summaryrefslogtreecommitdiff
path: root/sysdeps/x86_64/fpu/e_powl.S
blob: bd6d82802771ccabd5c920f04cad7e52603da8f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/* ix87 specific implementation of pow function.
   Copyright (C) 1996-1999, 2001, 2004, 2007, 2011-2012
   Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <machine/asm.h>

	.section .rodata.cst8,"aM",@progbits,8

	.p2align 3
	ASM_TYPE_DIRECTIVE(one,@object)
one:	.double 1.0
	ASM_SIZE_DIRECTIVE(one)
	ASM_TYPE_DIRECTIVE(limit,@object)
limit:	.double 0.29
	ASM_SIZE_DIRECTIVE(limit)
	ASM_TYPE_DIRECTIVE(p63,@object)
p63:	.byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
	ASM_SIZE_DIRECTIVE(p63)

	.section .rodata.cst16,"aM",@progbits,16

	.p2align 3
	ASM_TYPE_DIRECTIVE(infinity,@object)
inf_zero:
infinity:
	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
	ASM_SIZE_DIRECTIVE(infinity)
	ASM_TYPE_DIRECTIVE(zero,@object)
zero:	.double 0.0
	ASM_SIZE_DIRECTIVE(zero)
	ASM_TYPE_DIRECTIVE(minf_mzero,@object)
minf_mzero:
minfinity:
	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
mzero:
	.byte 0, 0, 0, 0, 0, 0, 0, 0x80
	ASM_SIZE_DIRECTIVE(minf_mzero)

#ifdef PIC
# define MO(op) op##(%rip)
#else
# define MO(op) op
#endif

	.text
ENTRY(__ieee754_powl)
	fldt	24(%rsp)	// y
	fxam


	fnstsw
	movb	%ah, %dl
	andb	$0x45, %ah
	cmpb	$0x40, %ah	// is y == 0 ?
	je	11f

	cmpb	$0x05, %ah	// is y == ±inf ?
	je	12f

	cmpb	$0x01, %ah	// is y == NaN ?
	je	30f

	fldt	8(%rsp)		// x : y

	fxam
	fnstsw
	movb	%ah, %dh
	andb	$0x45, %ah
	cmpb	$0x40, %ah
	je	20f		// x is ±0

	cmpb	$0x05, %ah
	je	15f		// x is ±inf

	fxch			// y : x

	/* fistpll raises invalid exception for |y| >= 1L<<63.  */
	fldl	MO(p63)		// 1L<<63 : y : x
	fld	%st(1)		// y : 1L<<63 : y : x
	fabs			// |y| : 1L<<63 : y : x
	fcomip	%st(1), %st	// 1L<<63 : y : x
	fstp	%st(0)		// y : x
	jnc	2f

	/* First see whether `y' is a natural number.  In this case we
	   can use a more precise algorithm.  */
	fld	%st		// y : y : x
	fistpll	-8(%rsp)	// y : x
	fildll	-8(%rsp)	// int(y) : y : x
	fucomip	%st(1),%st	// y : x
	jne	2f

	/* OK, we have an integer value for y.  */
	mov	-8(%rsp),%eax
	mov	-4(%rsp),%edx
	orl	$0, %edx
	fstp	%st(0)		// x
	jns	4f		// y >= 0, jump
	fdivrl	MO(one)		// 1/x		(now referred to as x)
	negl	%eax
	adcl	$0, %edx
	negl	%edx
4:	fldl	MO(one)		// 1 : x
	fxch

6:	shrdl	$1, %edx, %eax
	jnc	5f
	fxch
	fmul	%st(1)		// x : ST*x
	fxch
5:	fmul	%st(0), %st	// x*x : ST*x
	shrl	$1, %edx
	movl	%eax, %ecx
	orl	%edx, %ecx
	jnz	6b
	fstp	%st(0)		// ST*x
	ret

	/* y is ±NAN */
30:	fldt	8(%rsp)		// x : y
	fldl	MO(one)		// 1.0 : x : y
	fucomip	%st(1),%st	// x : y
	je	31f
	fxch			// y : x
31:	fstp	%st(1)
	ret

	.align ALIGNARG(4)
2:	/* y is a real number.  */
	fxch			// x : y
	fldl	MO(one)		// 1.0 : x : y
	fldl	MO(limit)	// 0.29 : 1.0 : x : y
	fld	%st(2)		// x : 0.29 : 1.0 : x : y
	fsub	%st(2)		// x-1 : 0.29 : 1.0 : x : y
	fabs			// |x-1| : 0.29 : 1.0 : x : y
	fucompp			// 1.0 : x : y
	fnstsw
	fxch			// x : 1.0 : y
	test	$0x4500,%eax
	jz	7f
	fsub	%st(1)		// x-1 : 1.0 : y
	fyl2xp1			// log2(x) : y
	jmp	8f

