summaryrefslogtreecommitdiff
path: root/lgl/vasnprintf.c
diff options
context:
space:
mode:
authorSimon Josefsson <simon@josefsson.org>2007-05-24 11:42:53 +0000
committerSimon Josefsson <simon@josefsson.org>2007-05-24 11:42:53 +0000
commit9d9a376dd296d4eed407c43a453ab5abf249e410 (patch)
treee5f04efeb3f3c81f6a8e138e0aff8671dcc31077 /lgl/vasnprintf.c
parent15d2a5e54c7694aa7a4eeef3a6eebd6855874f07 (diff)
downloadgnutls-9d9a376dd296d4eed407c43a453ab5abf249e410.tar.gz
Update.
Diffstat (limited to 'lgl/vasnprintf.c')
-rw-r--r--lgl/vasnprintf.c1684
1 files changed, 1667 insertions, 17 deletions
diff --git a/lgl/vasnprintf.c b/lgl/vasnprintf.c
index aa26280c92..8080aa1c46 100644
--- a/lgl/vasnprintf.c
+++ b/lgl/vasnprintf.c
@@ -53,6 +53,21 @@
/* Checked size_t computations. */
#include "xsize.h"
+#if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
+# include <math.h>
+# include "float+.h"
+#endif
+
+#if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL
+# include <math.h>
+# include "isnan.h"
+#endif
+
+#if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL
+# include <math.h>
+# include "isnanl-nolibm.h"
+#endif
+
#if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL
# include <math.h>
# include "isnan.h"
@@ -111,7 +126,14 @@ local_wcslen (const wchar_t *s)
# define DIRECTIVE char_directive
# define DIRECTIVES char_directives
# define PRINTF_PARSE printf_parse
-# define USE_SNPRINTF (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF)
+# /* Use snprintf if it exists under the name 'snprintf' or '_snprintf'.
+ But don't use it on BeOS, since BeOS snprintf produces no output if the
+ size argument is >= 0x3000000. */
+# if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__
+# define USE_SNPRINTF 1
+# else
+# define USE_SNPRINTF 0
+# endif
# if HAVE_DECL__SNPRINTF
/* Windows. */
# define SNPRINTF _snprintf
@@ -152,6 +174,967 @@ decimal_point_char ()
# endif
#endif
+#if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL
+
+/* Equivalent to !isfinite(x) || x == 0, but does not require libm. */
+static int
+is_infinite_or_zero (double x)
+{
+ return isnan (x) || x + x == x;
+}
+
+#endif
+
+#if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL
+
+/* Equivalent to !isfinite(x), but does not require libm. */
+static int
+is_infinitel (long double x)
+{
+ return isnanl (x) || (x + x == x && x != 0.0L);
+}
+
+#endif
+
+#if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
+
+/* Converting 'long double' to decimal without rare rounding bugs requires
+ real bignums. We use the naming conventions of GNU gmp, but vastly simpler
+ (and slower) algorithms. */
+
+typedef unsigned int mp_limb_t;
+# define GMP_LIMB_BITS 32
+typedef int mp_limb_verify[2 * (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS) - 1];
+
+typedef unsigned long long mp_twolimb_t;
+# define GMP_TWOLIMB_BITS 64
+typedef int mp_twolimb_verify[2 * (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS) - 1];
+
+/* Representation of a bignum >= 0. */
+typedef struct
+{
+ size_t nlimbs;
+ mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */
+} mpn_t;
+
+/* Compute the product of two bignums >= 0.
+ Return the allocated memory in case of success, NULL in case of memory
+ allocation failure. */
+static void *
+multiply (mpn_t src1, mpn_t src2, mpn_t *dest)
+{
+ const mp_limb_t *p1;
+ const mp_limb_t *p2;
+ size_t len1;
+ size_t len2;
+
+ if (src1.nlimbs <= src2.nlimbs)
+ {
+ len1 = src1.nlimbs;
+ p1 = src1.limbs;
+ len2 = src2.nlimbs;
+ p2 = src2.limbs;
+ }
+ else
+ {
+ len1 = src2.nlimbs;
+ p1 = src2.limbs;
+ len2 = src1.nlimbs;
+ p2 = src1.limbs;
+ }
+ /* Now 0 <= len1 <= len2. */
+ if (len1 == 0)
+ {
+ /* src1 or src2 is zero. */
+ dest->nlimbs = 0;
+ dest->limbs = (mp_limb_t *) malloc (1);
+ }
+ else
+ {
+ /* Here 1 <= len1 <= len2. */
+ size_t dlen;
+ mp_limb_t *dp;
+ size_t k, i, j;
+
+ dlen = len1 + len2;
+ dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t));
+ if (dp == NULL)
+ return NULL;
+ for (k = len2; k > 0; )
+ dp[--k] = 0;
+ for (i = 0; i < len1; i++)
+ {
+ mp_limb_t digit1 = p1[i];
+ mp_twolimb_t carry = 0;
+ for (j = 0; j < len2; j++)
+ {
+ mp_limb_t digit2 = p2[j];
+ carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
+ carry += dp[i + j];
+ dp[i + j] = (mp_limb_t) carry;
+ carry = carry >> GMP_LIMB_BITS;
+ }
+ dp[i + len2] = (mp_limb_t) carry;
+ }
+ /* Normalise. */
+ while (dlen > 0 && dp[dlen - 1] == 0)
+ dlen--;
+ dest->nlimbs = dlen;
+ dest->limbs = dp;
+ }
+ return dest->limbs;
+}
+
+/* Compute the quotient of a bignum a >= 0 and a bignum b > 0.
+ a is written as a = q * b + r with 0 <= r < b. q is the quotient, r
+ the remainder.
+ Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd,
+ q is incremented.
+ Return the allocated memory in case of success, NULL in case of memory
+ allocation failure. */
+static void *
+divide (mpn_t a, mpn_t b, mpn_t *q)
+{
+ /* Algorithm:
+ First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]]
+ with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS).
+ If m<n, then q:=0 and r:=a.
+ If m>=n=1, perform a single-precision division:
+ r:=0, j:=m,
+ while j>0 do
+ {Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j =
+ = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta}
+ j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j].
+ Normalise [q[m-1],...,q[0]], yields q.
+ If m>=n>1, perform a multiple-precision division:
+ We have a/b < beta^(m-n+1).
+ s:=intDsize-1-(hightest bit in b[n-1]), 0<=s<intDsize.
