summaryrefslogtreecommitdiff
path: root/math/s_csinf.c
blob: a3dcf9d3aa3c4447d70e7fd230347147361450a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* Complex sine function for float.
   Copyright (C) 1997-2013 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>

__complex__ float
__csinf (__complex__ float x)
{
  __complex__ float retval;
  int negate = signbit (__real__ x);
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  __real__ x = fabsf (__real__ x);

  if (__builtin_expect (icls >= FP_ZERO, 1))
    {
      /* Imaginary part is finite.  */
      if (__builtin_expect (rcls >= FP_ZERO, 1))
	{
	  /* Real part is finite.  */
	  const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2);
	  float sinix, cosix;

	  if (__builtin_expect (rcls != FP_SUBNORMAL, 1))
	    {
	      __sincosf (__real__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __real__ x;
	      cosix = 1.0f;
	    }

	  if (fabsf (__imag__ x) > t)
	    {
	      float exp_t = __ieee754_expf (t);
	      float ix = fabsf (__imag__ x);
	      if (signbit (__imag__ x))
		cosix = -cosix;
	      ix -= t;
	      sinix *= exp_t / 2.0f;
	      cosix *= exp_t / 2.0f;
	      if (ix > t)
		{
		  ix -= t;
		  sinix *= exp_t;
		  cosix *= exp_t;
		}
	      if (ix > t)
		{
		  /* Overflow (original imaginary part of x > 3t).  */
		  __real__ retval = FLT_MAX * sinix;
		  __imag__ retval = FLT_MAX * cosix;
		}
	      else
		{
		  float exp_val = __ieee754_expf (ix);
		  __real__ retval = exp_val * sinix;
		  __imag__ retval = exp_val * cosix;
		}
	    }
	  else
	    {
	      __real__ retval = __ieee754_coshf (__imag__ x) * sinix;
	      __imag__ retval = __ieee754_sinhf (__imag__ x) * cosix;
	    }

	  if (negate)
	    __real__ retval = -__real__ retval;

	  if (fabsf (__real__ retval) < FLT_MIN)
	    {
	      volatile float force_underflow
		= __real__ retval * __real__ retval;
	      (void) force_underflow;
	    }
	  if (fabsf (__imag__ retval) < FLT_MIN)
	    {
	      volatile float force_underflow
		= __imag__ retval * __imag__ retval;
	      (void) force_underflow;
	    }
	}
      else
	{
	  if (icls == FP_ZERO)
	    {
	      /* Imaginary part is 0.0.  */
	      __real__ retval = __nanf ("");
	      __imag__ retval = __imag__ x;

	      if (rcls == FP_INFINITE)
		feraiseexcept (FE_INVALID);
	    }
	  else
	    {
	      __real__ retval = __nanf ("");
	      __imag__ retval = __nanf ("");

	      feraiseexcept (FE_INVALID);
	    }
	}
    }
  else if (icls == FP_INFINITE)
    {
      /* Imaginary part is infinite.  */
      if (rcls == FP_ZERO)
	{
	  /* Real part is 0.0.  */
	  __real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
	  __imag__ retval = __imag__ x;
	}
      else if (rcls > FP_ZERO)
	{
	  /* Real part is finite.  */
	  float sinix, cosix;

	  if (__builtin_expect (rcls != FP_SUBNORMAL, 1))
	    {
	      __sincosf (__real__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __real__ x;
	      cosix = 1.0f;
	    }

	  __real__ retval = __copysignf (HUGE_VALF, sinix);
	  __imag__ retval = __copysignf (HUGE_VALF, cosix);

	  if (negate)
	    __real__ retval = -__real__ retval;
	  if (signbit (__imag__ x))
	    __imag__ retval = -__imag__ retval;
	}
      else
	{
	  /* The addition raises the invalid exception.  */
	  __real__ retval = __nanf ("");
	  __imag__ retval = HUGE_VALF;

	  if (rcls == FP_INFINITE)
	    feraiseexcept (FE_INVALID);
	}
    }
  else
    {
      if (rcls == FP_ZERO)
	__real__ retval = __copysignf (0.0, negate ? -1.0 : 1.0);
      else
	__real__ retval = __nanf ("");
      __imag__ retval = __nanf ("");
    }

  return retval;
}
#ifndef __csinf
weak_alias (__csinf, csinf)
#endif