (s < n ? s : n); + s -= extra_zeroes; + n -= extra_zeroes; + } + /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes. + Before converting to decimal, we need to compute + z = round (2^s * 5^n * m). */ + /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same + sign. 2.322 is slightly larger than log(5)/log(2). */ + abs_n = (n >= 0 ? n : -n); + abs_s = (s >= 0 ? s : -s); + pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1 + + abs_s / GMP_LIMB_BITS + 1) + * sizeof (mp_limb_t)); + if (pow5_ptr == NULL) + { + free (memory); + return NULL; + } + /* Initialize with 1. */ + pow5_ptr[0] = 1; + pow5_len = 1; + /* Multiply with 5^|n|. */ + if (abs_n > 0) + { + static mp_limb_t const small_pow5[13 + 1] = + { + 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, + 48828125, 244140625, 1220703125 + }; + unsigned int n13; + for (n13 = 0; n13 <= abs_n; n13 += 13) + { + mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13]; + size_t j; + mp_twolimb_t carry = 0; + for (j = 0; j < pow5_len; j++) + { + mp_limb_t digit2 = pow5_ptr[j]; + carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2; + pow5_ptr[j] = (mp_limb_t) carry; + carry = carry >> GMP_LIMB_BITS; + } + if (carry > 0) + pow5_ptr[pow5_len++] = (mp_limb_t) carry; + } + } + s_limbs = abs_s / GMP_LIMB_BITS; + s_bits = abs_s % GMP_LIMB_BITS; + if (n >= 0 ? s >= 0 : s <= 0) + { + /* Multiply with 2^|s|. */ + if (s_bits > 0) + { + mp_limb_t *ptr = pow5_ptr; + mp_twolimb_t accu = 0; + size_t count; + for (count = pow5_len; count > 0; count--) + { + accu += (mp_twolimb_t) *ptr << s_bits; + *ptr++ = (mp_limb_t) accu; + accu = accu >> GMP_LIMB_BITS; + } + if (accu > 0) + { + *ptr = (mp_limb_t) accu; + pow5_len++; + } + } + if (s_limbs > 0) + { + size_t count; + for (count = pow5_len; count > 0;) + { + count--; + pow5_ptr[s_limbs + count] = pow5_ptr[count]; + } + for (count = s_limbs; count > 0;) + { + count--; + pow5_ptr[count] = 0; + } + pow5_len += s_limbs; + } + pow5.limbs = pow5_ptr; + pow5.nlimbs = pow5_len; + if (n >= 0) + { + /* Multiply m with pow5. No division needed. */ + z_memory = multiply (m, pow5, &z); + } + else + { + /* Divide m by pow5 and round. */ + z_memory = divide (m, pow5, &z); + } + } + else + { + pow5.limbs = pow5_ptr; + pow5.nlimbs = pow5_len; + if (n >= 0) + { + /* n >= 0, s < 0. + Multiply m with pow5, then divide by 2^|s|. */ + mpn_t numerator; + mpn_t denominator; + void *tmp_memory; + tmp_memory = multiply (m, pow5, &numerator); + if (tmp_memory == NULL) + { + free (pow5_ptr); + free (memory); + return NULL; + } + /* Construct 2^|s|. */ + { + mp_limb_t *ptr = pow5_ptr + pow5_len; + size_t i; + for (i = 0; i < s_limbs; i++) + ptr[i] = 0; + ptr[s_limbs] = (mp_limb_t) 1 << s_bits; + denominator.limbs = ptr; + denominator.nlimbs = s_limbs + 1; + } + z_memory = divide (numerator, denominator, &z); + free (tmp_memory); + } + else + { + /* n < 0, s > 0. + Multiply m with 2^s, then divide by pow5. */ + mpn_t numerator; + mp_limb_t *num_ptr; + num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1) + * sizeof (mp_limb_t)); + if (num_ptr == NULL) + { + free (pow5_ptr); + free (memory); + return NULL; + } + { + mp_limb_t *destptr = num_ptr; + { + size_t i; + for (i = 0; i < s_limbs; i++) + *destptr++ = 0; + } + if (s_bits > 0) + { + const mp_limb_t *sourceptr = m.limbs; + mp_twolimb_t accu = 0; + size_t count; + for (count = m.nlimbs; count > 0; count--) + { + accu += (mp_twolimb_t) *sourceptr++ << s; + *destptr++ = (mp_limb_t) accu; + accu = accu >> GMP_LIMB_BITS; + } + if (accu > 0) + *destptr++ = (mp_limb_t) accu; + } + else + { + const