summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-96/e_asinl.c
blob: c33701f11e68d2ef6c8a068910b2be2f6c1b2f39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
  Long double expansions are
  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
  and are incorporated herein by permission of the author.  The author
  reserves the right to distribute this material elsewhere under different
  copying permissions.  These modifications are distributed here under
  the following terms:

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, see
    <http://www.gnu.org/licenses/>.  */

/* __ieee754_asin(x)
 * Method :
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 *	we approximate asin(x) on [0,0.5] by
 *		asin(x) = x + x*x^2*R(x^2)
 *
 *	For x in [0.5,1]
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 *	then for x>0.98
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 *		f = hi part of s;
 *		c = sqrt(z) - f = (z-f*f)/(s+f)		...f+c=sqrt(z)
 *	and
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN with invalid signal.
 *
 */


#include <math.h>
#include <math_private.h>

static const long double
  one = 1.0L,
  huge = 1.0e+4932L,
 pio2_hi = 1.5707963267948966192021943710788178805159986950457096099853515625L,
  pio2_lo = 2.9127320560933561582586004641843300502121E-20L,
  pio4_hi = 7.8539816339744830960109718553940894025800E-1L,

	/* coefficient for R(x^2) */

  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
     0 <= x <= 0.5
     peak relative error 1.9e-21  */
  pS0 =  -1.008714657938491626019651170502036851607E1L,
  pS1 =   2.331460313214179572063441834101394865259E1L,
  pS2 =  -1.863169762159016144159202387315381830227E1L,
  pS3 =   5.930399351579141771077475766877674661747E0L,
  pS4 =  -6.121291917696920296944056882932695185001E-1L,
  pS5 =   3.776934006243367487161248678019350338383E-3L,

  qS0 =  -6.052287947630949712886794360635592886517E1L,
  qS1 =   1.671229145571899593737596543114258558503E2L,
  qS2 =  -1.707840117062586426144397688315411324388E2L,
  qS3 =   7.870295154902110425886636075950077640623E1L,
  qS4 =  -1.568433562487314651121702982333303458814E1L;
    /* 1.000000000000000000000000000000000000000E0 */

long double
__ieee754_asinl (long double x)
{
  long double t, w, p, q, c, r, s;
  int32_t ix;
  u_int32_t se, i0, i1, k;

  GET_LDOUBLE_WORDS (se, i0, i1, x);
  ix = se & 0x7fff;
  ix = (ix << 16) | (i0 >> 16);
  if (ix >= 0x3fff8000)
    {				/* |x|>= 1 */
      if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
	/* asin(1)=+-pi/2 with inexact */
	return x * pio2_hi + x * pio2_lo;
      return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
    }
  else if (ix < 0x3ffe8000)
    {				/* |x|<0.5 */
      if (ix < 0x3fde8000)
	{			/* if |x| < 2**-33 */
	  if (huge + x > one)
	    return x;		/* return x with inexact if x!=0 */
	}
      else
	{
	  t = x * x;
	  p =
	    t * (pS0 +
		 t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
	  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
	  w = p / q;
	  return x + x * w;
	}
    }
  /* 1> |x|>= 0.5 */
  w = one - fabsl (x);
  t = w * 0.5;
  p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
  s = __ieee754_sqrtl (t);
  if (ix >= 0x3ffef999)
    {				/* if |x| > 0.975 */
      w = p / q;
      t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
    }
  else
    {
      GET_LDOUBLE_WORDS (k, i0, i1, s);
      i1 = 0;
      SET_LDOUBLE_WORDS (w,k,i0,i1);
      c = (t - w * w) / (s + w);
      r = p / q;
      p = 2.0 * s * r - (pio2_lo - 2.0 * c);
      q = pio4_hi - 2.0 * w;
      t = pio4_hi - (p - q);
    }
  if ((se & 0x8000) == 0)
    return t;
  else
    return -t;
}
strong_alias (__ieee754_asinl, __asinl_finite)