summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/ldbl-128ibm/k_tanl.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/ldbl-128ibm/k_tanl.c')
-rw-r--r--sysdeps/ieee754/ldbl-128ibm/k_tanl.c164
1 files changed, 0 insertions, 164 deletions
diff --git a/sysdeps/ieee754/ldbl-128ibm/k_tanl.c b/sysdeps/ieee754/ldbl-128ibm/k_tanl.c
deleted file mode 100644
index 6c45b2fc45..0000000000
--- a/sysdeps/ieee754/ldbl-128ibm/k_tanl.c
+++ /dev/null
@@ -1,164 +0,0 @@
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- Long double expansions are
- Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
- and are incorporated herein by permission of the author. The author
- reserves the right to distribute this material elsewhere under different
- copying permissions. These modifications are distributed here under
- the following terms:
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
-
-/* __kernel_tanl( x, y, k )
- * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input k indicates whether tan (if k=1) or
- * -1/tan (if k= -1) is returned.
- *
- * Algorithm
- * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
- * 2. if x < 2^-57, return x with inexact if x!=0.
- * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
- * on [0,0.67433].
- *
- * Note: tan(x+y) = tan(x) + tan'(x)*y
- * ~ tan(x) + (1+x*x)*y
- * Therefore, for better accuracy in computing tan(x+y), let
- * r = x^3 * R(x^2)
- * then
- * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
- *
- * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
- * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
- * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
- */
-
-#include "math.h"
-#include "math_private.h"
-#ifdef __STDC__
-static const long double
-#else
-static long double
-#endif
- one = 1.0L,
- pio4hi = 7.8539816339744830961566084581987569936977E-1L,
- pio4lo = 2.1679525325309452561992610065108379921906E-35L,
-
- /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
- 0 <= x <= 0.6743316650390625
- Peak relative error 8.0e-36 */
- TH = 3.333333333333333333333333333333333333333E-1L,
- T0 = -1.813014711743583437742363284336855889393E7L,
- T1 = 1.320767960008972224312740075083259247618E6L,
- T2 = -2.626775478255838182468651821863299023956E4L,
- T3 = 1.764573356488504935415411383687150199315E2L,
- T4 = -3.333267763822178690794678978979803526092E-1L,
-
- U0 = -1.359761033807687578306772463253710042010E8L,
- U1 = 6.494370630656893175666729313065113194784E7L,
- U2 = -4.180787672237927475505536849168729386782E6L,
- U3 = 8.031643765106170040139966622980914621521E4L,
- U4 = -5.323131271912475695157127875560667378597E2L;
- /* 1.000000000000000000000000000000000000000E0 */
-
-
-#ifdef __STDC__
-long double
-__kernel_tanl (long double x, long double y, int iy)
-#else
-long double
-__kernel_tanl (x, y, iy)
- long double x, y;
- int iy;
-#endif
-{
- long double z, r, v, w, s;
- int32_t ix, sign;
- ieee854_long_double_shape_type u, u1;
-
- u.value = x;
- ix = u.parts32.w0 & 0x7fffffff;
- if (ix < 0x3c600000) /* x < 2**-57 */
- {
- if ((int) x == 0)
- { /* generate inexact */
- if ((ix | u.parts32.w1 | (u.parts32.w2 & 0x7fffffff) | u.parts32.w3
- | (iy + 1)) == 0)
- return one / fabs (x);
- else
- return (iy == 1) ? x : -one / x;
- }
- }
- if (ix >= 0x3fe59420) /* |x| >= 0.6743316650390625 */
- {
- if ((u.parts32.w0 & 0x80000000) != 0)
- {
- x = -x;
- y = -y;
- sign = -1;
- }
- else
- sign = 1;
- z = pio4hi - x;
- w = pio4lo - y;
- x = z + w;
- y = 0.0;
- }
- z = x * x;
- r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
- v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
- r = r / v;
-
- s = z * x;
- r = y + z * (s * r + y);
- r += TH * s;
- w = x + r;
- if (ix >= 0x3fe59420)
- {
- v = (long double) iy;
- w = (v - 2.0 * (x - (w * w / (w + v) - r)));
- if (sign < 0)
- w = -w;
- return w;
- }
- if (iy == 1)
- return w;
- else
- { /* if allow error up to 2 ulp,
- simply return -1.0/(x+r) here */
- /* compute -1.0/(x+r) accurately */
- u1.value = w;
- u1.parts32.w2 = 0;
- u1.parts32.w3 = 0;
- v = r - (u1.value - x); /* u1+v = r+x */
- z = -1.0 / w;
- u.value = z;
- u.parts32.w2 = 0;
- u.parts32.w3 = 0;
- s = 1.0 + u.value * u1.value;
- return u.value + z * (s + u.value * v);
- }
-}