summaryrefslogtreecommitdiff
path: root/nscd/mem.c
blob: de5bd12db5f9a8c692b32c290c2f365e63f88329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/* Cache memory handling.
   Copyright (C) 2004-2020 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@redhat.com>, 2004.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published
   by the Free Software Foundation; version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, see <https://www.gnu.org/licenses/>.  */

#include <assert.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libintl.h>
#include <limits.h>
#include <obstack.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/param.h>

#include "dbg_log.h"
#include "nscd.h"


static int
sort_he (const void *p1, const void *p2)
{
  struct hashentry *h1 = *(struct hashentry **) p1;
  struct hashentry *h2 = *(struct hashentry **) p2;

  if (h1 < h2)
    return -1;
  if (h1 > h2)
    return 1;
  return 0;
}


static int
sort_he_data (const void *p1, const void *p2)
{
  struct hashentry *h1 = *(struct hashentry **) p1;
  struct hashentry *h2 = *(struct hashentry **) p2;

  if (h1->packet < h2->packet)
    return -1;
  if (h1->packet > h2->packet)
    return 1;
  return 0;
}


/* Basic definitions for the bitmap implementation.  Only BITMAP_T
   needs to be changed to choose a different word size.  */
#define BITMAP_T uint8_t
#define BITS (CHAR_BIT * sizeof (BITMAP_T))
#define ALLBITS ((((BITMAP_T) 1) << BITS) - 1)
#define HIGHBIT (((BITMAP_T) 1) << (BITS - 1))


static void
markrange (BITMAP_T *mark, ref_t start, size_t len)
{
  /* Adjust parameters for block alignment.  */
  assert ((start & BLOCK_ALIGN_M1) == 0);
  start /= BLOCK_ALIGN;
  len = (len + BLOCK_ALIGN_M1) / BLOCK_ALIGN;

  size_t elem = start / BITS;

  if (start % BITS != 0)
    {
      if (start % BITS + len <= BITS)
	{
	  /* All fits in the partial byte.  */
	  mark[elem] |= (ALLBITS >> (BITS - len)) << (start % BITS);
	  return;
	}

      mark[elem++] |= ALLBITS << (start % BITS);
      len -= BITS - (start % BITS);
    }

  while (len >= BITS)
    {
      mark[elem++] = ALLBITS;
      len -= BITS;
    }

  if (len > 0)
    mark[elem] |= ALLBITS >> (BITS - len);
}


void
gc (struct database_dyn *db)
{
  /* We need write access.  */
  pthread_rwlock_wrlock (&db->lock);

  /* And the memory handling lock.  */
  pthread_mutex_lock (&db->memlock);

  /* We need an array representing the data area.  All memory
     allocation is BLOCK_ALIGN aligned so this is the level at which
     we have to look at the memory.  We use a mark and sweep algorithm
     where the marks are placed in this array.  */
  assert (db->head->first_free % BLOCK_ALIGN == 0);

  BITMAP_T *mark;
  bool mark_use_malloc;
  /* In prune_cache we are also using a dynamically allocated array.
     If the array in the caller is too large we have malloc'ed it.  */
  size_t stack_used = sizeof (bool) * db->head->module;
  if (__glibc_unlikely (stack_used > MAX_STACK_USE))
    stack_used = 0;
  size_t nmark = (db->head->first_free / BLOCK_ALIGN + BITS - 1) / BITS;
  size_t memory_needed = nmark * sizeof (BITMAP_T);
  if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE))
    {
      mark = (BITMAP_T *) alloca_account (memory_needed, stack_used);
      mark_use_malloc = false;
      memset (mark, '\0', memory_needed);
    }
  else
    {
      mark = (BITMAP_T *) xcalloc (1, memory_needed);
      mark_use_malloc = true;
    }

  /* Create an array which can hold pointer to all the entries in hash
     entries.  */
  memory_needed = 2 * db->head->nentries * sizeof (struct hashentry *);
  struct hashentry **he;
  struct hashentry **he_data;
  bool he_use_malloc;
  if (__glibc_likely (stack_used + memory_needed <= MAX_STACK_USE))
    {
      he = alloca_account (memory_needed, stack_used);
      he_use_malloc = false;
    }
  else
    {
      he = xmalloc (memory_needed);
      he_use_malloc = true;
    }
  he_data = &he[db->head->nentries];

  size_t cnt = 0;
  for (size_t idx = 0; idx < db->head->module; ++idx)
    {
      ref_t *prevp = &db->head->array[idx];
      ref_t run = *prevp;

      while (run != ENDREF)
	{
	  assert (cnt < db->head->nentries);
	  he[cnt] = (struct hashentry *) (db->data + run);

	  he[cnt]->prevp = prevp;
	  prevp = &he[cnt]->next;

