1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/* Complex sine function for float types.
Copyright (C) 1997-2019 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__csin) (CFLOAT x)
{
CFLOAT retval;
int negate = signbit (__real__ x);
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
__real__ x = M_FABS (__real__ x);
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (__real__ x > M_MIN))
{
M_SINCOS (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1;
}
if (negate)
sinix = -sinix;
if (M_FABS (__imag__ x) > t)
{
FLOAT exp_t = M_EXP (t);
FLOAT ix = M_FABS (__imag__ x);
if (signbit (__imag__ x))
cosix = -cosix;
ix -= t;
sinix *= exp_t / 2;
cosix *= exp_t / 2;
if (ix > t)
{
ix -= t;
sinix *= exp_t;
cosix *= exp_t;
}
if (ix > t)
{
/* Overflow (original imaginary part of x > 3t). */
__real__ retval = M_MAX * sinix;
__imag__ retval = M_MAX * cosix;
}
else
{
FLOAT exp_val = M_EXP (ix);
__real__ retval = exp_val * sinix;
__imag__ retval = exp_val * cosix;
}
}
else
{
__real__ retval = M_COSH (__imag__ x) * sinix;
__imag__ retval = M_SINH (__imag__ x) * cosix;
}
math_check_force_underflow_complex (retval);
}
else
{
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = __real__ x - __real__ x;
__imag__ retval = __imag__ x;
}
else
{
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
}
}
else if (icls == FP_INFINITE)
{
/* Imaginary part is infinite. */
if (rcls == FP_ZERO)
{
/* Real part is 0.0. */
__real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
__imag__ retval = __imag__ x;
}
else if (rcls > FP_ZERO)
{
/* Real part is finite. */
FLOAT sinix, cosix;
if (__glibc_likely (__real__ x > M_MIN))
{
M_SINCOS (__real__ x, &sinix, &cosix);
}
else
{
sinix = __real__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (M_HUGE_VAL, sinix);
__imag__ retval = M_COPYSIGN (M_HUGE_VAL, cosix);
if (negate)
__real__ retval = -__real__ retval;
if (signbit (__imag__ x))
__imag__ retval = -__imag__ retval;
}
else
{
__real__ retval = __real__ x - __real__ x;
__imag__ retval = M_HUGE_VAL;
}
}
else
{
if (rcls == FP_ZERO)
__real__ retval = M_COPYSIGN (0, negate ? -1 : 1);
else
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
}
return retval;
}
declare_mgen_alias (__csin, csin)
|