1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/* Copyright 2002 The gtkmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <glibmm/dispatcher.h>
#include <glibmm/exceptionhandler.h>
#include <glibmm/fileutils.h>
#include <glibmm/main.h>
#include <cerrno>
#include <fcntl.h>
#include <glib.h>
#include <forward_list>
#include <memory>
#include <utility> // For std::move()
#ifdef G_OS_WIN32
#include <windows.h>
#include <io.h>
#include <direct.h>
#include <list>
#include <mutex>
#else
#include <unistd.h>
#endif
// EINTR is not defined on Tru64. I have tried including these:
// #include <sys/types.h>
// #include <sys/statvfs.h>
// #include <signal.h>
// danielk: I think someone should just do a grep on a Tru64 box. Googling
// for "tru64 EINTR" returns lots of hits telling me that handling EINTR is
// actually a requirement on Tru64. So it must exist.
#if defined(_tru64) && !defined(EINTR)
#define EINTR 0 /* TODO: should use the real define */
#endif
namespace Glib
{
class DispatchNotifier;
}
namespace
{
struct DispatchNotifyData
{
Glib::Dispatcher::Impl* dispatcher_impl;
Glib::DispatchNotifier* notifier;
DispatchNotifyData()
: dispatcher_impl(nullptr), notifier(nullptr)
{}
DispatchNotifyData(Glib::Dispatcher::Impl* d, Glib::DispatchNotifier* n)
: dispatcher_impl(d), notifier(n)
{}
};
static void
warn_failed_pipe_io(const char* what)
{
#ifdef G_OS_WIN32
const char* const message = g_win32_error_message(GetLastError());
#else
const char* const message = g_strerror(errno);
#endif
g_critical("Error in inter-thread communication: %s() failed: %s", what, message);
}
#ifdef G_OS_WIN32
static void
fd_close_and_invalidate(HANDLE& fd)
{
if (fd != 0)
{
if (!CloseHandle(fd))
warn_failed_pipe_io("CloseHandle");
fd = 0;
}
}
#else /* !G_OS_WIN32 */
/*
* Set the close-on-exec flag on the file descriptor,
* so that it won't be leaked if a new process is spawned.
*/
static void
fd_set_close_on_exec(int fd)
{
const int flags = fcntl(fd, F_GETFD, 0);
if (flags < 0 || fcntl(fd, F_SETFD, unsigned(flags) | FD_CLOEXEC) < 0)
warn_failed_pipe_io("fcntl");
}
static void
fd_close_and_invalidate(int& fd)
{
if (fd >= 0)
{
int result;
do
result = close(fd);
while (G_UNLIKELY(result < 0) && errno == EINTR);
if (G_UNLIKELY(result < 0))
warn_failed_pipe_io("close");
fd = -1;
}
}
#endif /* !G_OS_WIN32 */
void warn_dropped_dispatcher_message()
{
g_warning("Dropped dispatcher message as the dispatcher no longer exists.");
}
} // anonymous namespace
namespace Glib
{
// The most important reason for having the dispatcher implementation in a separate
// class is that its deletion can be delayed until it's safe to delete it.
// Deletion is safe when the pipe does not contain any message to the dispatcher
// to delete. When the pipe is empty, it's surely safe.
struct Dispatcher::Impl
{
public:
sigc::signal<void()> signal_;
DispatchNotifier* notifier_;
explicit Impl(const Glib::RefPtr<MainContext>& context);
// noncopyable
Impl(const Impl&) = delete;
Impl& operator=(const Impl&) = delete;
};
class DispatchNotifier : public sigc::trackable
{
public:
~DispatchNotifier() noexcept;
// noncopyable
DispatchNotifier(const DispatchNotifier&) = delete;
DispatchNotifier& operator=(const DispatchNotifier&) = delete;
static DispatchNotifier* reference_instance(const Glib::RefPtr<MainContext>& context);
static void unreference_instance(DispatchNotifier* notifier, Dispatcher::Impl* dispatcher_impl);
void send_notification(Dispatcher::Impl* dispatcher_impl);
protected:
// Only used by reference_instance(). Should be private, but that triggers
// a silly gcc warning even though DispatchNotifier has static methods.
explicit DispatchNotifier(const Glib::RefPtr<MainContext>& context);
private:
static thread_local DispatchNotifier* thread_specific_instance_;
using UniqueImplPtr = std::unique_ptr<Dispatcher::Impl>;
std::forward_list<UniqueImplPtr> orphaned_dispatcher_impl_;
long ref_count_;
Glib::RefPtr<MainContext> context_;
#ifdef G_OS_WIN32
std::mutex mutex_;
std::list<DispatchNotifyData> notify_queue_;
HANDLE fd_receiver_;
#else
int fd_receiver_;
int fd_sender_;
#endif
void create_pipe();
bool pipe_io_handler(Glib::IOCondition condition);
bool pipe_is_empty();
};
/**** Glib::DispatchNotifier ***********************************************/
thread_local DispatchNotifier* DispatchNotifier::thread_specific_instance_ = nullptr;
DispatchNotifier::DispatchNotifier(const Glib::RefPtr<MainContext>& context)
: orphaned_dispatcher_impl_(),
ref_count_(0),
context_(context),
#ifdef G_OS_WIN32
mutex_(),
notify_queue_(),
fd_receiver_(0)
#else
fd_receiver_(-1),
fd_sender_(-1)
#endif
{
create_pipe();
try
{
// PollFD::fd_t is the type of GPollFD::fd.
