diff options
author | Torbjorn Granlund <tege@gmplib.org> | 2011-08-17 09:37:45 +0200 |
---|---|---|
committer | Torbjorn Granlund <tege@gmplib.org> | 2011-08-17 09:37:45 +0200 |
commit | 476504e484fc5a91efa1023fe61269abf79194ad (patch) | |
tree | f6bcc2a7458c106e646a79c3eebed59e1f6ad9ca /doc/gmp.texi | |
parent | 8fcc0ed0c8c4ad8ae43044a61978031b787269d0 (diff) | |
download | gmp-476504e484fc5a91efa1023fe61269abf79194ad.tar.gz |
Update URLs, canonicalise spellng of "i.e.".
Diffstat (limited to 'doc/gmp.texi')
-rw-r--r-- | doc/gmp.texi | 37 |
1 files changed, 18 insertions, 19 deletions
diff --git a/doc/gmp.texi b/doc/gmp.texi index e43ce6b3e..60022bbd8 100644 --- a/doc/gmp.texi +++ b/doc/gmp.texi @@ -2651,7 +2651,7 @@ accesses through bad pointers, and memory leaks. Recent versions of Valgrind are getting support for MMX and SSE/SSE2 instructions, for past versions GMP will need to be configured not to use -those, ie.@: for an x86 without them (for instance plain @samp{i486}). +those, i.e.@: for an x86 without them (for instance plain @samp{i486}). GMP's assembly code sometimes promotes a read of the limbs to some larger size, for efficiency. GMP will do this even at the start and end of a multilimb @@ -3142,7 +3142,7 @@ the function @code{mpz_fits_slong_p}. @end deftypefun @deftypefun double mpz_get_d (mpz_t @var{op}) -Convert @var{op} to a @code{double}, truncating if necessary (ie.@: rounding +Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding towards zero). If the exponent from the conversion is too big, the result is system @@ -3151,7 +3151,7 @@ may or may not occur. @end deftypefun @deftypefun double mpz_get_d_2exp (signed long int *@var{exp}, mpz_t @var{op}) -Convert @var{op} to a @code{double}, truncating if necessary (ie.@: rounding +Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding towards zero), and returning the exponent separately. The return value is in the range @math{0.5@le{}@GMPabs{@var{d}}<1} and the @@ -4247,7 +4247,7 @@ Swap the values @var{rop1} and @var{rop2} efficiently. @cindex Conversion functions @deftypefun double mpq_get_d (mpq_t @var{op}) -Convert @var{op} to a @code{double}, truncating if necessary (ie.@: rounding +Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding towards zero). If the exponent from the conversion is too big or too small to fit a @@ -4735,7 +4735,7 @@ set by @code{mpf_set_default_prec}. @cindex Conversion functions @deftypefun double mpf_get_d (mpf_t @var{op}) -Convert @var{op} to a @code{double}, truncating if necessary (ie.@: rounding +Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding towards zero). If the exponent in @var{op} is too big or too small to fit a @code{double} @@ -4745,7 +4745,7 @@ underflow and denorm traps may or may not occur. @end deftypefun @deftypefun double mpf_get_d_2exp (signed long int *@var{exp}, mpf_t @var{op}) -Convert @var{op} to a @code{double}, truncating if necessary (ie.@: rounding +Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding towards zero), and with an exponent returned separately. The return value is in the range @math{0.5@le{}@GMPabs{@var{d}}<1} and the @@ -5683,7 +5683,7 @@ concatenated. Initialize @var{state} for a linear congruential algorithm as per @code{gmp_randinit_lc_2exp}. @var{a}, @var{c} and @var{m2exp} are selected from a table, chosen so that @var{size} bits (or more) of each @math{X} will -be used, ie.@: @math{@var{m2exp}/2 @ge{} @var{size}}. +be used, i.e.@: @math{@var{m2exp}/2 @ge{} @var{size}}. If successful the return value is non-zero. If @var{size} is bigger than the table data provides then the return value is zero. The maximum @var{size} @@ -5756,7 +5756,7 @@ random data better suited for use as a seed. @section Random State Miscellaneous @deftypefun {unsigned long} gmp_urandomb_ui (gmp_randstate_t @var{state}, unsigned long @var{n}) -Return a uniformly distributed random number of @var{n} bits, ie.@: in the +Return a uniformly distributed random number of @var{n} bits, i.e.