mp_limb_t *sourceptr = m.limbs; + size_t count; + for (count = m.nlimbs; count > 0; count--) + *destptr++ = *sourceptr++; + } + numerator.limbs = num_ptr; + numerator.nlimbs = destptr - num_ptr; + } + z_memory = divide (numerator, pow5, &z); + free (num_ptr); + } + } + free (pow5_ptr); + free (memory); + + /* Here y = round (x * 10^n) = z * 10^extra_zeroes. */ + + if (z_memory == NULL) + return NULL; + digits = convert_to_decimal (z, extra_zeroes); + free (z_memory); + return digits; +} + +/* Assuming x is finite and > 0: + Return an approximation for n with 10^n <= x < 10^(n+1). + The approximation is usually the right n, but may be off by 1 sometimes. */ +static int +floorlog10l (long double x) +{ + int exp; + long double y; + double z; + double l; + + /* Split into exponential part and mantissa. */ + y = frexpl (x, &exp); + if (!(y >= 0.0L && y < 1.0L)) + abort (); + if (y == 0.0L) + return INT_MIN; + if (y < 0.5L) + { + while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2)))) + { + y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2)); + exp -= GMP_LIMB_BITS; + } + if (y < (1.0L / (1 << 16))) + { + y *= 1.0L * (1 << 16); + exp -= 16; + } + if (y < (1.0L / (1 << 8))) + { + y *= 1.0L * (1 << 8); + exp -= 8; + } + if (y < (1.0L / (1 << 4))) + { + y *= 1.0L * (1 << 4); + exp -= 4; + } + if (y < (1.0L / (1 << 2))) + { + y *= 1.0L * (1 << 2); + exp -= 2; + } + if (y < (1.0L / (1 << 1))) + { + y *= 1.0L * (1 << 1); + exp -= 1; + } + } + if (!(y >= 0.5L && y < 1.0L)) + abort (); + /* Compute an approximation for l = log2(x) = exp + log2(y). */ + l = exp; + z = y; + if (z < 0.70710678118654752444) + { + z *= 1.4142135623730950488; + l -= 0.5; + } + if (z < 0.8408964152537145431) + { + z *= 1.1892071150027210667; + l -= 0.25; + } + if (z < 0.91700404320467123175) + { + z *= 1.0905077326652576592; + l -= 0.125; + } + if (z < 0.9576032806985736469) + { + z *= 1.0442737824274138403; + l -= 0.0625; + } + /* Now 0.95 <= z <= 1.01. */ + z = 1 - z; + /* log(1-z) = - z - z^2/2 - z^3/3 - z^4/4 - ... + Four terms are enough to get an approximation with error < 10^-7. */ + l -= z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25))); + /* Finally multiply with log(2)/log(10), yields an approximation for + log10(x). */ + l *= 0.30102999566398119523; + /* Round down to the next integer. */ + return (int) l + (l < 0 ? -1 : 0); +} + +#endif + CHAR_T * VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list args) { @@ -306,6 +1289,661 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar abort (); } } +#if (NEED_PRINTF_INFINITE_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL + else if ((dp->conversion == 'f' || dp->conversion == 'F' + || dp->conversion == 'e' || dp->conversion == 'E' + || dp->conversion == 'g' || dp->conversion == 'G') + && (0 +# if NEED_PRINTF_INFINITE_DOUBLE + || (a.arg[dp->arg_index].type == TYPE_DOUBLE + /* The systems (mingw) which produce wrong output + for Inf, -Inf, and NaN also do so for -0.0. + Therefore we treat this case here as well. */ + && is_infinite_or_zero (a.arg[dp->arg_index].a.a_double)) +# endif +# if NEED_PRINTF_LONG_DOUBLE + || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE +# elif NEED_PRINTF_INFINITE_LONG_DOUBLE + || (a.arg[dp->arg_index].type == TYPE_LONGDOUBLE + /* Some systems produce wrong output for Inf, + -Inf, and NaN. */ + && is_infinitel (a.arg[dp->arg_index].a.a_longdouble)) +# endif + )) + { +# if NEED_PRINTF_INFINITE_DOUBLE && (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE) + arg_type type = a.arg[dp->arg_index].type; +# endif + int flags = dp->flags; + int has_width; + size_t width; + int has_precision; + size_t precision; + size_t tmp_length; + CHAR_T tmpbuf[700]; + CHAR_T *tmp; + CHAR_T *pad_ptr; + CHAR_T *p; + + has_width = 0; + width = 0; + if (dp->width_start != dp->width_end) + { + if (dp->width_arg_index != ARG_NONE) + { + int arg; + + if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) + abort (); + arg = a.arg[dp->width_arg_index].a.a_int; + if (arg < 0) + { + /* "A negative field width is taken as a '-' flag + followed by a positive field width." */ + flags |= FLAG_LEFT; + width = (unsigned int) (-arg); + } + else + width = arg; + } + else + { + const CHAR_T *digitp = dp->width_start; + + do + width = xsum (xtimes (width, 10), *digitp++ - '0'); + while (digitp != dp->width_end); + } + has_width = 1; + } + + has_precision = 0; + precision = 0; + if (dp->precision_start != dp->precision_end) + { + if (dp->precision_arg_index != ARG_NONE) + { + int arg; + + if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) + abort (); + arg = a.arg[dp->precision_arg_index].a.a_int; + /* "A negative precision is taken as if the precision + were omitted." */ + if (arg >= 0) + { + precision = arg; + has_precision = 1; + } + } + else + { + const CHAR_T *digitp = dp->precision_start + 1; + + precision = 0; + while (digitp != dp->precision_end) + precision = xsum (xtimes (precision, 10), *digitp++ - '0'); + has_precision = 1; + } + } + + /* POSIX specifies the default precision to be 6 for %f, %F, + %e, %E, but not for %g, %G. Implementations appear to use + the same default precision also for %g, %G. */ + if (!has_precision) + precision = 6; + + /* Allocate a temporary buffer of sufficient size. */ +# if NEED_PRINTF_INFINITE_DOUBLE && NEED_PRINTF_LONG_DOUBLE + tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : 0); +# elif NEED_PRINTF_LONG_DOUBLE + tmp_length = LDBL_DIG + 1; +# else + tmp_length = 0; +# endif + if (tmp_length < precision) + tmp_length = precision; +# if NEED_PRINTF_LONG_DOUBLE +# if NEED_PRINTF_INFINITE_DOUBLE + if (type == TYPE_LONGDOUBLE) +# endif + if (dp->conversion == 'f' || dp->conversion == 'F') + { + long double arg = a.arg[dp->arg_index].a.a_longdouble; + if (!(isnanl (arg) || arg + arg == arg)) + { + /* arg is finite and nonzero. */ + int exponent = floorlog10l (arg < 0 ? -arg : arg); + if (exponent >= 0 && tmp_length < exponent + precision) + tmp_length = exponent + precision; + } + } +# endif + /* Account for sign, decimal point etc. */ + tmp_length = xsum (tmp_length, 12); + + if (tmp_length < width) + tmp_length = width; + + tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ + + if (tmp_length <= sizeof (tmpbuf) / sizeof (CHAR_T)) + tmp = tmpbuf; + else + { + size_t tmp_memsize = xtimes (tmp_length, sizeof (CHAR_T)); + + if (size_overflow_p (tmp_memsize)) + /* Overflow, would lead to out of memory. */ + goto out_of_memory; + tmp = (CHAR_T *) malloc (tmp_memsize); + if (tmp == NULL) + /* Out of memory. */ + goto out_of_memory; + } + + pad_ptr = NULL; + p = tmp; + +# if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE +# if NEED_PRINTF_INFINITE_DOUBLE + if (type == TYPE_LONGDOUBLE) +# endif + { + long double arg = a.arg[dp->arg_index].a.a_longdouble; + + if (isnanl (arg)) + { + if (dp->conversion >= 'A' && dp->conversion <= 'Z') + { + *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; + } + else + { + *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; + } + } + else + { + int sign = 0; + DECL_LONG_DOUBLE_ROUNDING + + BEGIN_LONG_DOUBLE_ROUNDING (); + + if (signbit (arg)) /* arg < 0.0L or negative zero */ + { + sign = -1; + arg = -arg; + } + + if (sign < 0) + *p++ = '-'; + else if (flags & FLAG_SHOWSIGN) + *p++ = '+'; + else if (flags & FLAG_SPACE) + *p++ = ' '; + + if (arg > 0.0L && arg + arg == arg) + { + if (dp->conversion >= 'A' && dp->conversion <= 'Z') + { + *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; + } + else + { + *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; + } + } + else + { +# if NEED_PRINTF_LONG_DOUBLE + pad_ptr = p; + + if (dp->conversion == 'f' || dp->conversion == 'F') + { + char *digits; + size_t ndigits; + + digits = + scale10_round_decimal_long_double (arg, precision); + if (digits == NULL) + { + END_LONG_DOUBLE_ROUNDING (); + goto out_of_memory; + } + ndigits = strlen (digits); + + if (ndigits > precision) + do + { + --ndigits; + *p++ = digits[ndigits]; + } + while (ndigits > precision); + else + *p++ = '0'; + /* Here ndigits <= precision. */ + if ((flags & FLAG_ALT) || precision > 0) + { + *p++ = decimal_point_char (); + for (; precision > ndigits; precision--) + *p++ = '0'; + while (ndigits > 0) + { + --ndigits; + *p++ = digits[ndigits]; + } + } + + free (digits); + } + else if (dp->conversion == 'e' || dp->conversion == 'E') + { + int exponent; + + if (arg == 0.0L) + { + exponent = 0; + *p++ = '0'; + if ((flags & FLAG_ALT) || precision > 0) + { + *p++ = decimal_point_char (); + for (; precision > 0; precision--) + *p++ = '0'; + } + } + else + { + /* arg > 0.0L. */ + int adjusted; + char *digits; + size_t ndigits; + + exponent = floorlog10l (arg); + adjusted = 0; + for (;;) + { + digits = + scale10_round_decimal_long_double (arg, + (int)precision - exponent); + if (digits == NULL) + { + END_LONG_DOUBLE_ROUNDING (); + goto out_of_memory; + } + ndigits = strlen (digits); + + if (ndigits == precision + 1) + break; + if (ndigits < precision + || ndigits > precision + 2) + /* The exponent was not guessed + precisely enough. */ + abort (); + if (adjusted) + /* None of two values of exponent is + the right one. Prevent an endless + loop. */ + abort (); + free (digits); + if (ndigits == precision) + exponent -= 1; + else + exponent += 1; + adjusted = 1; + } + + /* Here ndigits = precision+1. */ + *p++ = digits[--ndigits]; + if ((flags & FLAG_ALT) || precision > 0) + { + *p++ = decimal_point_char (); + while (ndigits > 0) + { + --ndigits; + *p++ = digits[ndigits]; + } + } + + free (digits); + } + + *p++ = dp->conversion; /* 'e' or 'E' */ +# if WIDE_CHAR_VERSION + { + static const wchar_t decimal_format[] = + { '%', '+', '.', '2', 'd', '\0' }; + SNPRINTF (p, 6 + 1, decimal_format, exponent); + } +# else + sprintf (p, "%+.2d", exponent); +# endif + while (*p != '\0') + p++; + } + else if (dp->conversion == 'g' || dp->conversion == 'G') + { + if (precision == 0) + precision = 1; + /* precision >= 1. */ + + if (arg == 0.0L) + /* The exponent is 0, >= -4, < precision. + Use fixed-point notation. */ + { + size_t ndigits = precision; + /* Number of trailing zeroes that have to be + dropped. */ + size_t nzeroes = + (flags & FLAG_ALT ? 0 : precision - 1); + + --ndigits; + *p++ = '0'; + if ((flags & FLAG_ALT) || ndigits > nzeroes) + { + *p++ = decimal_point_char (); + while (ndigits > nzeroes) + { + --ndigits; + *p++ = '0'; + } + } + } + else + { + /* arg > 0.0L. */ + int exponent; + int adjusted; + char *digits; + size_t ndigits; + size_t nzeroes; + + exponent = floorlog10l (arg); + adjusted = 0; + for (;;) + { + digits = + scale10_round_decimal_long_double (arg, + (int)(precision - 1) - exponent); + if (digits == NULL) + { + END_LONG_DOUBLE_ROUNDING (); + goto out_of_memory; + } + ndigits = strlen (digits); + + if (ndigits == precision) + break; + if (ndigits < precision - 1 + || ndigits > precision + 1) + /* The exponent was not guessed + precisely enough. */ + abort (); + if (adjusted) + /* None of two values of exponent is + the right one. Prevent an endless + loop. */ + abort (); + free (digits); + if (ndigits < precision) + exponent -= 1; + else + exponent += 1; + adjusted = 1; + } + /* Here ndigits = precision. */ + + /* Determine the number of trailing zeroes + that have to be dropped. */ + nzeroes = 0; + if ((flags & FLAG_ALT) == 0) + while (nzeroes < ndigits + && digits[nzeroes] == '0') + nzeroes++; + + /* The exponent is now determined. */ + if (exponent >= -4 + && exponent < (long)precision) + { + /* Fixed-point notation: + max(exponent,0)+1 digits, then the + decimal point, then the remaining + digits without trailing zeroes. */ + if (exponent >= 0) + { + size_t count = exponent + 1; + /* Note: count <= precision = ndigits. */ + for (; count > 0; count--) + *p++ = digits[--ndigits]; + if ((flags & FLAG_ALT) || ndigits > nzeroes) + { + *p++ = decimal_point_char (); + while (ndigits > nzeroes) + { + --ndigits; + *p++ = digits[ndigits]; + } + } + } + else + { + size_t count = -exponent - 1; + *p++ = '0'; + *p++ = decimal_point_char (); + for (; count > 0; count--) + *p++ = '0'; + while (ndigits > nzeroes) + { + --ndigits; + *p++ = digits[ndigits]; + } + } + } + else + { + /* Exponential notation. */ + *p++ = digits[--ndigits]; + if ((flags & FLAG_ALT) || ndigits > nzeroes) + { + *p++ = decimal_point_char (); + while (ndigits > nzeroes) + { + --ndigits; + *p++ = digits[ndigits]; + } + } + *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */ +# if WIDE_CHAR_VERSION + { + static const wchar_t decimal_format[] = + { '%', '+', '.', '2', 'd', '\0' }; + SNPRINTF (p, 6 + 1, decimal_format, exponent); + } +# else + sprintf (p, "%+.2d", exponent); +# endif + while (*p != '\0') + p++; + } + + free (digits); + } + } + else + abort (); +# else + /* arg is finite. */ + abort (); +# endif + } + + END_LONG_DOUBLE_ROUNDING (); + } + } +# if NEED_PRINTF_INFINITE_DOUBLE + else +# endif +# endif +# if NEED_PRINTF_INFINITE_DOUBLE + { + /* Simpler than above: handle only NaN, Infinity, zero. */ + double arg = a.arg[dp->arg_index].a.a_double; + + if (isnan (arg)) + { + if (dp->conversion >= 'A' && dp->conversion <= 'Z') + { + *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; + } + else + { + *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; + } + } + else + { + int sign = 0; + + if (signbit (arg)) /* arg < 0.0L or negative zero */ + { + sign = -1; + arg = -arg; + } + + if (sign < 0) + *p++ = '-'; + else if (flags & FLAG_SHOWSIGN) + *p++ = '+'; + else if (flags & FLAG_SPACE) + *p++ = ' '; + + if (arg > 0.0 && arg + arg == arg) + { + if (dp->conversion >= 'A' && dp->conversion <= 'Z') + { + *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; + } + else + { + *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; + } + } + else + { + if (!(arg == 0.0)) + abort (); + + pad_ptr = p; + + if (dp->conversion == 'f' || dp->conversion == 'F') + { + *p++ = '0'; + if ((flags & FLAG_ALT) || precision > 0) + { + *p++ = decimal_point_char (); + for (; precision > 0; precision--) + *p++ = '0'; + } + } + else if (dp->conversion == 'e' || dp->conversion == 'E') + { + *p++ = '0'; + if ((flags & FLAG_ALT) || precision > 0) + { + *p++ = decimal_point_char (); + for (; precision > 0; precision--) + *p++ = '0'; + } + *p++ = dp->conversion; /* 'e' or 'E' */ + *p++ = '+'; + /* Produce the same number of exponent