+ Shift a and b left by s bits, copying them. r:=a.
+ r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2.
+ For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).}
+ Compute q* :
+ q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]).
+ In case of overflow (q* >= beta) set q* := beta-1.
+ Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2]
+ and c3 := b[n-2] * q*.
+ {We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow
+ occurred. Furthermore 0 <= c3 < beta^2.
+ If there was overflow and
+ r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2,
+ the next test can be skipped.}
+ While c3 > c2, {Here 0 <= c2 < c3 < beta^2}
+ Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2].
+ If q* > 0:
+ Put r := r - b * q* * beta^j. In detail:
+ [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]].
+ hence: u:=0, for i:=0 to n-1 do
+ u := u + q* * b[i],
+ r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry),
+ u:=u div beta (+ 1, if carry in subtraction)
+ r[n+j]:=r[n+j]-u.
+ {Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1
+ < q* + 1 <= beta,
+ the carry u does not overflow.}
+ If a negative carry occurs, put q* := q* - 1
+ and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]].
+ Set q[j] := q*.
+ Normalise [q[m-n],..,q[0]]; this yields the quotient q.
+ Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the
+ rest r.
+ The room for q[j] can be allocated at the memory location of r[n+j].
+ Finally, round-to-even:
+ Shift r left by 1 bit.
+ If r > b or if r = b and q[0] is odd, q := q+1.
+ */
+ const mp_limb_t *a_ptr = a.limbs;
+ size_t a_len = a.nlimbs;
+ const mp_limb_t *b_ptr = b.limbs;
+ size_t b_len = b.nlimbs;
+ mp_limb_t *roomptr;
+ mp_limb_t *tmp_roomptr = NULL;
+ mp_limb_t *q_ptr;
+ size_t q_len;
+ mp_limb_t *r_ptr;
+ size_t r_len;
+
+ /* Allocate room for a_len+2 digits.
+ (Need a_len+1 digits for the real division and 1 more digit for the
+ final rounding of q.) */
+ roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t));
+ if (roomptr == NULL)
+ return NULL;
+
+ /* Normalise a. */
+ while (a_len > 0 && a_ptr[a_len - 1] == 0)
+ a_len--;
+
+ /* Normalise b. */
+ for (;;)
+ {
+ if (b_len == 0)
+ /* Division by zero. */
+ abort ();
+ if (b_ptr[b_len - 1] == 0)
+ b_len--;
+ else
+ break;
+ }
+
+ /* Here m = a_len >= 0 and n = b_len > 0. */
+
+ if (a_len < b_len)
+ {
+ /* m<n: trivial case. q=0, r := copy of a. */
+ r_ptr = roomptr;
+ r_len = a_len;
+ memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
+ q_ptr = roomptr + a_len;
+ q_len = 0;
+ }
+ else if (b_len == 1)
+ {
+ /* n=1: single precision division.
+ beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */
+ r_ptr = roomptr;
+ q_ptr = roomptr + 1;
+ {
+ mp_limb_t den = b_ptr[0];
+ mp_limb_t remainder = 0;
+ const mp_limb_t *sourceptr = a_ptr + a_len;
+ mp_limb_t *destptr = q_ptr + a_len;
+ size_t count;
+ for (count = a_len; count > 0; count--)
+ {
+ mp_twolimb_t num =
+ ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr;
+ *--destptr = num / den;
+ remainder = num % den;
+ }
+ /* Normalise and store r. */
+ if (remainder > 0)
+ {
+ r_ptr[0] = remainder;
+ r_len = 1;
+ }
+ else
+ r_len = 0;
+ /* Normalise q. */
+ q_len = a_len;
+ if (q_ptr[q_len - 1] == 0)
+ q_len--;
+ }
+ }
+ else
+ {
+ /* n>1: multiple precision division.
+ beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==>
+ beta^(m-n-1) <= a/b < beta^(m-n+1). */
+ /* Determine s. */
+ size_t s;
+ {
+ mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */
+ s = 31;
+ if (msd >= 0x10000)
+ {
+ msd = msd >> 16;
+ s -= 16;
+ }
+ if (msd >= 0x100)
+ {
+ msd = msd >> 8;
+ s -= 8;
+ }
+ if (msd >= 0x10)
+ {
+ msd = msd >> 4;
+ s -= 4;
+ }
+ if (msd >= 0x4)
+ {
+ msd = msd >> 2;
+ s -= 2;
+ }
+ if (msd >= 0x2)
+ {
+ msd = msd >> 1;
+ s -= 1;
+ }
+ }
+ /* 0 <= s < GMP_LIMB_BITS.
+ Copy b, shifting it left by s bits. */
+ if (s > 0)
+ {
+ tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t));
+ if (tmp_roomptr == NULL)
+ {
+ free (roomptr);
+ return NULL;
+ }
+ {
+ const mp_limb_t *sourceptr = b_ptr;
+ mp_limb_t *destptr = tmp_roomptr;
+ mp_twolimb_t accu = 0;
+ size_t count;
+ for (count = b_len; count > 0; count--)
+ {
+ accu += (mp_twolimb_t) *sourceptr++ << s;
+ *destptr++ = (mp_limb_t) accu;
+ accu = accu >> GMP_LIMB_BITS;
+ }
+ /* accu must be zero, since that was how s was determined. */
+ if (accu != 0)
+ abort ();
+ }
+ b_ptr = tmp_roomptr;
+ }
+ /* Copy a, shifting it left by s bits, yields r.
+ Memory layout:
+ At the beginning: r = roomptr[0..a_len],
+ at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */
+ r_ptr = roomptr;
+ if (s == 0)
+ {
+ memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
+ r_ptr[a_len] = 0;
+ }
+ else
+ {
+ const mp_limb_t *sourceptr = a_ptr;
+ mp_limb_t *destptr = r_ptr;
+ mp_twolimb_t accu = 0;
+ size_t count;
+ for (count = a_len; count > 0; count--)
+ {
+ accu += (mp_twolimb_t) *sourceptr++ << s;
+ *destptr++ = (mp_limb_t) accu;
+ accu = accu >> GMP_LIMB_BITS;
+ }
+ *destptr++ = (mp_limb_t) accu;
+ }
+ q_ptr = roomptr + b_len;
+ q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */
+ {
+ size_t j = a_len - b_len; /* m-n */
+ mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */
+ mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */
+ mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */
+ ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd;
+ /* Division loop, traversed m-n+1 times.
