summaryrefslogtreecommitdiff
path: root/mpf/get_str.c
blob: 51257182f643028b87d6f2d75f9d776947a7b2d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/* mpf_get_str (digit_ptr, exp, base, n_digits, a) -- Convert the floating
  point number A to a base BASE number and store N_DIGITS raw digits at
  DIGIT_PTR, and the base BASE exponent in the word pointed to by EXP.  For
  example, the number 3.1416 would be returned as "31416" in DIGIT_PTR and
  1 in EXP.

Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"

/*
   New algorithm for converting fractions (951019):
   0. Call the fraction to convert F.
   1. Compute [exp * log(2^BITS_PER_MP_LIMB)/log(B)], i.e.,
      [exp * BITS_PER_MP_LIMB * __mp_bases[B].chars_per_bit_exactly].  Exp is
      the number of limbs between the limb point and the most significant
      non-zero limb.  Call this result n.
   2. Compute B^n.
   3. F*B^n will now be just below 1, which can be converted easily.  (Just
      multiply by B repeatedly, and see the digits fall out as integers.)
   We should interrupt the conversion process of F*B^n as soon as the number
   of digits requested have been generated.

   New algorithm for converting integers (951019):
   0. Call the integer to convert I.
   1. Compute [exp * log(2^BITS_PER_MP_LIMB)/log(B)], i.e.,
      [exp BITS_PER_MP_LIMB * __mp_bases[B].chars_per_bit_exactly].  Exp is
      the number of limbs between the limb point and the least significant
      non-zero limb.  Call this result n.
   2. Compute B^n.
   3. I/B^n can be converted easily.  (Just divide by B repeatedly.  In GMP,
      this is best done by calling mpn_get_str.)
   Note that converting I/B^n could yield more digits than requested.  For
   efficiency, the variable n above should be set larger in such cases, to
   kill all undesired digits in the division in step 3.
*/

char *
#if __STDC__
mpf_get_str (char *digit_ptr, mp_exp_t *exp, int base, size_t n_digits, mpf_srcptr u)
#else
mpf_get_str (digit_ptr, exp, base, n_digits, u)
     char *digit_ptr;
     mp_exp_t *exp;
     int base;
     size_t n_digits;
     mpf_srcptr u;
#endif
{
  mp_size_t usize;
  mp_exp_t uexp;
  unsigned char *str;
  size_t str_size;
  char *num_to_text;
  long i;			/* should be size_t */
  mp_ptr rp;
  mp_limb_t big_base;
  size_t digits_computed_so_far;
  int dig_per_u;
  mp_srcptr up;
  unsigned char *tstr;
  mp_exp_t exp_in_base;
  TMP_DECL (marker);

  TMP_MARK (marker);
  usize = u->_mp_size;
  uexp = u->_mp_exp;

  if (base >= 0)
    {
      if (base == 0)
	base = 10;
      num_to_text = "0123456789abcdefghijklmnopqrstuvwxyz";
    }
  else
    {
      base = -base;
      num_to_text = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
    }

  /* Don't compute more digits than U can accurately represent.
     Also, if 0 digits were requested, give *exactly* as many digits
     as can be accurately represented.  */
  {
    size_t max_digits = (((u->_mp_prec - 1) * BITS_PER_MP_LIMB)
			 * __mp_bases[base].chars_per_bit_exactly);
    if (n_digits == 0 || n_digits > max_digits)
      n_digits = max_digits;
  }

  if (digit_ptr == 0)
    {
      /* We didn't get a string from the user.  Allocate one (and return
	 a pointer to it) with space for `-' and terminating null.  */
      digit_ptr = (char *) (*_mp_allocate_func) (n_digits + 2);
    }

  if (usize == 0)
    {
      *exp = 0;
      *digit_ptr = 0;
      return digit_ptr;
    }

  str = (unsigned char *) digit_ptr;

  /* Allocate temporary digit space.  We can't put digits directly in the user
     area, since we almost always generate more digits than requested.  */
  tstr = (unsigned char *) TMP_ALLOC (n_digits + 3 * BITS_PER_MP_LIMB);

  if (usize < 0)
    {
      *digit_ptr = '-';
      str++;
      usize = -usize;
    }

  digits_computed_so_far = 0;