	  /* This is the hash entry itself.  */
	  markrange (mark, run, sizeof (struct hashentry));

	  /* Add the information for the data itself.  We do this
	     only for the one special entry marked with FIRST.  */
	  if (he[cnt]->first)
	    {
	      struct datahead *dh
		= (struct datahead *) (db->data + he[cnt]->packet);
	      markrange (mark, he[cnt]->packet, dh->allocsize);
	    }

	  run = he[cnt]->next;

	  ++cnt;
	}
    }
  assert (cnt == db->head->nentries);

  /* Sort the entries by the addresses of the referenced data.  All
     the entries pointing to the same DATAHEAD object will have the
     same key.  Stability of the sorting is unimportant.  */
  memcpy (he_data, he, cnt * sizeof (struct hashentry *));
  qsort (he_data, cnt, sizeof (struct hashentry *), sort_he_data);

  /* Sort the entries by their address.  */
  qsort (he, cnt, sizeof (struct hashentry *), sort_he);

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free
  struct obstack ob;
  obstack_init (&ob);

  /* Determine the highest used address.  */
  size_t high = nmark;
  while (high > 0 && mark[high - 1] == 0)
    --high;

  /* No memory used.  */
  if (high == 0)
    {
      db->head->first_free = 0;
      goto out;
    }

  /* Determine the highest offset.  */
  BITMAP_T mask = HIGHBIT;
  ref_t highref = (high * BITS - 1) * BLOCK_ALIGN;
  while ((mark[high - 1] & mask) == 0)
    {
      mask >>= 1;
      highref -= BLOCK_ALIGN;
    }

  /* Now we can iterate over the MARK array and find bits which are not
     set.  These represent memory which can be recovered.  */
  size_t byte = 0;
  /* Find the first gap.  */
  while (byte < high && mark[byte] == ALLBITS)
    ++byte;

  if (byte == high
      || (byte == high - 1 && (mark[byte] & ~(mask | (mask - 1))) == 0))
    /* No gap.  */
    goto out;

  mask = 1;
  cnt = 0;
  while ((mark[byte] & mask) != 0)
    {
      ++cnt;
      mask <<= 1;
    }
  ref_t off_free = (byte * BITS + cnt) * BLOCK_ALIGN;
  assert (off_free <= db->head->first_free);

  struct hashentry **next_hash = he;
  struct hashentry **next_data = he_data;

  /* Skip over the hash entries in the first block which does not get
     moved.  */
  while (next_hash < &he[db->head->nentries]
	 && *next_hash < (struct hashentry *) (db->data + off_free))
    ++next_hash;

  while (next_data < &he_data[db->head->nentries]
	 && (*next_data)->packet < off_free)
    ++next_data;


  /* Now we start modifying the data.  Make sure all readers of the
     data are aware of this and temporarily don't use the data.  */
  atomic_fetch_add_relaxed (&db->head->gc_cycle, 1);
  assert ((db->head->gc_cycle & 1) == 1);


  /* We do not perform the move operations right away since the
     he_data array is not sorted by the address of the data.  */
  struct moveinfo
  {
    void *from;
    void *to;
    size_t size;
    struct moveinfo *next;
  } *moves = NULL;

  while (byte < high)
    {
      /* Search for the next filled block.  BYTE is the index of the
	 entry in MARK, MASK is the bit, and CNT is the bit number.
	 OFF_FILLED is the corresponding offset.  */
      if ((mark[byte] & ~(mask - 1)) == 0)
	{
	  /* No other bit set in the same element of MARK.  Search in the
	     following memory.  */
	  do
	    ++byte;
	  while (byte < high && mark[byte] == 0);

	  if (byte == high)
	    /* That was it.  */
	    break;

	  mask = 1;
	  cnt = 0;
	}
      /* Find the exact bit.  */
      while ((mark[byte] & mask) == 0)
	{
	  ++cnt;
	  mask <<= 1;
	}

      ref_t off_alloc = (byte * BITS + cnt) * BLOCK_ALIGN;
      assert (off_alloc <= db->head->first_free);