+ j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */
+ for (;;)
+ {
+ mp_limb_t q_star;
+ mp_limb_t c1;
+ if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */
+ {
+ /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */
+ mp_twolimb_t num =
+ ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS)
+ | r_ptr[j + b_len - 1];
+ q_star = num / b_msd;
+ c1 = num % b_msd;
+ }
+ else
+ {
+ /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */
+ q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */
+ /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta
+ <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta
+ <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta)
+ {<= beta !}.
+ If yes, jump directly to the subtraction loop.
+ (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta
+ <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */
+ if (r_ptr[j + b_len] > b_msd
+ || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd)
+ /* r[j+n] >= b[n-1]+1 or
+ r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a
+ carry. */
+ goto subtract;
+ }
+ /* q_star = q*,
+ c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */
+ {
+ mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */
+ ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2];
+ mp_twolimb_t c3 = /* b[n-2] * q* */
+ (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star;
+ /* While c2 < c3, increase c2 and decrease c3.
+ Consider c3-c2. While it is > 0, decrease it by
+ b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2
+ this can happen only twice. */
+ if (c3 > c2)
+ {
+ q_star = q_star - 1; /* q* := q* - 1 */
+ if (c3 - c2 > b_msdd)
+ q_star = q_star - 1; /* q* := q* - 1 */
+ }
+ }
+ if (q_star > 0)
+ subtract:
+ {
+ /* Subtract r := r - b * q* * beta^j. */
+ mp_limb_t cr;
+ {
+ const mp_limb_t *sourceptr = b_ptr;
+ mp_limb_t *destptr = r_ptr + j;
+ mp_twolimb_t carry = 0;
+ size_t count;
+ for (count = b_len; count > 0; count--)
+ {
+ /* Here 0 <= carry <= q*. */
+ carry =
+ carry
+ + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++
+ + (mp_limb_t) ~(*destptr);
+ /* Here 0 <= carry <= beta*q* + beta-1. */
+ *destptr++ = ~(mp_limb_t) carry;
+ carry = carry >> GMP_LIMB_BITS; /* <= q* */
+ }
+ cr = (mp_limb_t) carry;
+ }
+ /* Subtract cr from r_ptr[j + b_len], then forget about
+ r_ptr[j + b_len]. */
+ if (cr > r_ptr[j + b_len])
+ {
+ /* Subtraction gave a carry. */
+ q_star = q_star - 1; /* q* := q* - 1 */
+ /* Add b back. */
+ {
+ const mp_limb_t *sourceptr = b_ptr;
+ mp_limb_t *destptr = r_ptr + j;
+ mp_limb_t carry = 0;
+ size_t count;
+ for (count = b_len; count > 0; count--)
+ {
+ mp_limb_t source1 = *sourceptr++;
+ mp_limb_t source2 = *destptr;
+ *destptr++ = source1 + source2 + carry;
+ carry =
+ (carry
+ ? source1 >= (mp_limb_t) ~source2
+ : source1 > (mp_limb_t) ~source2);
+ }
+ }
+ /* Forget about the carry and about r[j+n]. */
+ }
+ }
+ /* q* is determined. Store it as q[j]. */
+ q_ptr[j] = q_star;
+ if (j == 0)
+ break;
+ j--;
+ }
+ }
+ r_len = b_len;
+ /* Normalise q. */
+ if (q_ptr[q_len - 1] == 0)
+ q_len--;
+# if 0 /* Not needed here, since we need r only to compare it with b/2, and
+ b is shifted left by s bits. */
+ /* Shift r right by s bits. */
+ if (s > 0)
+ {
+ mp_limb_t ptr = r_ptr + r_len;
+ mp_twolimb_t accu = 0;
+ size_t count;
+ for (count = r_len; count > 0; count--)
+ {
+ accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS;
+ accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s);
+ *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS);
+ }
+ }
+# endif
+ /* Normalise r. */
+ while (r_len > 0 && r_ptr[r_len - 1] == 0)
+ r_len--;
+ }
+ /* Compare r << 1 with b. */
+ if (r_len > b_len)
+ goto increment_q;
+ {
+ size_t i;
+ for (i = b_len;;)
+ {
+ mp_limb_t r_i =
+ (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0)
+ | (i < r_len ? r_ptr[i] << 1 : 0);
+ mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0);
+ if (r_i > b_i)
+ goto increment_q;
+ if (r_i < b_i)
+ goto keep_q;
+ if (i == 0)
+ break;
+ i--;
+ }
+ }
+ if (q_len > 0 && ((q_ptr[0] & 1) != 0))
+ /* q is odd. */
+ increment_q:
+ {
+ size_t i;
+ for (i = 0; i < q_len; i++)
+ if (++(q_ptr[i]) != 0)
+ goto keep_q;
+ q_ptr[q_len++] = 1;
+ }
+ keep_q:
+ if (tmp_roomptr != NULL)
+ free (tmp_roomptr);
+ q->limbs = q_ptr;
+ q->nlimbs = q_len;
+ return roomptr;
+}
+
+/* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal
+ representation.
+ Destroys the contents of a.
+ Return the allocated memory - containing the decimal digits in low-to-high
+ order, terminated with a NUL character - in case of success, NULL in case
+ of memory allocation failure. */
+static char *
+convert_to_decimal (mpn_t a, size_t extra_zeroes)
+{
+ mp_limb_t *a_ptr = a.limbs;
+ size_t a_len = a.nlimbs;
+ /* 0.03345 is slightly larger than log(2)/(9*log(10)). */
+ size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1);
+ char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes));
+ if (c_ptr != NULL)
+ {
+ char *d_ptr = c_ptr;
+ for (; extra_zeroes > 0; extra_zeroes--)
+ *d_ptr++ = '0';
+ while (a_len > 0)
+ {
+ /* Divide a by 10^9, in-place. */
+ mp_limb_t remainder = 0;
+ mp_limb_t *ptr = a_ptr + a_len;
+ size_t count;
+ for (count = a_len; count > 0; count--)
+ {
+ mp_twolimb_t num =
+ ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr;
+ *ptr = num / 1000000000;
+ remainder = num % 1000000000;
+ }
+ /* Store the remainder as 9 decimal digits. */
+ for (count = 9; count > 0; count--)
+ {
+ *d_ptr++ = '0' + (remainder % 10);
+ remainder = remainder / 10;
+ }
+ /* Normalize a. */
+ if (a_ptr[a_len - 1] == 0)
+ a_len--;
+ }
+ /* Remove leading zeroes. */
+ while (d_ptr > c_ptr && d_ptr[-1] == '0')
+ d_ptr--;
+ /* But keep at least one zero. */
+ if (d_ptr == c_ptr)
+ *d_ptr++ = '0';
+ /* Terminate the string. */
+ *d_ptr = '\0';
+ }
+ return c_ptr;
+}
+
+/* Assuming x is finite and >= 0:
+ write x as x = 2^e * m, where m is a bignum.