digits as + the native printf implementation. */ +# if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ + *p++ = '0'; +# endif + *p++ = '0'; + *p++ = '0'; + } + else if (dp->conversion == 'g' || dp->conversion == 'G') + { + *p++ = '0'; + if (flags & FLAG_ALT) + { + size_t ndigits = + (precision > 0 ? precision - 1 : 0); + *p++ = decimal_point_char (); + for (; ndigits > 0; --ndigits) + *p++ = '0'; + } + } + else + abort (); + } + } + } +# endif + + /* The generated string now extends from tmp to p, with the + zero padding insertion point being at pad_ptr. */ + if (has_width && p - tmp < width) + { + size_t pad = width - (p - tmp); + CHAR_T *end = p + pad; + + if (flags & FLAG_LEFT) + { + /* Pad with spaces on the right. */ + for (; pad > 0; pad--) + *p++ = ' '; + } + else if ((flags & FLAG_ZERO) && pad_ptr != NULL) + { + /* Pad with zeroes. */ + CHAR_T *q = end; + + while (p > pad_ptr) + *--q = *--p; + for (; pad > 0; pad--) + *p++ = '0'; + } + else + { + /* Pad with spaces on the left. */ + CHAR_T *q = end; + + while (p > tmp) + *--q = *--p; + for (; pad > 0; pad--) + *p++ = ' '; + } + + p = end; + } + + { + size_t count = p - tmp; + + if (count >= tmp_length) + /* tmp_length was incorrectly calculated - fix the + code above! */ + abort (); + + /* Make room for the result. */ + if (count >= allocated - length) + { + size_t n = xsum (length, count); + + ENSURE_ALLOCATION (n); + } + + /* Append the result. */ + memcpy (result + length, tmp, count * sizeof (CHAR_T)); + if (tmp != tmpbuf) + free (tmp); + length += count; + } + } +#endif #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL else if (dp->conversion == 'a' || dp->conversion == 'A') { @@ -1088,8 +2726,15 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar #if HAVE_LONG_LONG_INT case TYPE_LONGLONGINT: case TYPE_ULONGLONGINT: +# if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__ + *fbp++ = 'I'; + *fbp++ = '6'; + *fbp++ = '4'; + break; +# else *fbp++ = 'l'; /*FALLTHROUGH*/ +# endif #endif case TYPE_LONGINT: case TYPE_ULONGINT: @@ -1368,6 +3013,23 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar return NULL; } + /* Make room for the result. */ + if (count >= maxlen) + { + /* Need at least count bytes. But allocate + proportionally, to avoid looping eternally if + snprintf() reports a too small count. */ + size_t n = + xmax (xsum (length, count), xtimes (allocated, 2)); + + ENSURE_ALLOCATION (n); +#if USE_SNPRINTF + continue; +#else + maxlen = allocated - length; +#endif + } + /* Perform padding. */ #if NEED_PRINTF_FLAG_ZERO if (pad_ourselves && has_width && count < width) @@ -1380,14 +3042,15 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar proportionally, to avoid looping eternally if snprintf() reports a too small count. */ size_t n = - xmax (xsum (length, width), + xmax (xsum (length + 1, width), xtimes (allocated, 2)); length += count; ENSURE_ALLOCATION (n); length -= count; - maxlen = allocated - length; /* >= width */ + maxlen = allocated - length; /* > width */ } + /* Here width < maxlen. */ # endif { # if USE_SNPRINTF @@ -1446,20 +3109,7 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar abort (); #endif - /* Make room for the result. */ - if (count >= maxlen) - { - /* Need at least count bytes. But allocate - proportionally, to avoid looping eternally if - snprintf() reports a too small count. */ - size_t n = - xmax (xsum (length, count), xtimes (allocated, 2)); - - ENSURE_ALLOCATION (n); -#if USE_SNPRINTF - continue; -#endif - } + /* Here still count < maxlen. */ #if USE_SNPRINTF /* The snprintf() result did fit. */ |