@: in the range 0 to @m{2^n-1,2^@var{n}-1} inclusive. @var{n} must be less than or equal to the number of bits in an @code{unsigned long}. @end deftypefun @@ -7077,7 +7077,7 @@ interface, expression templates to eliminate temporaries. ALP @spaceuref{http://www-sop.inria.fr/saga/logiciels/ALP/} @* Linear algebra and polynomials using templates. @item -Arithmos @spaceuref{http://www.win.ua.ac.be/~cant/arithmos/} @* Rationals +Arithmos @spaceuref{http://cant.ua.ac.be/old/arithmos/} @* Rationals with infinities and square roots. @item CLN @spaceuref{http://www.ginac.de/CLN/} @* High level classes for arithmetic. @@ -7257,8 +7257,7 @@ Q @spaceuref{http://q-lang.sourceforge.net/} @* Equational programming system. @item Regina @spaceuref{http://regina.sourceforge.net/} @* Topological calculator. @item -Yacas @spaceuref{http://www.xs4all.nl/~apinkus/yacas.html} @* Yet another -computer algebra system. +Yacas @spaceuref{yacas.sourceforge.net} @* Yet another computer algebra system. @end itemize @end table @@ -7460,7 +7459,7 @@ equal length (or the most significant part one limb shorter if N is odd). @end example @end ifnottex -Let @math{b} be the power of 2 where the split occurs, ie.@: if @ms{x,0} is +Let @math{b} be the power of 2 where the split occurs, i.e.@: if @ms{x,0} is @math{k} limbs (@ms{y,0} the same) then @m{b=2\GMPraise{$k*$@code{mp\_bits\_per\_limb}}, b=2^(k*mp_bits_per_limb)}. With that @m{x=x_1b+x_0,x=x1*b+x0} and @m{y=y_1b+y_0,y=y1*b+y0}, and the @@ -7639,7 +7638,7 @@ These parts are treated as the coefficients of two polynomials @end display Let @math{b} equal the power of 2 which is the size of the @ms{x,0}, @ms{x,1}, -@ms{y,0} and @ms{y,1} pieces, ie.@: if they're @math{k} limbs each then +@ms{y,0} and @ms{y,1} pieces, i.e.@: if they're @math{k} limbs each then @m{b=2\GMPraise{$k*$@code{mp\_bits\_per\_limb}}, b=2^(k*mp_bits_per_limb)}. With this @math{x=X(b)} and @math{y=Y(b)}. @@ -8742,7 +8741,7 @@ to save operations, so long as the lookup tables don't become too big. A square root must still be taken for any value that passes these tests, to verify it's really a square and not one of the small fraction of non-squares -that get through (ie.@: a pseudo-square to all the tested bases). +that get through (i.e.@: a pseudo-square to all the tested bases). Clearly more residue tests could be done, @code{mpz_perfect_square_p} only uses a compact and efficient set. Big inputs would probably benefit from more @@ -8844,7 +8843,7 @@ calculating a bigger radix power. Another possible improvement for the sub-quadratic part would be to arrange for radix powers that balanced the sizes of quotient and remainder produced, -ie.@: the highest power would be an @m{b^{nk},b^(n*k)} approximately equal to +i.e.@: the highest power would be an @m{b^{nk},b^(n*k)} approximately equal to @m{\sqrt{t},sqrt(t)}, not restricted to a @math{2^i} factor. That ought to smooth out a graph of times against sizes, but may or may not be a net speedup. @@ -10313,7 +10312,7 @@ Analytic Number Theory and Computational Complexity'', Wiley, 1998. @item Richard Crandall and Carl Pomerance, ``Prime Numbers: A Computational Perspective'', 2nd edition, Springer-Verlag, 2005. -@texlinebreak{} @uref{http://math.dartmouth.edu/~carlp/} +@texlinebreak{} @uref{http://www.math.dartmouth.edu/~carlp/} @item Henri Cohen, ``A Course in Computational Algebraic Number Theory'', Graduate @@ -10346,8 +10345,8 @@ Collection'', Free Software Foundation, 2008, available online @item Yves Bertot, Nicolas Magaud and Paul Zimmermann, ``A Proof of GMP Square Root'', Journal of Automated Reasoning, volume 29, 2002, pp.@: 225-252. Also -available online as INRIA Research Report 4475, June 2001, -@uref{http://www.inria.fr/rrrt/rr-4475.html} +available online as INRIA Research Report 4475, June 2002, +@uref{http://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf} @item Christoph Burnikel and Joachim Ziegler, ``Fast Recursive Division'', @@ -10437,7 +10436,7 @@ volume 21, number 1, March 1995, pp.@: 111-122. @item Paul Zimmermann, ``Karatsuba Square Root'', INRIA Research Report 3805, -November 1999, @uref{http://www.inria.fr/rrrt/rr-3805.html} +November 1999, @uref{http://hal.inria.fr/inria-00072854/PDF/RR-3805.pdf} @item Paul Zimmermann, ``A Proof of GMP Fast Division and Square Root |