+ Return the allocated memory in case of success, NULL in case of memory
+ allocation failure. */
+static void *
+decode_long_double (long double x, int *ep, mpn_t *mp)
+{
+ mpn_t m;
+ int exp;
+ long double y;
+ size_t i;
+
+ /* Allocate memory for result. */
+ m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
+ m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
+ if (m.limbs == NULL)
+ return NULL;
+ /* Split into exponential part and mantissa. */
+ y = frexpl (x, &exp);
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * LDBL_MANT_BIT), and the
+ latter is an integer. */
+ /* Convert the mantissa (y * LDBL_MANT_BIT) to a sequence of limbs.
+ I'm not sure whether it's safe to cast a 'long double' value between
+ 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
+ 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int',
+ doesn't matter). */
+# if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0
+# if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
+ {
+ mp_limb_t hi, lo;
+ y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2));
+ hi = (int) y;
+ y -= hi;
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
+ lo = (int) y;
+ y -= lo;
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
+ }
+# else
+ {
+ mp_limb_t d;
+ y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS);
+ d = (int) y;
+ y -= d;
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d;
+ }
+# endif
+# endif
+ for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
+ {
+ mp_limb_t hi, lo;
+ y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
+ hi = (int) y;
+ y -= hi;
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
+ lo = (int) y;
+ y -= lo;
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
+ }
+ if (!(y == 0.0L))
+ abort ();
+ /* Normalise. */
+ while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
+ m.nlimbs--;
+ *mp = m;
+ *ep = exp - LDBL_MANT_BIT;
+ return m.limbs;
+}
+
+/* Assuming x is finite and >= 0, and n is an integer:
+ Returns the decimal representation of round (x * 10^n).
+ Return the allocated memory - containing the decimal digits in low-to-high
+ order, terminated with a NUL character - in case of success, NULL in case
+ of memory allocation failure. */
+static char *
+scale10_round_decimal_long_double (long double x, int n)
+{
+ int e;
+ mpn_t m;
+ void *memory = decode_long_double (x, &e, &m);
+ int s;
+ size_t extra_zeroes;
+ unsigned int abs_n;
+ unsigned int abs_s;
+ mp_limb_t *pow5_ptr;
+ size_t pow5_len;
+ unsigned int s_limbs;
+ unsigned int s_bits;
+ mpn_t pow5;
+ mpn_t z;
+ void *z_memory;
+ char *digits;
+
+ if (memory == NULL)
+ return NULL;
+ /* x = 2^e * m, hence
+ y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m)
+ = round (2^s * 5^n * m). */
+ s = e + n;
+ extra_zeroes = 0;
+ /* Factor out a common power of 10 if possible. */
+ if (s > 0 && n > 0)
+ {
+ extra_zeroes = (s < n ? s : n);
+ s -= extra_zeroes;
+ n -= extra_zeroes;
+ }
+ /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes.
+ Before converting to decimal, we need to compute
+ z = round (2^s * 5^n * m). */
+ /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same
+ sign. 2.322 is slightly larger than log(5)/log(2). */
+ abs_n = (n >= 0 ? n : -n);
+ abs_s = (s >= 0 ? s : -s);
+ pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1
+ + abs_s / GMP_LIMB_BITS + 1)
+ * sizeof (mp_limb_t));
+ if (pow5_ptr == NULL)
+ {
+ free (memory);
+ return NULL;
+ }
+ /* Initialize with 1. */
+ pow5_ptr[0] = 1;
+ pow5_len = 1;
+ /* Multiply with 5^|n|. */
+ if (abs_n > 0)
+ {
+ static mp_limb_t const small_pow5[13 + 1] =
+ {
+ 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625,
+ 48828125, 244140625, 1220703125
+ };
+ unsigned int n13;
+ for (n13 = 0; n13 <= abs_n; n13 += 13)
+ {
+ mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13];
+ size_t j;
+ mp_twolimb_t carry = 0;
+ for (j = 0; j < pow5_len; j++)
+ {
+ mp_limb_t digit2 = pow5_ptr[j];
+ carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
+ pow5_ptr[j] = (mp_limb_t) carry;
+ carry = carry >> GMP_LIMB_BITS;
+ }
+ if (carry > 0)
+ pow5_ptr[pow5_len++] = (mp_limb_t) carry;
+ }
+ }
+ s_limbs = abs_s / GMP_LIMB_BITS;
+ s_bits = abs_s % GMP_LIMB_BITS;
+ if (n >= 0 ? s >= 0 : s <= 0)
+ {
+ /* Multiply with 2^|s|. */
+ if (s_bits > 0)
+ {
+ mp_limb_t *ptr = pow5_ptr;
+ mp_twolimb_t accu = 0;
+ size_t count;
+ for (count = pow5_len; count > 0; count--)
+ {
+ accu += (mp_twolimb_t) *ptr << s_bits;
+ *ptr++ = (mp_limb_t) accu;
+ accu = accu >> GMP_LIMB_BITS;
+ }
+ if (accu > 0)
+ {
+ *ptr = (mp_limb_t) accu;
+ pow5_len++;
+ }
+ }
+ if (s_limbs > 0)
+ {
+ size_t count;
+ for (count = pow5_len; count > 0;)
+ {
+ count--;
+ pow5_ptr[s_limbs + count] = pow5_ptr[count];
+ }
+ for (count = s_limbs; count > 0;)
+ {
+ count--;
+ pow5_ptr[count] = 0;
+ }
+ pow5_len += s_limbs;
+ }
+ pow5.limbs = pow5_ptr;
+ pow5.nlimbs = pow5_len;
+ if (n >= 0)
+ {
+ /* Multiply m with pow5. No division needed. */
+ z_memory = multiply (m, pow5, &z);
+ }
+ else
+ {
+ /* Divide m by pow5 and round. */
+ z_memory = divide (m, pow5, &z);
+ }
+ }
+ else
+ {
+ pow5.limbs = pow5_ptr;
+ pow5.nlimbs = pow5_len;
+ if (n >= 0)
+ {
+ /* n >= 0, s < 0.
