1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
.file "ceil.s"
// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// WARRANTY DISCLAIMER
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.
//
#include "libm_support.h"
.align 32
.global ceil#
.section .text
.proc ceil#
.align 32
// History
//==============================================================
// 2/02/00: Initial version
// 6/13/00: Improved speed
// 6/27/00: Eliminated incorrect invalid flag setting
// API
//==============================================================
// double ceil(double x)
// general input registers:
ceil_GR_FFFF = r14
ceil_GR_signexp = r15
ceil_GR_exponent = r16
ceil_GR_expmask = r17
ceil_GR_bigexp = r18
// predicate registers used:
// p6 ==> Input is NaN, infinity, zero
// p7 ==> Input is denormal
// p8 ==> Input is <0
// p9 ==> Input is >=0
// p10 ==> Input is already an integer (bigger than largest integer)
// p11 ==> Input is not a large integer
// p12 ==> Input is a smaller integer
// p13 ==> Input is not an even integer, so inexact must be set
// p14 ==> Input is between -1 and 0, so result will be -0 and inexact
// floating-point registers used:
CEIL_SIGNED_ZERO = f7
CEIL_NORM_f8 = f9
CEIL_FFFF = f10
CEIL_INEXACT = f11
CEIL_FLOAT_INT_f8 = f12
CEIL_INT_f8 = f13
CEIL_adj = f14
CEIL_MINUS_ONE = f15
// Overview of operation
//==============================================================
// double ceil(double x)
// Return an integer value (represented as a double) that is the smallest
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceil(x)
// **************************************************************************
// Set denormal flag for denormal input and
// and take denormal fault if necessary.
// Is the input an integer value already?
// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.
// double
// if the exponent is >= 10033 => 34(true) = 52(decimal)
// 34 + 3ff = 433
// we have a significand of 53 bits 1.52-bits. (implicit 1)
// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.
// single
// if the exponent is > 10016 => 17(true) = 23(decimal)
// we have a significand of 24 bits 1.23-bits. (implicit 1)
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.
// If x is NAN, ZERO, or INFINITY, then return
// qnan snan inf norm unorm 0 -+
// 1 1 1 0 0 1 11 0xe7
ceil:
{ .mfi
getf.exp ceil_GR_signexp = f8
fcvt.fx.trunc.s1 CEIL_INT_f8 = f8
addl ceil_GR_bigexp = 0x10033, r0
}
{ .mfi
addl ceil_GR_FFFF = -1,r0
fcmp.lt.s1 p8,p9 = f8,f0
mov ceil_GR_expmask = 0x1FFFF ;;
}
// p7 ==> denorm
{ .mfi
setf.sig CEIL_FFFF = ceil_GR_FFFF
fclass.m p7,p0 = f8, 0x0b
nop.i 999
}
{ .mfi
nop.m 999
fnorm CEIL_NORM_f8 = f8
nop.i 999 ;;
}
// Form 0 with sign of input in case negative zero is needed
{ .mfi
nop.m 999
fmerge.s CEIL_SIGNED_ZERO = f8, f0
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 CEIL_MINUS_ONE = f0, f1
nop.i 999 ;;
}
// p6 ==> NAN, INF, ZERO
{ .mfb
nop.m 999
fclass.m p6,p10 = f8, 0xe7
(p7) br.cond.spnt L(CEIL_DENORM) ;;
}
L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
// Set adjustment to add to trunc(x) for result
// If x>0, adjustment is 1.0
// If x<=0, adjustment is 0.0
{ .mfi
and ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
(p9) fadd.s1 CEIL_adj = f1,f0
nop.i 999
}
{ .mfi
nop.m 999
(p8) fadd.s1 CEIL_adj = f0,f0
nop.i 999 ;;
}
{ .mfi
(p10) cmp.ge.unc p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
(p6) fnorm.d f8 = f8
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fcvt.xf CEIL_FLOAT_INT_f8 = CEIL_INT_f8
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnorm.d f8 = CEIL_NORM_f8
nop.i 999 ;;
}
// Is -1 < x < 0? If so, result will be -0. Special case it with p14 set.
{ .mfi
nop.m 999
(p8) fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
nop.i 999 ;;
}
{ .mfi
(p14) cmp.ne p11,p0 = r0,r0
(p14) fnorm.d f8 = CEIL_SIGNED_ZERO
nop.i 999
}
{ .mfi
nop.m 999
(p14) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fadd.d f8 = CEIL_FLOAT_INT_f8,CEIL_adj
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p11) fcmp.eq.unc.s1 p12,p13 = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
nop.i 999 ;;
}
// Set inexact if result not equal to input
{ .mfi
nop.m 999
(p13) fmpy.s0 CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
nop.i 999
}
// Set result to input if integer
{ .mfb
nop.m 999
(p12) fnorm.d f8 = CEIL_NORM_f8
br.ret.sptk b0 ;;
}
// Here if input denorm
L(CEIL_DENORM):
{ .mfb
getf.exp ceil_GR_signexp = CEIL_NORM_f8
fcvt.fx.trunc.s1 CEIL_INT_f8 = CEIL_NORM_f8
br.cond.sptk L(CEIL_COMMON) ;;
}
.endp ceil
ASM_SIZE_DIRECTIVE(ceil)
|