  /* See if we are to convert only part of a the entire integral part of the
     number, i.e., no fractional digits.  */
  if (uexp > usize)
    {
      /* The number has just an integral part.  */
      mp_size_t rsize;
      mp_size_t exp_in_limbs;
      mp_size_t msize;
      mp_ptr tp, xp, mp;
      int cnt;
      mp_limb_t cy;
      mp_size_t start_str;
      mp_size_t n_limbs;

      n_limbs = 2 + ((mp_size_t) (n_digits / __mp_bases[base].chars_per_bit_exactly)
		     / BITS_PER_MP_LIMB);

      /* Compute n such that [u/B^n] contains (somewhat) more than n_digits
	 digits.  (We compute less than that only if that is an exact number,
	 i.e., exp is small enough.)  */

      exp_in_limbs = uexp;

      if (n_limbs >= exp_in_limbs)
	{
	  /* The number is so small that we convert the entire number.  */
	  exp_in_base = 0;
	  rp = (mp_ptr) TMP_ALLOC (exp_in_limbs * BYTES_PER_MP_LIMB);
	  MPN_ZERO (rp, exp_in_limbs - usize);
	  MPN_COPY (rp + (exp_in_limbs - usize), u->_mp_d, usize);
	  rsize = exp_in_limbs;
	}
      else
	{
	  exp_in_limbs -= n_limbs;
	  exp_in_base = (((exp_in_limbs * BITS_PER_MP_LIMB - 1))
			 * __mp_bases[base].chars_per_bit_exactly);

	  rsize = exp_in_limbs + 1;
	  rp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);
	  tp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);

	  rp[0] = base;
	  rsize = 1;

	  count_leading_zeros (cnt, exp_in_base);
	  for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)
	    {
	      mpn_mul_n (tp, rp, rp, rsize);
	      rsize = 2 * rsize;
	      rsize -= tp[rsize - 1] == 0;
	      xp = tp; tp = rp; rp = xp;

	      if (((exp_in_base >> i) & 1) != 0)
		{
		  cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);
		  rp[rsize] = cy;
		  rsize += cy != 0;
		}
	    }

	  mp = u->_mp_d;
	  msize = usize;

	  {
	    mp_ptr qp;
	    mp_limb_t qflag;
	    mp_size_t xtra;
	    if (msize < rsize)
	      {
		mp_ptr tmp = (mp_ptr) TMP_ALLOC ((rsize+1)* BYTES_PER_MP_LIMB);
		MPN_ZERO (tmp, rsize - msize);
		MPN_COPY (tmp + rsize - msize, mp, msize);
		mp = tmp;
		msize = rsize;
	      }
	    else
	      {
		mp_ptr tmp = (mp_ptr) TMP_ALLOC ((msize+1)* BYTES_PER_MP_LIMB);
		MPN_COPY (tmp, mp, msize);
		mp = tmp;
	      }
	    count_leading_zeros (cnt, rp[rsize - 1]);
	    cy = 0;
	    if (cnt != 0)
	      {
		mpn_lshift (rp, rp, rsize, cnt);
		cy = mpn_lshift (mp, mp, msize, cnt);
		if (cy)
		  mp[msize++] = cy;
	      }

	    {
	      mp_size_t qsize = n_limbs + (cy != 0);
	      qp = (mp_ptr) TMP_ALLOC ((qsize + 1) * BYTES_PER_MP_LIMB);
	      xtra = qsize - (msize - rsize);
	      qflag = mpn_divrem (qp, xtra, mp, msize, rp, rsize);
	      qp[qsize] = qflag;
	      rsize = qsize + qflag;
	      rp = qp;
	    }
	  }
	}

      str_size = mpn_get_str (tstr, base, rp, rsize);

      if (str_size > n_digits + 3 * BITS_PER_MP_LIMB)
	abort ();

      start_str = 0;
      while (tstr[start_str] == 0)
	start_str++;

      for (i = start_str; i < str_size; i++)
	{
	  tstr[digits_computed_so_far++] = tstr[i];
	  if (digits_computed_so_far > n_digits)
	    break;
	}
      exp_in_base = exp_in_base + str_size - start_str;
      goto finish_up;
    }

  exp_in_base = 0;

  if (uexp > 0)
    {
      /* The number has an integral part, convert that first.
	 If there is a fractional part too, it will be handled later.  */
      mp_size_t start_str;

      rp = (mp_ptr) TMP_ALLOC (uexp * BYTES_PER_MP_LIMB);
      up = u->_mp_d + usize - uexp;
      MPN_COPY (rp, up, uexp);