+ Multiply m with pow5, then divide by 2^|s|. */
+ mpn_t numerator;
+ mpn_t denominator;
+ void *tmp_memory;
+ tmp_memory = multiply (m, pow5, &numerator);
+ if (tmp_memory == NULL)
+ {
+ free (pow5_ptr);
+ free (memory);
+ return NULL;
+ }
+ /* Construct 2^|s|. */
+ {
+ mp_limb_t *ptr = pow5_ptr + pow5_len;
+ size_t i;
+ for (i = 0; i < s_limbs; i++)
+ ptr[i] = 0;
+ ptr[s_limbs] = (mp_limb_t) 1 << s_bits;
+ denominator.limbs = ptr;
+ denominator.nlimbs = s_limbs + 1;
+ }
+ z_memory = divide (numerator, denominator, &z);
+ free (tmp_memory);
+ }
+ else
+ {
+ /* n < 0, s > 0.
+ Multiply m with 2^s, then divide by pow5. */
+ mpn_t numerator;
+ mp_limb_t *num_ptr;
+ num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1)
+ * sizeof (mp_limb_t));
+ if (num_ptr == NULL)
+ {
+ free (pow5_ptr);
+ free (memory);
+ return NULL;
+ }
+ {
+ mp_limb_t *destptr = num_ptr;
+ {
+ size_t i;
+ for (i = 0; i < s_limbs; i++)
+ *destptr++ = 0;
+ }
+ if (s_bits > 0)
+ {
+ const mp_limb_t *sourceptr = m.limbs;
+ mp_twolimb_t accu = 0;
+ size_t count;
+ for (count = m.nlimbs; count > 0; count--)
+ {
+ accu += (mp_twolimb_t) *sourceptr++ << s;
+ *destptr++ = (mp_limb_t) accu;
+ accu = accu >> GMP_LIMB_BITS;
+ }
+ if (accu > 0)
+ *destptr++ = (mp_limb_t) accu;
+ }
+ else
+ {
+ const mp_limb_t *sourceptr = m.limbs;
+ size_t count;
+ for (count = m.nlimbs; count > 0; count--)
+ *destptr++ = *sourceptr++;
+ }
+ numerator.limbs = num_ptr;
+ numerator.nlimbs = destptr - num_ptr;
+ }
+ z_memory = divide (numerator, pow5, &z);
+ free (num_ptr);
+ }
+ }
+ free (pow5_ptr);
+ free (memory);
+
+ /* Here y = round (x * 10^n) = z * 10^extra_zeroes. */
+
+ if (z_memory == NULL)
+ return NULL;
+ digits = convert_to_decimal (z, extra_zeroes);
+ free (z_memory);
+ return digits;
+}
+
+/* Assuming x is finite and > 0:
+ Return an approximation for n with 10^n <= x < 10^(n+1).
+ The approximation is usually the right n, but may be off by 1 sometimes. */
+static int
+floorlog10l (long double x)
+{
+ int exp;
+ long double y;
+ double z;
+ double l;
+
+ /* Split into exponential part and mantissa. */
+ y = frexpl (x, &exp);
+ if (!(y >= 0.0L && y < 1.0L))
+ abort ();
+ if (y == 0.0L)
+ return INT_MIN;
+ if (y < 0.5L)
+ {
+ while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
+ {
+ y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
+ exp -= GMP_LIMB_BITS;
+ }
+ if (y < (1.0L / (1 << 16)))
+ {
+ y *= 1.0L * (1 << 16);
+ exp -= 16;
+ }
+ if (y < (1.0L / (1 << 8)))
+ {
+ y *= 1.0L * (1 << 8);
+ exp -= 8;
+ }
+ if (y < (1.0L / (1 << 4)))
+ {
+ y *= 1.0L * (1 << 4);
+ exp -= 4;
+ }
+ if (y < (1.0L / (1 << 2)))
+ {
+ y *= 1.0L * (1 << 2);
+ exp -= 2;
+ }
+ if (y < (1.0L / (1 << 1)))
+ {
+ y *= 1.0L * (1 << 1);
+ exp -= 1;
+ }
+ }
+ if (!(y >= 0.5L && y < 1.0L))
+ abort ();
+ /* Compute an approximation for l = log2(x) = exp + log2(y). */
+ l = exp;
+ z = y;
+ if (z < 0.70710678118654752444)
+ {
+ z *= 1.4142135623730950488;
+ l -= 0.5;
+ }
+ if (z < 0.8408964152537145431)
+ {
+ z *= 1.1892071150027210667;
+ l -= 0.25;
+ }
+ if (z < 0.91700404320467123175)
+ {
+ z *= 1.0905077326652576592;
+ l -= 0.125;
+ }
+ if (z < 0.9576032806985736469)
+ {
+ z *= 1.0442737824274138403;
+ l -= 0.0625;
+ }
+ /* Now 0.95 <= z <= 1.01. */
+ z = 1 - z;
+ /* log(1-z) = - z - z^2/2 - z^3/3 - z^4/4 - ...
+ Four terms are enough to get an approximation with error < 10^-7. */
+ l -= z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
+ /* Finally multiply with log(2)/log(10), yields an approximation for
+ log10(x). */
+ l *= 0.30102999566398119523;
+ /* Round down to the next integer. */
+ return (int) l + (l < 0 ? -1 : 0);
+}
+
+#endif
+
CHAR_T *
VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list args)
{
@@ -306,6 +1289,661 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar
abort ();
}
}
+#if (NEED_PRINTF_INFINITE_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
+ else if ((dp->conversion == 'f' || dp->conversion == 'F'
+ || dp->conversion == 'e' || dp->conversion == 'E'
+ || dp->conversion == 'g' || dp->conversion == 'G')
+ && (0
+# if NEED_PRINTF_INFINITE_DOUBLE
+ || (a.arg[dp->arg_index].type == TYPE_DOUBLE
+ /* The systems (mingw) which produce wrong output
+ for Inf, -Inf, and NaN also do so for -0.0.
