1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/* Complex exponential function. m68k fpu version
Copyright (C) 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#define __LIBC_M81_MATH_INLINES
#include <complex.h>
#include <math.h>
#ifndef SUFF
#define SUFF
#endif
#ifndef huge_val
#define huge_val HUGE_VAL
#endif
#ifndef float_type
#define float_type double
#endif
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) CONCATX(name,SUFF)
#define m81(func) __m81_u(s(func))
__complex__ float_type
s(__cexp) (__complex__ float_type x)
{
__complex__ float_type retval;
if (m81(__finite) (__real__ x))
{
if (m81(__finite) (__imag__ x))
{
float_type exp_val = m81(__ieee754_exp) (__real__ x);
__real__ retval = __imag__ retval = exp_val;
if (m81(__finite) (exp_val))
{
float_type sin_ix, cos_ix;
__asm ("fsincos%.x %2,%1:%0" : "=f" (sin_ix), "=f" (cos_ix)
: "f" (__imag__ x));
__real__ retval *= cos_ix;
__imag__ retval *= sin_ix;
}
else
goto fix_sign;
}
else
/* If the imaginary part is +-inf or NaN and the real part is
not +-inf the result is NaN + iNaN. */
__real__ retval = __imag__ retval = 0.0/0.0;
}
else if (m81(__isinf) (__real__ x))
{
if (m81(__finite) (__imag__ x))
{
float_type value = m81(__signbit) (__real__ x) ? 0.0 : huge_val;
if (__imag__ x == 0.0)
{
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
float_type remainder, pi_2;
int quadrant;
__real__ retval = value;
__imag__ retval = value;
fix_sign:
__asm ("fmovecr %#0,%0\n\tfscale%.w %#-1,%0" : "=f" (pi_2));
__asm ("fmod%.x %2,%0\n\tfmove%.l %/fpsr,%1"
: "=f" (remainder), "=dm" (quadrant)
: "f" (pi_2), "0" (__imag__ x));
quadrant = (quadrant >> 16) & 0x83;
if (quadrant & 0x80)
quadrant ^= 0x83;
switch (quadrant)
{
default:
break;
case 1:
__real__ retval = -__real__ retval;
break;
case 2:
__real__ retval = -__real__ retval;
case 3:
__imag__ retval = -__imag__ retval;
break;
}
}
}
else if (m81(__signbit) (__real__ x) == 0)
{
__real__ retval = huge_val;
__imag__ retval = 0.0/0.0;
}
else
{
__real__ retval = 0.0;
__imag__ retval = s(__copysign) (0.0, __imag__ x);
}
}
else
/* If the real part is NaN the result is NaN + iNaN. */
__real__ retval = __imag__ retval = 0.0/0.0;
return retval;
}
#define weak_aliasx(a,b) weak_alias(a,b)
weak_aliasx (s(__cexp), s(cexp))
|