      /* There is a bug in that too many digits are generated here.  We
	 should really only generate somewhat more than n_digits digits, by
	 first dividing rp,uexp by 10^n, where n is chosen to make the quotient
	 have just enough limbs to generate n_digits digits.  */
      /* For now, we make a gross hack: Allocate lots of temp space,
	 and convert to that, and then chop off the excessive digits...  */
      {
	unsigned char *tmpstr;
	size_t tmpstr_size
	  = 2 + (size_t) uexp * BITS_PER_MP_LIMB * __mp_bases[base].chars_per_bit_exactly;
	tmpstr = (unsigned char *) TMP_ALLOC (tmpstr_size);

	str_size = mpn_get_str (tmpstr, base, rp, uexp);

	/* mpn_get_str might return some initial \0 characters.  Skip them.  */
	start_str = 0;
	while (tmpstr[start_str] == 0)
	  start_str++;

	exp_in_base = str_size - start_str;
	str_size -= start_str;

	if (str_size > n_digits + 1)
	  str_size = n_digits + 1;
	for (i = 0; i < str_size; i++)
	  tstr[i] = tmpstr[start_str + i];
	digits_computed_so_far = str_size;
      }

      if (digits_computed_so_far > n_digits)
	goto finish_up;

      /* Modify somewhat and fall out to convert fraction... */
      usize -= uexp;
      uexp = 0;
    }

  if (usize <= 0)
    goto finish_up;

  /* Convert the fraction.  */
  {
    mp_size_t rsize, msize;
    mp_ptr rp, tp, xp, mp;
    int cnt;
    mp_limb_t cy;
    mp_exp_t nexp;

    big_base = __mp_bases[base].big_base;
    dig_per_u = __mp_bases[base].chars_per_limb;

    /* Hack for correctly (although not efficiently) converting to bases that
       are powers of 2.  If we deem it important, we could handle powers of 2
       by shifting and masking (just like mpn_get_str).  */
    if (big_base < 10)		/* logarithm of base when power of two */
      {
	int logbase = big_base;
	if (dig_per_u * logbase == BITS_PER_MP_LIMB)
	  dig_per_u--;
	big_base = (mp_limb_t) 1 << (dig_per_u * logbase);
	/* fall out to general code... */
      }

#if 0
    if (0 && uexp == 0)
      {
	rp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);
	up = u->_mp_d;
	MPN_COPY (rp, up, usize);
	rsize = usize;
	nexp = 0;
      }
    else
      {}
#endif
    uexp = -uexp;
    if (u->_mp_d[usize - 1] == 0)
      cnt = 0;
    else
      count_leading_zeros (cnt, u->_mp_d[usize - 1]);

    nexp = ((uexp * BITS_PER_MP_LIMB) + cnt)
      * __mp_bases[base].chars_per_bit_exactly;

    if (nexp == 0)
      {
	rp = (mp_ptr) TMP_ALLOC (usize * BYTES_PER_MP_LIMB);
	up = u->_mp_d;
	MPN_COPY (rp, up, usize);
	rsize = usize;
      }
    else
      {
	rsize = uexp + 2;
	rp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);
	tp = (mp_ptr) TMP_ALLOC (rsize * BYTES_PER_MP_LIMB);

	rp[0] = base;
	rsize = 1;

	count_leading_zeros (cnt, nexp);
	for (i = BITS_PER_MP_LIMB - cnt - 2; i >= 0; i--)
	  {
	    mpn_mul_n (tp, rp, rp, rsize);
	    rsize = 2 * rsize;
	    rsize -= tp[rsize - 1] == 0;
	    xp = tp; tp = rp; rp = xp;

	    if (((nexp >> i) & 1) != 0)
	      {
		cy = mpn_mul_1 (rp, rp, rsize, (mp_limb_t) base);
		rp[rsize] = cy;
		rsize += cy != 0;
	      }
	  }