+ Therefore we treat this case here as well. */
+ && is_infinite_or_zero (a.arg[dp->arg_index].a.a_double))
+# endif
+# if NEED_PRINTF_LONG_DOUBLE
+ || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
+# elif NEED_PRINTF_INFINITE_LONG_DOUBLE
+ || (a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
+ /* Some systems produce wrong output for Inf,
+ -Inf, and NaN. */
+ && is_infinitel (a.arg[dp->arg_index].a.a_longdouble))
+# endif
+ ))
+ {
+# if NEED_PRINTF_INFINITE_DOUBLE && (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE)
+ arg_type type = a.arg[dp->arg_index].type;
+# endif
+ int flags = dp->flags;
+ int has_width;
+ size_t width;
+ int has_precision;
+ size_t precision;
+ size_t tmp_length;
+ CHAR_T tmpbuf[700];
+ CHAR_T *tmp;
+ CHAR_T *pad_ptr;
+ CHAR_T *p;
+
+ has_width = 0;
+ width = 0;
+ if (dp->width_start != dp->width_end)
+ {
+ if (dp->width_arg_index != ARG_NONE)
+ {
+ int arg;
+
+ if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
+ abort ();
+ arg = a.arg[dp->width_arg_index].a.a_int;
+ if (arg < 0)
+ {
+ /* "A negative field width is taken as a '-' flag
+ followed by a positive field width." */
+ flags |= FLAG_LEFT;
+ width = (unsigned int) (-arg);
+ }
+ else
+ width = arg;
+ }
+ else
+ {
+ const CHAR_T *digitp = dp->width_start;
+
+ do
+ width = xsum (xtimes (width, 10), *digitp++ - '0');
+ while (digitp != dp->width_end);
+ }
+ has_width = 1;
+ }
+
+ has_precision = 0;
+ precision = 0;
+ if (dp->precision_start != dp->precision_end)
+ {
+ if (dp->precision_arg_index != ARG_NONE)
+ {
+ int arg;
+
+ if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
+ abort ();
+ arg = a.arg[dp->precision_arg_index].a.a_int;
+ /* "A negative precision is taken as if the precision
+ were omitted." */
+ if (arg >= 0)
+ {
+ precision = arg;
+ has_precision = 1;
+ }
+ }
+ else
+ {
+ const CHAR_T *digitp = dp->precision_start + 1;
+
+ precision = 0;
+ while (digitp != dp->precision_end)
+ precision = xsum (xtimes (precision, 10), *digitp++ - '0');
+ has_precision = 1;
+ }
+ }
+
+ /* POSIX specifies the default precision to be 6 for %f, %F,
+ %e, %E, but not for %g, %G. Implementations appear to use
+ the same default precision also for %g, %G. */
+ if (!has_precision)
+ precision = 6;
+
+ /* Allocate a temporary buffer of sufficient size. */
+# if NEED_PRINTF_INFINITE_DOUBLE && NEED_PRINTF_LONG_DOUBLE
+ tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : 0);
+# elif NEED_PRINTF_LONG_DOUBLE
+ tmp_length = LDBL_DIG + 1;
+# else
+ tmp_length = 0;
+# endif
+ if (tmp_length < precision)
+ tmp_length = precision;
+# if NEED_PRINTF_LONG_DOUBLE
+# if NEED_PRINTF_INFINITE_DOUBLE
+ if (type == TYPE_LONGDOUBLE)
+# endif
+ if (dp->conversion == 'f' || dp->conversion == 'F')
+ {
+ long double arg = a.arg[dp->arg_index].a.a_longdouble;
+ if (!(isnanl (arg) || arg + arg == arg))
+ {
+ /* arg is finite and nonzero. */
+ int exponent = floorlog10l (arg < 0 ? -arg : arg);
+ if (exponent >= 0 && tmp_length < exponent + precision)
+ tmp_length = exponent + precision;
+ }
+ }
+# endif
+ /* Account for sign, decimal point etc. */
+ tmp_length = xsum (tmp_length, 12);
+
+ if (tmp_length < width)
+ tmp_length = width;
+
+ tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
+
+ if (tmp_length <= sizeof (tmpbuf) / sizeof (CHAR_T))
+ tmp = tmpbuf;
+ else
+ {
+ size_t tmp_memsize = xtimes (tmp_length, sizeof (CHAR_T));
+
+ if (size_overflow_p (tmp_memsize))
+ /* Overflow, would lead to out of memory. */
+ goto out_of_memory;
+ tmp = (CHAR_T *) malloc (tmp_memsize);
+ if (tmp == NULL)
+ /* Out of memory. */
+ goto out_of_memory;
+ }
+
+ pad_ptr = NULL;
+ p = tmp;
+
+# if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE
+# if NEED_PRINTF_INFINITE_DOUBLE
+ if (type == TYPE_LONGDOUBLE)
+# endif
+ {
+ long double arg = a.arg[dp->arg_index].a.a_longdouble;
+
+ if (isnanl (arg))
+ {
+ if (dp->conversion >= 'A' && dp->conversion <= 'Z')
+ {
+ *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
+ }
+ else
+ {
+ *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
+ }
+ }
+ else
+ {
+ int sign = 0;
+ DECL_LONG_DOUBLE_ROUNDING
+
+ BEGIN_LONG_DOUBLE_ROUNDING ();
+
+ if (signbit (arg)) /* arg < 0.0L or negative zero */
+ {
+ sign = -1;
+ arg = -arg;
+ }
+
+ if (sign < 0)
+ *p++ = '-';
+ else if (flags & FLAG_SHOWSIGN)
+ *p++ = '+';
+ else if (flags & FLAG_SPACE)
+ *p++ = ' ';
+
+ if (arg > 0.0L && arg + arg == arg)
+ {
+ if (dp->conversion >= 'A' && dp->conversion <= 'Z')
+ {
+ *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
+ }
+ else
+ {
+ *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
+ }
+ }
+ else
+ {
+# if NEED_PRINTF_LONG_DOUBLE
+ pad_ptr = p;
+
+ if (dp->conversion == 'f' || dp->conversion == 'F')
+ {
+ char *digits;
+ size_t ndigits;
+
+ digits =
+ scale10_round_decimal_long_double (arg, precision);
+ if (digits == NULL)
+ {
+ END_LONG_DOUBLE_ROUNDING ();
+ goto out_of_memory;
+ }
+ ndigits = strlen (digits);
+
+ if (ndigits > precision)
+ do