// In Windows, it has the same size as HANDLE, but it's not guaranteed to be the same type.
// In Unix, a file descriptor is an int.
const auto fd = (PollFD::fd_t)fd_receiver_;
// The following code is equivalent to
// context_->signal_io().connect(
// sigc::mem_fun(*this, &DispatchNotifier::pipe_io_handler), fd, Glib::IOCondition::IO_IN);
// except for source->set_can_recurse(true).
const auto source = IOSource::create(fd, Glib::IOCondition::IO_IN);
// If the signal emission in pipe_io_handler() starts a new main loop,
// the event source shall not be blocked while that loop runs. (E.g. while
// a connected slot function shows a modal dialog box.)
source->set_can_recurse(true);
source->connect(sigc::mem_fun(*this, &DispatchNotifier::pipe_io_handler));
g_source_attach(source->gobj(), context_->gobj());
}
catch (...)
{
#ifndef G_OS_WIN32
fd_close_and_invalidate(fd_sender_);
#endif
fd_close_and_invalidate(fd_receiver_);
throw;
}
}
DispatchNotifier::~DispatchNotifier() noexcept
{
#ifndef G_OS_WIN32
fd_close_and_invalidate(fd_sender_);
#endif
fd_close_and_invalidate(fd_receiver_);
}
void
DispatchNotifier::create_pipe()
{
#ifdef G_OS_WIN32
// On Win32, create a synchronization object instead of a pipe and store
// its handle as fd_receiver_. Use a manual-reset event object, so that
// we can closely match the behavior on Unix in pipe_io_handler().
const HANDLE event = CreateEvent(0, TRUE, FALSE, 0);
if (!event)
{
GError* const error = g_error_new(G_FILE_ERROR, G_FILE_ERROR_FAILED,
"Failed to create event for inter-thread communication: %s",
g_win32_error_message(GetLastError()));
throw Glib::FileError(error);
}
fd_receiver_ = event;
#else /* !G_OS_WIN32 */
int filedes[2] = { -1, -1 };
if (pipe(filedes) < 0)
{
GError* const error = g_error_new(G_FILE_ERROR, g_file_error_from_errno(errno),
"Failed to create pipe for inter-thread communication: %s", g_strerror(errno));
throw Glib::FileError(error);
}
fd_set_close_on_exec(filedes[0]);
fd_set_close_on_exec(filedes[1]);
fd_receiver_ = filedes[0];
fd_sender_ = filedes[1];
#endif /* !G_OS_WIN32 */
}
// static
DispatchNotifier* DispatchNotifier::reference_instance(
const Glib::RefPtr<MainContext>& context)
{
DispatchNotifier* instance = thread_specific_instance_;
if (!instance)
{
instance = new DispatchNotifier(context);
thread_specific_instance_ = instance;
}
else
{
// Prevent massive mess-up.
g_return_val_if_fail(instance->context_ == context, nullptr);
}
++instance->ref_count_; // initially 0
return instance;
}
// static
void DispatchNotifier::unreference_instance(
DispatchNotifier* notifier, Dispatcher::Impl* dispatcher_impl)
{
DispatchNotifier* const instance = thread_specific_instance_;
// Yes, the notifier argument is only used to check for sanity.
g_return_if_fail(instance == notifier);
if (instance->pipe_is_empty())
{
// No messages in the pipe. Delete the Dispatcher::Impl immediately.
delete dispatcher_impl;
instance->orphaned_dispatcher_impl_.clear();
}
else
{
// There are messages in the pipe, possibly to the orphaned Dispatcher::Impl.
// Keep it around until it can safely be deleted.
// Delete all slots connected to the Dispatcher. Then the signal emission
// in pipe_io_handler() will do nothing.
dispatcher_impl->signal_.clear();
// Add a slot that will warn that a message has been dropped.
dispatcher_impl->signal_.connect(sigc::ptr_fun(warn_dropped_dispatcher_message));
instance->orphaned_dispatcher_impl_.push_front(UniqueImplPtr(dispatcher_impl));
}
if (--instance->ref_count_ <= 0)
{
g_return_if_fail(instance->ref_count_ == 0); // could be < 0 if messed up
delete thread_specific_instance_;
thread_specific_instance_ = nullptr;
}
}
void DispatchNotifier::send_notification(Dispatcher::Impl* dispatcher_impl)
{
#ifdef G_OS_WIN32
{
const std::lock_guard<std::mutex> lock(mutex_);
const bool was_empty = notify_queue_.empty();
notify_queue_.emplace_back(DispatchNotifyData(dispatcher_impl, this));
if (was_empty)
{
// The event will stay in signaled state until it is reset
// in pipe_io_handler() after processing the last queued event.
