summaryrefslogtreecommitdiff
path: root/elf/dl-addr.c
blob: b0b864fa57fd92e7f4a74e64ca526902d38fdb76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/* Locate the shared object symbol nearest a given address.
   Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If not,
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include <dlfcn.h>
#include <stddef.h>
#include <ldsodefs.h>


int
internal_function
_dl_addr (const void *address, Dl_info *info)
{
  const ElfW(Addr) addr = (ElfW(Addr)) address;
  struct link_map *l, *match;
  const ElfW(Sym) *symtab, *matchsym;
  const char *strtab;

  /* Find the highest-addressed object that ADDRESS is not below.  */
  match = NULL;
  for (l = _dl_loaded; l; l = l->l_next)
    if (l->l_addr != 0	/* Make sure we do not currently set this map up
			   in this moment.  */
	&& addr >= l->l_addr && (!match || match->l_addr < l->l_addr))
      match = l;

  if (match)
    {
      /* We know ADDRESS lies within MATCH if in any shared object.
	 Make sure it isn't past the end of MATCH's segments.  */
      size_t n = match->l_phnum;
      if (n > 0)
	{
	  do
	    --n;
	  while (match->l_phdr[n].p_type != PT_LOAD);
	  if (addr >= (match->l_addr +
		       match->l_phdr[n].p_vaddr + match->l_phdr[n].p_memsz))
	    /* Off the end of the highest-addressed shared object.  */
	    return 0;
	}
    }
  else
    return 0;

  /* Now we know what object the address lies in.  */
  info->dli_fname = match->l_name;
  info->dli_fbase = (void *) match->l_addr;

  symtab = (const void *) D_PTR (match, l_info[DT_SYMTAB]);
  strtab = (const void *) D_PTR (match, l_info[DT_STRTAB]);

  /* We assume that the string table follows the symbol table, because
     there is no way in ELF to know the size of the dynamic symbol table!!  */
  for (matchsym = NULL; (void *) symtab < (void *) strtab; ++symtab)
    if (addr >= match->l_addr + symtab->st_value
	&& (!matchsym
	    || (matchsym->st_value < symtab->st_value
		&& (ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL
		    || ELFW(ST_BIND) (symtab->st_info) == STB_WEAK))))
      matchsym = symtab;

  if (matchsym)
    {
      /* We found a symbol close by.  Fill in its name and exact address.  */
      info->dli_sname = strtab + matchsym->st_name;
      info->dli_saddr = (void *) (match->l_addr + matchsym->st_value);
    }
  else
    {
      /* No symbol matches.  We return only the containing object.  */
      info->dli_sname = NULL;
      info->dli_saddr = NULL;
    }

  return 1;
}