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ while (ndigits > precision);
+ else
+ *p++ = '0';
+ /* Here ndigits <= precision. */
+ if ((flags & FLAG_ALT) || precision > 0)
+ {
+ *p++ = decimal_point_char ();
+ for (; precision > ndigits; precision--)
+ *p++ = '0';
+ while (ndigits > 0)
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ }
+
+ free (digits);
+ }
+ else if (dp->conversion == 'e' || dp->conversion == 'E')
+ {
+ int exponent;
+
+ if (arg == 0.0L)
+ {
+ exponent = 0;
+ *p++ = '0';
+ if ((flags & FLAG_ALT) || precision > 0)
+ {
+ *p++ = decimal_point_char ();
+ for (; precision > 0; precision--)
+ *p++ = '0';
+ }
+ }
+ else
+ {
+ /* arg > 0.0L. */
+ int adjusted;
+ char *digits;
+ size_t ndigits;
+
+ exponent = floorlog10l (arg);
+ adjusted = 0;
+ for (;;)
+ {
+ digits =
+ scale10_round_decimal_long_double (arg,
+ (int)precision - exponent);
+ if (digits == NULL)
+ {
+ END_LONG_DOUBLE_ROUNDING ();
+ goto out_of_memory;
+ }
+ ndigits = strlen (digits);
+
+ if (ndigits == precision + 1)
+ break;
+ if (ndigits < precision
+ || ndigits > precision + 2)
+ /* The exponent was not guessed
+ precisely enough. */
+ abort ();
+ if (adjusted)
+ /* None of two values of exponent is
+ the right one. Prevent an endless
+ loop. */
+ abort ();
+ free (digits);
+ if (ndigits == precision)
+ exponent -= 1;
+ else
+ exponent += 1;
+ adjusted = 1;
+ }
+
+ /* Here ndigits = precision+1. */
+ *p++ = digits[--ndigits];
+ if ((flags & FLAG_ALT) || precision > 0)
+ {
+ *p++ = decimal_point_char ();
+ while (ndigits > 0)
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ }
+
+ free (digits);
+ }
+
+ *p++ = dp->conversion; /* 'e' or 'E' */
+# if WIDE_CHAR_VERSION
+ {
+ static const wchar_t decimal_format[] =
+ { '%', '+', '.', '2', 'd', '\0' };
+ SNPRINTF (p, 6 + 1, decimal_format, exponent);
+ }
+# else
+ sprintf (p, "%+.2d", exponent);
+# endif
+ while (*p != '\0')
+ p++;
+ }
+ else if (dp->conversion == 'g' || dp->conversion == 'G')
+ {
+ if (precision == 0)
+ precision = 1;
+ /* precision >= 1. */
+
+ if (arg == 0.0L)
+ /* The exponent is 0, >= -4, < precision.
+ Use fixed-point notation. */
+ {
+ size_t ndigits = precision;
+ /* Number of trailing zeroes that have to be
+ dropped. */
+ size_t nzeroes =
+ (flags & FLAG_ALT ? 0 : precision - 1);
+
+ --ndigits;
+ *p++ = '0';
+ if ((flags & FLAG_ALT) || ndigits > nzeroes)
+ {
+ *p++ = decimal_point_char ();
+ while (ndigits > nzeroes)
+ {
+ --ndigits;
+ *p++ = '0';
+ }
+ }
+ }
+ else
+ {
+ /* arg > 0.0L. */
+ int exponent;
+ int adjusted;
+ char *digits;
+ size_t ndigits;
+ size_t nzeroes;
+
+ exponent = floorlog10l (arg);
+ adjusted = 0;
+ for (;;)
+ {
+ digits =
+ scale10_round_decimal_long_double (arg,
+ (int)(precision - 1) - exponent);
+ if (digits == NULL)
+ {
+ END_LONG_DOUBLE_ROUNDING ();
+ goto out_of_memory;
+ }
+ ndigits = strlen (digits);
+
+ if (ndigits == precision)
+ break;
+ if (ndigits < precision - 1
+ || ndigits > precision + 1)
+ /* The exponent was not guessed
+ precisely enough. */
+ abort ();
+ if (adjusted)
+ /* None of two values of exponent is
+ the right one. Prevent an endless
+ loop. */
+ abort ();
+ free (digits);
+ if (ndigits < precision)
+ exponent -= 1;
+ else
+ exponent += 1;
+ adjusted = 1;
+ }
+ /* Here ndigits = precision. */
+
+ /* Determine the number of trailing zeroes
+ that have to be dropped. */
+ nzeroes = 0;
+ if ((flags & FLAG_ALT) == 0)
+ while (nzeroes < ndigits
+ && digits[nzeroes] == '0')
+ nzeroes++;
+
+ /* The exponent is now determined. */
+ if (exponent >= -4
+ && exponent < (long)precision)
+ {
+ /* Fixed-point notation:
+ max(exponent,0)+1 digits, then the
+ decimal point, then the remaining
+ digits without trailing zeroes. */
+ if (exponent >= 0)
+ {
+ size_t count = exponent + 1;
+ /* Note: count <= precision = ndigits. */
+ for (; count > 0; count--)
+ *p++ = digits[--ndigits];
+ if ((flags & FLAG_ALT) || ndigits > nzeroes)
+ {
+ *p++ = decimal_point_char ();
+ while (ndigits > nzeroes)
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ }
+ }
+ else
+ {
+ size_t count = -exponent - 1;
+ *p++ = '0';
+ *p++ = decimal_point_char ();
+ for (; count > 0; count--)
+ *p++ = '0';
+ while (ndigits > nzeroes)
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ }
+ }
+ else
+ {
+ /* Exponential notation. */
+ *p++ = digits[--ndigits];
+ if ((flags & FLAG_ALT) || ndigits > nzeroes)
+ {
+ *p++ = decimal_point_char ();
+ while (ndigits > nzeroes)
+ {
+ --ndigits;
+ *p++ = digits[ndigits];
+ }
+ }
+ *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */
+# if WIDE_CHAR_VERSION
+ {
+ static const wchar_t decimal_format[] =
+ { '%', '+', '.', '2', 'd', '\0' };
+ SNPRINTF (p, 6 + 1, decimal_format, exponent);
+ }
+# else
+ sprintf (p, "%+.2d", exponent);
+# endif
+ while (*p != '\0')
+ p++;
+ }
+
+ free (digits);
+ }
+ }
+ else
+ abort ();
+# else
+ /* arg is finite. */
+ abort ();
+# endif
+ }
+
+ END_LONG_DOUBLE_ROUNDING ();
+ }
+ }
+# if NEED_PRINTF_INFINITE_DOUBLE
+ else
+# endif
+# endif
+# if NEED_PRINTF_INFINITE_DOUBLE
+ {