      /* Find the end of the used area.  */
      if ((mark[byte] & ~(mask - 1)) == (BITMAP_T) ~(mask - 1))
	{
	  /* All other bits set.  Search the next bytes in MARK.  */
	  do
	    ++byte;
	  while (byte < high && mark[byte] == ALLBITS);

	  mask = 1;
	  cnt = 0;
	}
      if (byte < high)
	{
	  /* Find the exact bit.  */
	  while ((mark[byte] & mask) != 0)
	    {
	      ++cnt;
	      mask <<= 1;
	    }
	}

      ref_t off_allocend = (byte * BITS + cnt) * BLOCK_ALIGN;
      assert (off_allocend <= db->head->first_free);
      /* Now we know that we can copy the area from OFF_ALLOC to
	 OFF_ALLOCEND (not included) to the memory starting at
	 OFF_FREE.  First fix up all the entries for the
	 displacement.  */
      ref_t disp = off_alloc - off_free;

      struct moveinfo *new_move;
      if (__builtin_expect (stack_used + sizeof (*new_move) <= MAX_STACK_USE,
			    1))
	new_move = alloca_account (sizeof (*new_move), stack_used);
      else
	new_move = obstack_alloc (&ob, sizeof (*new_move));
      new_move->from = db->data + off_alloc;
      new_move->to = db->data + off_free;
      new_move->size = off_allocend - off_alloc;
      /* Create a circular list to be always able to append at the end.  */
      if (moves == NULL)
	moves = new_move->next = new_move;
      else
	{
	  new_move->next = moves->next;
	  moves = moves->next = new_move;
	}

      /* The following loop will prepare to move this much data.  */
      off_free += off_allocend - off_alloc;

      while (off_alloc < off_allocend)
	{
	  /* Determine whether the next entry is for a hash entry or
	     the data.  */
	  if ((struct hashentry *) (db->data + off_alloc) == *next_hash)
	    {
	      /* Just correct the forward reference.  */
	      *(*next_hash++)->prevp -= disp;

	      off_alloc += ((sizeof (struct hashentry) + BLOCK_ALIGN_M1)
			    & ~BLOCK_ALIGN_M1);
	    }
	  else
	    {
	      assert (next_data < &he_data[db->head->nentries]);
	      assert ((*next_data)->packet == off_alloc);

	      struct datahead *dh = (struct datahead *) (db->data + off_alloc);
	      do
		{
		  assert ((*next_data)->key >= (*next_data)->packet);
		  assert ((*next_data)->key + (*next_data)->len
			  <= (*next_data)->packet + dh->allocsize);

		  (*next_data)->packet -= disp;
		  (*next_data)->key -= disp;
		  ++next_data;
		}
	      while (next_data < &he_data[db->head->nentries]
		     && (*next_data)->packet == off_alloc);

	      off_alloc += (dh->allocsize + BLOCK_ALIGN_M1) & ~BLOCK_ALIGN_M1;
	    }
	}
      assert (off_alloc == off_allocend);

      assert (off_alloc <= db->head->first_free);
      if (off_alloc == db->head->first_free)
	/* We are done, that was the last block.  */
	break;
    }
  assert (next_hash == &he[db->head->nentries]);
  assert (next_data == &he_data[db->head->nentries]);

  /* Now perform the actual moves.  */
  if (moves != NULL)
    {
      struct moveinfo *runp = moves->next;
      do
	{
	  assert ((char *) runp->to >= db->data);
	  assert ((char *) runp->to + runp->size
		  <= db->data  + db->head->first_free);
	  assert ((char *) runp->from >= db->data);
	  assert ((char *) runp->from + runp->size
		  <= db->data  + db->head->first_free);

	  /* The regions may overlap.  */
	  memmove (runp->to, runp->from, runp->size);
	  runp = runp->next;
	}
      while (runp != moves->next);

      if (__glibc_unlikely (debug_level >= 3))
	dbg_log (_("freed %zu bytes in %s cache"),
		 (size_t) (db->head->first_free
			   - ((char *) moves->to + moves->size - db->data)),
		 dbnames[db - dbs]);

      /* The byte past the end of the last copied block is the next
	 available byte.  */
      db->head->first_free = (char *) moves->to + moves->size - db->data;

