1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* Single-precision floating point square root.
Copyright (C) 1997-2020 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <fenv_libc.h>
#include <libm-alias-finite.h>
#include <math-use-builtins.h>
float
__ieee754_sqrtf (float x)
{
#if USE_SQRTF_BUILTIN
return __builtin_sqrtf (x);
#else
/* The method is based on a description in
Computation of elementary functions on the IBM RISC System/6000 processor,
P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
Basically, it consists of two interleaved Newton-Raphson approximations,
one to find the actual square root, and one to find its reciprocal
without the expense of a division operation. The tricky bit here
is the use of the POWER/PowerPC multiply-add operation to get the
required accuracy with high speed.
The argument reduction works by a combination of table lookup to
obtain the initial guesses, and some careful modification of the
generated guesses (which mostly runs on the integer unit, while the
Newton-Raphson is running on the FPU). */
extern const float __t_sqrt[1024];
if (x > 0)
{
if (x != INFINITY)
{
/* Variables named starting with 's' exist in the
argument-reduced space, so that 2 > sx >= 0.5,
1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
Variables named ending with 'i' are integer versions of
floating-point values. */
float sx; /* The value of which we're trying to find the square
root. */
float sg, g; /* Guess of the square root of x. */
float sd, d; /* Difference between the square of the guess and x. */
float sy; /* Estimate of 1/2g (overestimated by 1ulp). */
float sy2; /* 2*sy */
float e; /* Difference between y*g and 1/2 (note that e==se). */
float shx; /* == sx * fsg */
float fsg; /* sg*fsg == g. */
fenv_t fe; /* Saved floating-point environment (stores rounding
mode and whether the inexact exception is
enabled). */
uint32_t xi, sxi, fsgi;
const float *t_sqrt;
GET_FLOAT_WORD (xi, x);
fe = fegetenv_register ();
relax_fenv_state ();
sxi = (xi & 0x3fffffff) | 0x3f000000;
SET_FLOAT_WORD (sx, sxi);
t_sqrt = __t_sqrt + (xi >> (23 - 8 - 1) & 0x3fe);
sg = t_sqrt[0];
sy = t_sqrt[1];
/* Here we have three Newton-Raphson iterations each of a
division and a square root and the remainder of the
argument reduction, all interleaved. */
sd = -__builtin_fmaf (sg, sg, -sx);
fsgi = (xi + 0x40000000) >> 1 & 0x7f800000;
sy2 = sy + sy;
sg = __builtin_fmaf (sy, sd, sg); /* 16-bit approximation to
sqrt(sx). */
e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
SET_FLOAT_WORD (fsg, fsgi);
sd = -__builtin_fmaf (sg, sg, -sx);
sy = __builtin_fmaf (e, sy2, sy);
if ((xi & 0x7f800000) == 0)
goto denorm;
shx = sx * fsg;
sg = __builtin_fmaf (sy, sd, sg); /* 32-bit approximation to
sqrt(sx), but perhaps
rounded incorrectly. */
sy2 = sy + sy;
g = sg * fsg;
e = -__builtin_fmaf (sy, sg, -0x1.0000020365653p-1);
d = -__builtin_fmaf (g, sg, -shx);
sy = __builtin_fmaf (e, sy2, sy);
fesetenv_register (fe);
return __builtin_fmaf (sy, d, g);
denorm:
/* For denormalised numbers, we normalise, calculate the
square root, and return an adjusted result. */
fesetenv_register (fe);
return __ieee754_sqrtf (x * 0x1p+48) * 0x1p-24;
}
}
else if (x < 0)
{
/* For some reason, some PowerPC32 processors don't implement
FE_INVALID_SQRT. */
# ifdef FE_INVALID_SQRT
feraiseexcept (FE_INVALID_SQRT);
fenv_union_t u = { .fenv = fegetenv_register () };
if ((u.l & FE_INVALID) == 0)
# endif
feraiseexcept (FE_INVALID);
x = NAN;
}
return f_washf (x);
#endif /* USE_SQRTF_BUILTIN */
}
libm_alias_finite (__ieee754_sqrtf, __sqrtf)
|