	/* Did our multiplier (base^nexp) cancel with uexp?  */
#if 0
	if (uexp != rsize)
	  {
	    do
	      {
		cy = mpn_mul_1 (rp, rp, rsize, big_base);
		nexp += dig_per_u;
	      }
	    while (cy == 0);
	    rp[rsize++] = cy;
	  }
#endif
	mp = u->_mp_d;
	msize = usize;

	tp = (mp_ptr) TMP_ALLOC ((rsize + msize) * BYTES_PER_MP_LIMB);
	if (rsize > msize)
	  cy = mpn_mul (tp, rp, rsize, mp, msize);
	else
	  cy = mpn_mul (tp, mp, msize, rp, rsize);
	rsize += msize;
	rsize -= cy == 0;
	rp = tp;

	/* If we already output digits (for an integral part) pad
	   leading zeros.  */
	if (digits_computed_so_far != 0)
	  for (i = 0; i < nexp; i++)
	    tstr[digits_computed_so_far++] = 0;
      }

    while (digits_computed_so_far <= n_digits)
      {
	/* For speed: skip trailing zeroes.  */
	if (rp[0] == 0)
	  {
	    rp++;
	    rsize--;
	    if (rsize == 0)
	      {
		n_digits = digits_computed_so_far;
		break;
	      }
	  }

	cy = mpn_mul_1 (rp, rp, rsize, big_base);
	if (digits_computed_so_far == 0 && cy == 0)
	  {
	    abort ();
	    nexp += dig_per_u;
	    continue;
	  }
	/* Convert N1 from BIG_BASE to a string of digits in BASE
	   using single precision operations.  */
	{
	  unsigned char *s = tstr + digits_computed_so_far + dig_per_u;
	  for (i = dig_per_u - 1; i >= 0; i--)
	    {
	      *--s = cy % base;
	      cy /= base;
	    }
	}
	digits_computed_so_far += dig_per_u;
      }
    if (exp_in_base == 0)
      exp_in_base = -nexp;
  }

 finish_up:

  /* We can have at most one leading 0.  Remove it.  */
  if (tstr[0] == 0)
    {
      tstr++;
      digits_computed_so_far--;
      exp_in_base--;
    }

  /* We should normally have computed too many digits.  Round the result
     at the point indicated by n_digits.  */
  if (digits_computed_so_far > n_digits)
    {
      /* Round the result.  */
      if (tstr[n_digits] * 2 >= base)
	{
	  digits_computed_so_far = n_digits;
	  for (i = n_digits - 1; i >= 0; i--)
	    {
	      unsigned int x;
	      x = ++(tstr[i]);
	      if (x < base)
		goto rounded_ok;
	      digits_computed_so_far--;
	    }
	  tstr[0] = 1;
	  digits_computed_so_far = 1;
	  exp_in_base++;
	rounded_ok:;
	}
    }

  /* We might have fewer digits than requested as a result of rounding above,
     (i.e. 0.999999 => 1.0) or because we have a number that simply doesn't
     need many digits in this base (i.e., 0.125 in base 10).  */
  if (n_digits > digits_computed_so_far)
    n_digits = digits_computed_so_far;

  /* Remove trailing 0.  There can be many zeros. */
  while (n_digits != 0 && tstr[n_digits - 1] == 0)
    n_digits--;

  /* Translate to ascii and null-terminate.  */
  for (i = 0; i < n_digits; i++)
    *str++ = num_to_text[tstr[i]];
  *str = 0;
  *exp = exp_in_base;
  TMP_FREE (marker);
  return digit_ptr;
}

#if COPY_THIS_TO_OTHER_PLACES
      /* Use this expression in lots of places in the library instead of the
	 count_leading_zeros+expression that is used currently.  This expression
	 is much more accurate and will save odles of memory.  */
      rsize = ((mp_size_t) (exp_in_base / __mp_bases[base].chars_per_bit_exactly)
	       + BITS_PER_MP_LIMB) / BITS_PER_MP_LIMB;
#endif