1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/* Single-precision 10^x function.
Copyright (C) 2020-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math-narrow-eval.h>
#include <stdint.h>
#include <libm-alias-finite.h>
#include <libm-alias-float.h>
#include <shlib-compat.h>
#include <math-svid-compat.h>
#include "math_config.h"
/*
EXP2F_TABLE_BITS 5
EXP2F_POLY_ORDER 3
Max. ULP error: 0.502 (normal range, nearest rounding).
Max. relative error: 2^-33.240 (before rounding to float).
Wrong count: 169839.
Non-nearest ULP error: 1 (rounded ULP error).
Detailed error analysis (for EXP2F_TABLE_BITS=3 thus N=32):
- We first compute z = RN(InvLn10N * x) where
InvLn10N = N*log(10)/log(2) * (1 + theta1) with |theta1| < 2^-54.150
since z is rounded to nearest:
z = InvLn10N * x * (1 + theta2) with |theta2| < 2^-53
thus z = N*log(10)/log(2) * x * (1 + theta3) with |theta3| < 2^-52.463
- Since |x| < 38 in the main branch, we deduce:
z = N*log(10)/log(2) * x + theta4 with |theta4| < 2^-40.483
- We then write z = k + r where k is an integer and |r| <= 0.5 (exact)
- We thus have
x = z*log(2)/(N*log(10)) - theta4*log(2)/(N*log(10))
= z*log(2)/(N*log(10)) + theta5 with |theta5| < 2^-47.215
10^x = 2^(k/N) * 2^(r/N) * 10^theta5
= 2^(k/N) * 2^(r/N) * (1 + theta6) with |theta6| < 2^-46.011
- Then 2^(k/N) is approximated by table lookup, the maximal relative error
is for (k%N) = 5, with
s = 2^(i/N) * (1 + theta7) with |theta7| < 2^-53.249
- 2^(r/N) is approximated by a degree-3 polynomial, where the maximal
mathematical relative error is 2^-33.243.
- For C[0] * r + C[1], assuming no FMA is used, since |r| <= 0.5 and
|C[0]| < 1.694e-6, |C[0] * r| < 8.47e-7, and the absolute error on
C[0] * r is bounded by 1/2*ulp(8.47e-7) = 2^-74. Then we add C[1] with
|C[1]| < 0.000235, thus the absolute error on C[0] * r + C[1] is bounded
by 2^-65.994 (z is bounded by 0.000236).
- For r2 = r * r, since |r| <= 0.5, we have |r2| <= 0.25 and the absolute
error is bounded by 1/4*ulp(0.25) = 2^-56 (the factor 1/4 is because |r2|
cannot exceed 1/4, and on the left of 1/4 the distance between two
consecutive numbers is 1/4*ulp(1/4)).
- For y = C[2] * r + 1, assuming no FMA is used, since |r| <= 0.5 and
|C[2]| < 0.0217, the absolute error on C[2] * r is bounded by 2^-60,
and thus the absolute error on C[2] * r + 1 is bounded by 1/2*ulp(1)+2^60
< 2^-52.988, and |y| < 1.01085 (the error bound is better if a FMA is
used).
- for z * r2 + y: the absolute error on z is bounded by 2^-65.994, with
|z| < 0.000236, and the absolute error on r2 is bounded by 2^-56, with
r2 < 0.25, thus |z*r2| < 0.000059, and the absolute error on z * r2
(including the rounding error) is bounded by:
2^-65.994 * 0.25 + 0.000236 * 2^-56 + 1/2*ulp(0.000059) < 2^-66.429.