7:	fyl2x			// log2(x) : y
8:	fmul	%st(1)		// y*log2(x) : y
	fxam
	fnstsw
	andb	$0x45, %ah
	cmpb	$0x05, %ah      // is y*log2(x) == ±inf ?
	je	28f
	fst	%st(1)		// y*log2(x) : y*log2(x)
	frndint			// int(y*log2(x)) : y*log2(x)
	fsubr	%st, %st(1)	// int(y*log2(x)) : fract(y*log2(x))
	fxch			// fract(y*log2(x)) : int(y*log2(x))
	f2xm1			// 2^fract(y*log2(x))-1 : int(y*log2(x))
	faddl	MO(one)		// 2^fract(y*log2(x)) : int(y*log2(x))
	fscale			// 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
	fstp	%st(1)		// 2^fract(y*log2(x))*2^int(y*log2(x))
	ret

28:	fstp	%st(1)		// y*log2(x)
	fldl	MO(one)		// 1 : y*log2(x)
	fscale			// 2^(y*log2(x)) : y*log2(x)
	fstp	%st(1)		// 2^(y*log2(x))
	ret

	// pow(x,±0) = 1
	.align ALIGNARG(4)
11:	fstp	%st(0)		// pop y
	fldl	MO(one)
	ret

	// y == ±inf
	.align ALIGNARG(4)
12:	fstp	%st(0)		// pop y
	fldl	MO(one)		// 1
	fldt	8(%rsp)		// x : 1
	fabs			// abs(x) : 1
	fucompp			// < 1, == 1, or > 1
	fnstsw
	andb	$0x45, %ah
	cmpb	$0x45, %ah
	je	13f		// jump if x is NaN

	cmpb	$0x40, %ah
	je	14f		// jump if |x| == 1

	shlb	$1, %ah
	xorb	%ah, %dl
	andl	$2, %edx
#ifdef PIC
	lea	inf_zero(%rip),%rcx
	fldl	(%rcx, %rdx, 4)
#else
	fldl	inf_zero(,%rdx, 4)
#endif
	ret

	.align ALIGNARG(4)
14:	fldl	MO(one)
	ret

	.align ALIGNARG(4)
13:	fldt	8(%rsp)		// load x == NaN
	ret

	.align ALIGNARG(4)
	// x is ±inf
15:	fstp	%st(0)		// y
	testb	$2, %dh
	jz	16f		// jump if x == +inf

	// We must find out whether y is an odd integer.
	fld	%st		// y : y
	fistpll	-8(%rsp)	// y
	fildll	-8(%rsp)	// int(y) : y
	fucomip %st(1),%st
	ffreep	%st		// <empty>
	jne	17f

	// OK, the value is an integer, but is it odd?
	mov	-8(%rsp), %eax
	mov	-4(%rsp), %edx
	andb	$1, %al
	jz	18f		// jump if not odd
	// It's an odd integer.
	shrl	$31, %edx
#ifdef PIC
	lea	minf_mzero(%rip),%rcx
	fldl	(%rcx, %rdx, 8)
#else
	fldl	minf_mzero(,%rdx, 8)
#endif
	ret

	.align ALIGNARG(4)
16:	fcompl	MO(zero)
	fnstsw
	shrl	$5, %eax
	andl	$8, %eax
#ifdef PIC
	lea	inf_zero(%rip),%rcx
	fldl	(%rcx, %rax, 1)
#else
	fldl	inf_zero(,%rax, 1)
#endif
	ret

	.align ALIGNARG(4)
17:	shll	$30, %edx	// sign bit for y in right position
18:	shrl	$31, %edx
#ifdef PIC
	lea	inf_zero(%rip),%rcx
	fldl	(%rcx, %rdx, 8)
#else
	fldl	inf_zero(,%rdx, 8)
#endif
	ret

	.align ALIGNARG(4)
	// x is ±0
20:	fstp	%st(0)		// y
	testb	$2, %dl
	jz	21f		// y > 0

	// x is ±0 and y is < 0.  We must find out whether y is an odd integer.
	testb	$2, %dh
	jz	25f

	fld	%st		// y : y
	fistpll	-8(%rsp)	// y
	fildll	-8(%rsp)	// int(y) : y
	fucomip	%st(1),%st
	ffreep	%st		// <empty>
	jne	26f

	// OK, the value is an integer, but is it odd?
	mov	-8(%rsp),%eax
	mov	-4(%rsp),%edx
	andb	$1, %al
	jz	27f		// jump if not odd
	// It's an odd integer.
	// Raise divide-by-zero exception and get minus infinity value.
	fldl	MO(one)
	fdivl	MO(zero)
	fchs
	ret

25:	fstp	%st(0)
26:
27:	// Raise divide-by-zero exception and get infinity value.
	fldl	MO(one)
	fdivl	MO(zero)
	ret

	.align ALIGNARG(4)
	// x is ±0 and y is > 0.  We must find out whether y is an odd integer.
21:	testb	$2, %dh
	jz	22f

	fld	%st		// y : y
	fistpll	-8(%rsp)	// y
	fildll	-8(%rsp)	// int(y) : y
	fucomip %st(1),%st
	ffreep	%st		// <empty>
	jne	23f

	// OK, the value is an integer, but is it odd?
	mov	-8(%rsp),%eax
	mov	-4(%rsp),%edx
	andb	$1, %al
	jz	24f		// jump if not odd
	// It's an odd integer.
	fldl	MO(mzero)
	ret

22:	fstp	%st(0)
23:
24:	fldl	MO(zero)
	ret

END(__ieee754_powl)
strong_alias (__ieee754_powl, __powl_finite)