+ /* Simpler than above: handle only NaN, Infinity, zero. */
+ double arg = a.arg[dp->arg_index].a.a_double;
+
+ if (isnan (arg))
+ {
+ if (dp->conversion >= 'A' && dp->conversion <= 'Z')
+ {
+ *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
+ }
+ else
+ {
+ *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
+ }
+ }
+ else
+ {
+ int sign = 0;
+
+ if (signbit (arg)) /* arg < 0.0L or negative zero */
+ {
+ sign = -1;
+ arg = -arg;
+ }
+
+ if (sign < 0)
+ *p++ = '-';
+ else if (flags & FLAG_SHOWSIGN)
+ *p++ = '+';
+ else if (flags & FLAG_SPACE)
+ *p++ = ' ';
+
+ if (arg > 0.0 && arg + arg == arg)
+ {
+ if (dp->conversion >= 'A' && dp->conversion <= 'Z')
+ {
+ *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
+ }
+ else
+ {
+ *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
+ }
+ }
+ else
+ {
+ if (!(arg == 0.0))
+ abort ();
+
+ pad_ptr = p;
+
+ if (dp->conversion == 'f' || dp->conversion == 'F')
+ {
+ *p++ = '0';
+ if ((flags & FLAG_ALT) || precision > 0)
+ {
+ *p++ = decimal_point_char ();
+ for (; precision > 0; precision--)
+ *p++ = '0';
+ }
+ }
+ else if (dp->conversion == 'e' || dp->conversion == 'E')
+ {
+ *p++ = '0';
+ if ((flags & FLAG_ALT) || precision > 0)
+ {
+ *p++ = decimal_point_char ();
+ for (; precision > 0; precision--)
+ *p++ = '0';
+ }
+ *p++ = dp->conversion; /* 'e' or 'E' */
+ *p++ = '+';
+ /* Produce the same number of exponent digits as
+ the native printf implementation. */
+# if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
+ *p++ = '0';
+# endif
+ *p++ = '0';
+ *p++ = '0';
+ }
+ else if (dp->conversion == 'g' || dp->conversion == 'G')
+ {
+ *p++ = '0';
+ if (flags & FLAG_ALT)
+ {
+ size_t ndigits =
+ (precision > 0 ? precision - 1 : 0);
+ *p++ = decimal_point_char ();
+ for (; ndigits > 0; --ndigits)
+ *p++ = '0';
+ }
+ }
+ else
+ abort ();
+ }
+ }
+ }
+# endif
+
+ /* The generated string now extends from tmp to p, with the
+ zero padding insertion point being at pad_ptr. */
+ if (has_width && p - tmp < width)
+ {
+ size_t pad = width - (p - tmp);
+ CHAR_T *end = p + pad;
+
+ if (flags & FLAG_LEFT)
+ {
+ /* Pad with spaces on the right. */
+ for (; pad > 0; pad--)
+ *p++ = ' ';
+ }
+ else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
+ {
+ /* Pad with zeroes. */
+ CHAR_T *q = end;
+
+ while (p > pad_ptr)
+ *--q = *--p;
+ for (; pad > 0; pad--)
+ *p++ = '0';
+ }
+ else
+ {
+ /* Pad with spaces on the left. */
+ CHAR_T *q = end;
+
+ while (p > tmp)
+ *--q = *--p;
+ for (; pad > 0; pad--)
+ *p++ = ' ';
+ }
+
+ p = end;
+ }
+
+ {
+ size_t count = p - tmp;
+
+ if (count >= tmp_length)
+ /* tmp_length was incorrectly calculated - fix the
+ code above! */
+ abort ();
+
+ /* Make room for the result. */
+ if (count >= allocated - length)
+ {
+ size_t n = xsum (length, count);
+
+ ENSURE_ALLOCATION (n);
+ }
+
+ /* Append the result. */
+ memcpy (result + length, tmp, count * sizeof (CHAR_T));
+ if (tmp != tmpbuf)
+ free (tmp);
+ length += count;
+ }
+ }
+#endif
#if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL
else if (dp->conversion == 'a' || dp->conversion == 'A')
{
@@ -1088,8 +2726,15 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar
#if HAVE_LONG_LONG_INT
case TYPE_LONGLONGINT:
case TYPE_ULONGLONGINT:
+# if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
+ *fbp++ = 'I';
+ *fbp++ = '6';
+ *fbp++ = '4';
+ break;
+# else
*fbp++ = 'l';
/*FALLTHROUGH*/
+# endif
#endif
case TYPE_LONGINT:
case TYPE_ULONGINT:
@@ -1368,6 +3013,23 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar
return NULL;
}
+ /* Make room for the result. */
+ if (count >= maxlen)
+ {
+ /* Need at least count bytes. But allocate
+ proportionally, to avoid looping eternally if
+ snprintf() reports a too small count. */
+ size_t n =
+ xmax (xsum (length, count), xtimes (allocated, 2));
+
+ ENSURE_ALLOCATION (n);
+#if USE_SNPRINTF
+ continue;
+#else
+ maxlen = allocated - length;
+#endif
+ }
+
/* Perform padding. */
#if NEED_PRINTF_FLAG_ZERO
if (pad_ourselves && has_width && count < width)
@@ -1380,14 +3042,15 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar
proportionally, to avoid looping eternally if
snprintf() reports a too small count. */
size_t n =
- xmax (xsum (length, width),
+ xmax (xsum (length + 1, width),
xtimes (allocated, 2));
length += count;
ENSURE_ALLOCATION (n);
length -= count;
- maxlen = allocated - length; /* >= width */
+ maxlen = allocated - length; /* > width */
}
+ /* Here width < maxlen. */
# endif
{
# if USE_SNPRINTF
@@ -1446,20 +3109,7 @@ VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list ar
abort ();
#endif
- /* Make room for the result. */
- if (count >= maxlen)
- {
- /* Need at least count bytes. But allocate
- proportionally, to avoid looping eternally if
- snprintf() reports a too small count. */
- size_t n =
- xmax (xsum (length, count), xtimes (allocated, 2));
-
- ENSURE_ALLOCATION (n);
-#if USE_SNPRINTF
- continue;
-#endif
- }
+ /* Here still count < maxlen. */
#if USE_SNPRINTF
/* The snprintf() result did fit. */