summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/k_tan.c
blob: 55dafb8ebcea7cfcabbe1fd83072c2959faf95a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* @(#)k_tan.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
   for performance improvement on pipelined processors.
*/

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";
#endif

/* __kernel_tan( x, y, k )
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 *	3. tan(x) is approximated by a odd polynomial of degree 27 on
 *	   [0,0.67434]
 *		  	         3             27
 *	   	tan(x) ~ x + T1*x + ... + T13*x
 *	   where
 *
 * 	        |tan(x)         2     4            26   |     -59.2
 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 * 	        |  x 					|
 *
 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 *		          ~ tan(x) + (1+x*x)*y
 *	   Therefore, for better accuracy in computing tan(x+y), let
 *		     3      2      2       2       2
 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 *	   then
 *		 		    3    2
 *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
 *
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 */

#include "math.h"
#include "math_private.h"
#ifdef __STDC__
static const double
#else
static double
#endif
one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
T[] =  {
  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
};

#ifdef __STDC__
	double __kernel_tan(double x, double y, int iy)
#else
	double __kernel_tan(x, y, iy)
	double x,y; int iy;
#endif
{
	double z,r,v,w,s,r1,r2,r3,v1,v2,v3,w2,w4;
	int32_t ix,hx;
	GET_HIGH_WORD(hx,x);
	ix = hx&0x7fffffff;	/* high word of |x| */
	if(ix<0x3e300000)			/* x < 2**-28 */
	    {if((int)x==0) {			/* generate inexact */
	        u_int32_t low;
		GET_LOW_WORD(low,x);
		if(((ix|low)|(iy+1))==0) return one/fabs(x);
		else return (iy==1)? x: -one/x;
	    }
	    }
	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
	    if(hx<0) {x = -x; y = -y;}
	    z = pio4-x;
	    w = pio4lo-y;
	    x = z+w; y = 0.0;
	}
	z	=  x*x;
	w 	=  z*z;
    /* Break x^5*(T[1]+x^2*T[2]+...) into
     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
     */
#ifdef DO_NOT_USE_THIS
	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
#else
	v1 = T[10]+w*T[12]; w2=w*w;
	v2 = T[6]+w*T[8]; w4=w2*w2;
	v3 = T[2]+w*T[4]; v1=z*v1;
	r1 = T[9]+w*T[11]; v2=z*v2;
	r2 = T[5]+w*T[7]; v3=z*v3;
	r3 = T[1]+w*T[3];
	v  = v3 + w2*v2 + w4*v1;
	r = r3 + w2*r2 + w4*r1;
#endif
	s = z*x;
	r = y + z*(s*(r+v)+y);
	r += T[0]*s;
	w = x+r;
	if(ix>=0x3FE59428) {
	    v = (double)iy;
	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
	}
	if(iy==1) return w;
	else {		/* if allow error up to 2 ulp,
			   simply return -1.0/(x+r) here */
     /*  compute -1.0/(x+r) accurately */
	    double a,t;
	    z  = w;
	    SET_LOW_WORD(z,0);
	    v  = r-(z - x); 	/* z+v = r+x */
	    t = a  = -1.0/w;	/* a = -1.0/w */
	    SET_LOW_WORD(t,0);
	    s  = 1.0+t*z;
	    return t+a*(s+t*v);
	}
}