      /* Consistency check.  */
      if (__glibc_unlikely (debug_level >= 3))
	{
	  for (size_t idx = 0; idx < db->head->module; ++idx)
	    {
	      ref_t run = db->head->array[idx];
	      size_t cnt = 0;

	      while (run != ENDREF)
		{
		  if (run + sizeof (struct hashentry) > db->head->first_free)
		    {
		      dbg_log ("entry %zu in hash bucket %zu out of bounds: "
			       "%" PRIu32 "+%zu > %zu\n",
			       cnt, idx, run, sizeof (struct hashentry),
			       (size_t) db->head->first_free);
		      break;
		    }

		  struct hashentry *he = (struct hashentry *) (db->data + run);

		  if (he->key + he->len > db->head->first_free)
		    dbg_log ("key of entry %zu in hash bucket %zu out of "
			     "bounds: %" PRIu32 "+%zu > %zu\n",
			     cnt, idx, he->key, (size_t) he->len,
			     (size_t) db->head->first_free);

		  if (he->packet + sizeof (struct datahead)
		      > db->head->first_free)
		    dbg_log ("packet of entry %zu in hash bucket %zu out of "
			     "bounds: %" PRIu32 "+%zu > %zu\n",
			     cnt, idx, he->packet, sizeof (struct datahead),
			     (size_t) db->head->first_free);
		  else
		    {
		      struct datahead *dh = (struct datahead *) (db->data
								 + he->packet);
		      if (he->packet + dh->allocsize
			  > db->head->first_free)
			dbg_log ("full key of entry %zu in hash bucket %zu "
				 "out of bounds: %" PRIu32 "+%zu > %zu",
				 cnt, idx, he->packet, (size_t) dh->allocsize,
				 (size_t) db->head->first_free);
		    }

		  run = he->next;
		  ++cnt;
		}
	    }
	}
    }

  /* Make sure the data on disk is updated.  */
  if (db->persistent)
    msync (db->head, db->data + db->head->first_free - (char *) db->head,
	   MS_ASYNC);


  /* Now we are done modifying the data.  */
  atomic_fetch_add_relaxed (&db->head->gc_cycle, 1);
  assert ((db->head->gc_cycle & 1) == 0);

  /* We are done.  */
 out:
  pthread_mutex_unlock (&db->memlock);
  pthread_rwlock_unlock (&db->lock);

  if (he_use_malloc)
    free (he);
  if (mark_use_malloc)
    free (mark);

  obstack_free (&ob, NULL);
}


void *
mempool_alloc (struct database_dyn *db, size_t len, int data_alloc)
{
  /* Make sure LEN is a multiple of our maximum alignment so we can
     keep track of used memory is multiples of this alignment value.  */
  if ((len & BLOCK_ALIGN_M1) != 0)
    len += BLOCK_ALIGN - (len & BLOCK_ALIGN_M1);

  if (data_alloc)
    pthread_rwlock_rdlock (&db->lock);

  pthread_mutex_lock (&db->memlock);

  assert ((db->head->first_free & BLOCK_ALIGN_M1) == 0);

  bool tried_resize = false;
  void *res;
 retry:
  res = db->data + db->head->first_free;

  if (__glibc_unlikely (db->head->first_free + len > db->head->data_size))
    {
      if (! tried_resize)
	{
	  /* Try to resize the database.  Grow size of 1/8th.  */
	  size_t oldtotal = (sizeof (struct database_pers_head)
			     + roundup (db->head->module * sizeof (ref_t),
					ALIGN)
			     + db->head->data_size);
	  size_t new_data_size = (db->head->data_size
				  + MAX (2 * len, db->head->data_size / 8));
	  size_t newtotal = (sizeof (struct database_pers_head)
			     + roundup (db->head->module * sizeof (ref_t), ALIGN)
			     + new_data_size);
	  if (newtotal > db->max_db_size)
	    {
	      new_data_size -= newtotal - db->max_db_size;
	      newtotal = db->max_db_size;
	    }

	  if (db->mmap_used && newtotal > oldtotal
	      /* We only have to adjust the file size.  The new pages
		 become magically available.  */
	      && TEMP_FAILURE_RETRY_VAL (posix_fallocate (db->wr_fd, oldtotal,
							  newtotal
							  - oldtotal)) == 0)
	    {
	      db->head->data_size = new_data_size;
	      tried_resize = true;
	      goto retry;
	    }
	}

      if (data_alloc)
	pthread_rwlock_unlock (&db->lock);

      if (! db->last_alloc_failed)
	{
	  dbg_log (_("no more memory for database '%s'"), dbnames[db - dbs]);

	  db->last_alloc_failed = true;
	}

      ++db->head->addfailed;

      /* No luck.  */
      res = NULL;
    }
  else
    {
      db->head->first_free += len;

      db->last_alloc_failed = false;

    }

  pthread_mutex_unlock (&db->memlock);

  return res;
}