Now we add y, with |y| < 1.01085, and error on y bounded by 2^-52.988,
thus the absolute error is bounded by:
2^-66.429 + 2^-52.988 + 1/2*ulp(1.01085) < 2^-51.993
- Now we convert the error on y into relative error. Recall that y
approximates 2^(r/N), for |r| <= 0.5 and N=32. Thus 2^(-0.5/32) <= y,
and the relative error on y is bounded by
2^-51.993/2^(-0.5/32) < 2^-51.977
- Taking into account the mathematical relative error of 2^-33.243 we have:
y = 2^(r/N) * (1 + theta8) with |theta8| < 2^-33.242
- Since we had s = 2^(k/N) * (1 + theta7) with |theta7| < 2^-53.249,
after y = y * s we get y = 2^(k/N) * 2^(r/N) * (1 + theta9)
with |theta9| < 2^-33.241
- Finally, taking into account the error theta6 due to the rounding error on
InvLn10N, and when multiplying InvLn10N * x, we get:
y = 10^x * (1 + theta10) with |theta10| < 2^-33.240
- Converting into binary64 ulps, since y < 2^53*ulp(y), the error is at most
2^19.76 ulp(y)
- If the result is a binary32 value in the normal range (i.e., >= 2^-126),
then the error is at most 2^-9.24 ulps, i.e., less than 0.00166 (in the
subnormal range, the error in ulps might be larger).
Note that this bound is tight, since for x=-0x25.54ac0p0 the final value of
y (before conversion to float) differs from 879853 ulps from the correctly
rounded value, and 879853 ~ 2^19.7469. */
#define N (1 << EXP2F_TABLE_BITS)
#define InvLn10N (0x3.5269e12f346e2p0 * N) /* log(10)/log(2) to nearest */
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled
#define SHIFT __exp2f_data.shift
static inline uint32_t
top13 (float x)
{
return asuint (x) >> 19;
}
float
__exp10f (float x)
{
uint32_t abstop;
uint64_t ki, t;
double kd, xd, z, r, r2, y, s;
xd = (double) x;
abstop = top13 (x) & 0xfff; /* Ignore sign. */
if (__glibc_unlikely (abstop >= top13 (38.0f)))
{
/* |x| >= 38 or x is nan. */
if (asuint (x) == asuint (-INFINITY))
return 0.0f;
if (abstop >= top13 (INFINITY))
return x + x;
/* 0x26.8826ap0 is the largest value such that 10^x < 2^128. */
if (x > 0x26.8826ap0f)
return __math_oflowf (0);
/* -0x2d.278d4p0 is the smallest value such that 10^x > 2^-150. */
if (x < -0x2d.278d4p0f)
return __math_uflowf (0);
#if WANT_ERRNO_UFLOW
if (x < -0x2c.da7cfp0)
return __math_may_uflowf (0);
#endif
/* the smallest value such that 10^x >= 2^-126 (normal range)
is x = -0x25.ee060p0 */
/* we go through here for 2014929 values out of 2060451840
(not counting NaN and infinities, i.e., about 0.1% */
}
/* x*N*Ln10/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
z = InvLn10N * xd;
/* |xd| < 38 thus |z| < 1216 */
#if TOINT_INTRINSICS
kd = roundtoint (z);
ki = converttoint (z);
#else
# define SHIFT __exp2f_data.shift
kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double. */
ki = asuint64 (kd);
kd -= SHIFT;
#endif
r = z - kd;
/* 10^x = 10^(k/N) * 10^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
t = T[ki % N];
t += ki << (52 - EXP2F_TABLE_BITS);
s = asdouble (t);
z = C[0] * r + C[1];
r2 = r * r;
y = C[2] * r + 1;
y = z * r2 + y;
y = y * s;
return (float) y;
}
#ifndef __exp10f
strong_alias (__exp10f, __ieee754_exp10f)
libm_alias_finite (__ieee754_exp10f, __exp10f)
/* For architectures that already provided exp10f without SVID support, there
is no need to add a new version. */
#if !LIBM_SVID_COMPAT
# define EXP10F_VERSION GLIBC_2_26
#else
# define EXP10F_VERSION GLIBC_2_32
#endif
versioned_symbol (libm, __exp10f, exp10f, EXP10F_VERSION);
libm_alias_float_other (__exp10, exp10)
#endif
|