if (!SetEvent(fd_receiver_))
warn_failed_pipe_io("SetEvent");
}
}
#else /* !G_OS_WIN32 */
DispatchNotifyData data(dispatcher_impl, this);
gssize n_written;
do
n_written = write(fd_sender_, &data, sizeof(data));
while (G_UNLIKELY(n_written < 0) && errno == EINTR);
// All data must be written in a single call to write(), otherwise we cannot
// guarantee reentrancy since another thread might be scheduled between two
// write() calls. From the glibc manual:
//
// "Reading or writing pipe data is atomic if the size of data written is not
// greater than PIPE_BUF. This means that the data transfer seems to be an
// instantaneous unit, in that nothing else in the system can observe a state
// in which it is partially complete. Atomic I/O may not begin right away (it
// may need to wait for buffer space or for data), but once it does begin it
// finishes immediately."
//
// The minimum value allowed by POSIX for PIPE_BUF is 512, so we are on safe
// grounds here.
if (G_UNLIKELY(n_written != sizeof(data)))
warn_failed_pipe_io("write");
#endif /* !G_OS_WIN32 */
}
bool
DispatchNotifier::pipe_is_empty()
{
#ifdef G_OS_WIN32
return notify_queue_.empty();
#else
PollFD poll_fd(fd_receiver_, Glib::IOCondition::IO_IN);
// GPollFD*, number of file descriptors to poll, timeout (ms)
g_poll(poll_fd.gobj(), 1, 0);
return static_cast<int>(poll_fd.get_revents() & Glib::IOCondition::IO_IN) == 0;
#endif
}
bool DispatchNotifier::pipe_io_handler(Glib::IOCondition)
{
DispatchNotifyData data;
#ifdef G_OS_WIN32
{
const std::lock_guard<std::mutex> lock(mutex_);
// Should never be empty at this point, but let's allow for bogus
// notifications with no data available anyway; just to be safe.
if (notify_queue_.empty())
{
if (!ResetEvent(fd_receiver_))
warn_failed_pipe_io("ResetEvent");
return true;
}
data = notify_queue_.front();
notify_queue_.pop_front();
// Handle only a single event with each invocation of the I/O handler,
// and reset to nonsignaled state only after the last event in the queue
// has been processed. This matches the behavior on Unix.
if (notify_queue_.empty())
{
if (!ResetEvent(fd_receiver_))
warn_failed_pipe_io("ResetEvent");
}
}
#else /* !G_OS_WIN32 */
gssize n_read;
do
n_read = read(fd_receiver_, &data, sizeof(data));
while (G_UNLIKELY(n_read < 0) && errno == EINTR);
// Pipe I/O of a block size not greater than PIPE_BUF should be atomic.
// See the comment on atomicity in send_notification() for details.
if (G_UNLIKELY(n_read != sizeof(data)))
{
// Should probably never be zero, but for safety let's allow for bogus
// notifications when no data is actually available. Although in fact
// the read() should block in that case.
if (n_read != 0)
warn_failed_pipe_io("read");
return true;
}
#endif /* !G_OS_WIN32 */
g_return_val_if_fail(data.notifier == this, true);
// Actually, we wouldn't need the try/catch block because the Glib::Source
// C callback already does it for us. However, we do it anyway because the
// default return value is 'false', which is not what we want.
try
{
data.dispatcher_impl->signal_(); // emit
}
catch (...)
{
Glib::exception_handlers_invoke();
}
if (!orphaned_dispatcher_impl_.empty() && pipe_is_empty())
orphaned_dispatcher_impl_.clear();
return true;
}
/**** Glib::Dispatcher and Glib::Dispatcher::Impl **************************/
Dispatcher::Impl::Impl(const Glib::RefPtr<MainContext>& context)
: signal_(),
notifier_(DispatchNotifier::reference_instance(context))
{
}
Dispatcher::Dispatcher()
: impl_(new Dispatcher::Impl(MainContext::get_default()))
{}
Dispatcher::Dispatcher(const Glib::RefPtr<MainContext>& context)
: impl_(new Dispatcher::Impl(context))
{
}
Dispatcher::~Dispatcher() noexcept
{
DispatchNotifier::unreference_instance(impl_->notifier_, impl_);
}
void
Dispatcher::emit()
{
impl_->notifier_->send_notification(impl_);
}
void
Dispatcher::operator()()
{
impl_->notifier_->send_notification(impl_);
}
sigc::connection
Dispatcher::connect(const sigc::slot<void()>& slot)
{
return impl_->signal_.connect(slot);
}
sigc::connection
Dispatcher::connect(sigc::slot<void()>&& slot)
{
return impl_->signal_.connect(std::move(slot));
}
} // namespace Glib
|