diff options
Diffstat (limited to 'sysdeps/ieee754/ldbl-128')
97 files changed, 0 insertions, 15534 deletions
diff --git a/sysdeps/ieee754/ldbl-128/Makefile b/sysdeps/ieee754/ldbl-128/Makefile deleted file mode 100644 index 8fd6dad343..0000000000 --- a/sysdeps/ieee754/ldbl-128/Makefile +++ /dev/null @@ -1 +0,0 @@ -long-double-fcts = yes diff --git a/sysdeps/ieee754/ldbl-128/bits/long-double.h b/sysdeps/ieee754/ldbl-128/bits/long-double.h deleted file mode 100644 index baddb2a905..0000000000 --- a/sysdeps/ieee754/ldbl-128/bits/long-double.h +++ /dev/null @@ -1,20 +0,0 @@ -/* Properties of long double type. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* long double is distinct from double, so there is nothing to - define here. */ diff --git a/sysdeps/ieee754/ldbl-128/e_acoshl.c b/sysdeps/ieee754/ldbl-128/e_acoshl.c deleted file mode 100644 index 7c79d437a2..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_acoshl.c +++ /dev/null @@ -1,61 +0,0 @@ -/* e_acoshl.c -- long double version of e_acosh.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_acoshl(x) - * Method : - * Based on - * acoshl(x) = logl [ x + sqrtl(x*x-1) ] - * we have - * acoshl(x) := logl(x)+ln2, if x is large; else - * acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else - * acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1. - * - * Special cases: - * acoshl(x) is NaN with signal if x<1. - * acoshl(NaN) is NaN without signal. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -one = 1.0, -ln2 = L(0.6931471805599453094172321214581766); - -_Float128 -__ieee754_acoshl(_Float128 x) -{ - _Float128 t; - u_int64_t lx; - int64_t hx; - GET_LDOUBLE_WORDS64(hx,lx,x); - if(hx<0x3fff000000000000LL) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x4035000000000000LL) { /* x > 2**54 */ - if(hx >=0x7fff000000000000LL) { /* x is inf of NaN */ - return x+x; - } else - return __ieee754_logl(x)+ln2; /* acoshl(huge)=logl(2x) */ - } else if(((hx-0x3fff000000000000LL)|lx)==0) { - return 0; /* acosh(1) = 0 */ - } else if (hx > 0x4000000000000000LL) { /* 2**28 > x > 2 */ - t=x*x; - return __ieee754_logl(2*x-one/(x+__ieee754_sqrtl(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return __log1pl(t+__sqrtl(2*t+t*t)); - } -} -strong_alias (__ieee754_acoshl, __acoshl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_acosl.c b/sysdeps/ieee754/ldbl-128/e_acosl.c deleted file mode 100644 index 342ea5f47d..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_acosl.c +++ /dev/null @@ -1,319 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - Long double expansions are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __ieee754_acosl(x) - * Method : - * acos(x) = pi/2 - asin(x) - * acos(-x) = pi/2 + asin(x) - * For |x| <= 0.375 - * acos(x) = pi/2 - asin(x) - * Between .375 and .5 the approximation is - * acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x) - * Between .5 and .625 the approximation is - * acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) - * For x > 0.625, - * acos(x) = 2 asin(sqrt((1-x)/2)) - * computed with an extended precision square root in the leading term. - * For x < -0.625 - * acos(x) = pi - 2 asin(sqrt((1-|x|)/2)) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - * Functions needed: __ieee754_sqrtl. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 - one = 1, - pio2_hi = L(1.5707963267948966192313216916397514420986), - pio2_lo = L(4.3359050650618905123985220130216759843812E-35), - - /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) - -0.0625 <= x <= 0.0625 - peak relative error 3.3e-35 */ - - rS0 = L(5.619049346208901520945464704848780243887E0), - rS1 = L(-4.460504162777731472539175700169871920352E1), - rS2 = L(1.317669505315409261479577040530751477488E2), - rS3 = L(-1.626532582423661989632442410808596009227E2), - rS4 = L(3.144806644195158614904369445440583873264E1), - rS5 = L(9.806674443470740708765165604769099559553E1), - rS6 = L(-5.708468492052010816555762842394927806920E1), - rS7 = L(-1.396540499232262112248553357962639431922E1), - rS8 = L(1.126243289311910363001762058295832610344E1), - rS9 = L(4.956179821329901954211277873774472383512E-1), - rS10 = L(-3.313227657082367169241333738391762525780E-1), - - sS0 = L(-4.645814742084009935700221277307007679325E0), - sS1 = L(3.879074822457694323970438316317961918430E1), - sS2 = L(-1.221986588013474694623973554726201001066E2), - sS3 = L(1.658821150347718105012079876756201905822E2), - sS4 = L(-4.804379630977558197953176474426239748977E1), - sS5 = L(-1.004296417397316948114344573811562952793E2), - sS6 = L(7.530281592861320234941101403870010111138E1), - sS7 = L(1.270735595411673647119592092304357226607E1), - sS8 = L(-1.815144839646376500705105967064792930282E1), - sS9 = L(-7.821597334910963922204235247786840828217E-2), - /* 1.000000000000000000000000000000000000000E0 */ - - acosr5625 = L(9.7338991014954640492751132535550279812151E-1), - pimacosr5625 = L(2.1682027434402468335351320579240000860757E0), - - /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x) - -0.0625 <= x <= 0.0625 - peak relative error 2.1e-35 */ - - P0 = L(2.177690192235413635229046633751390484892E0), - P1 = L(-2.848698225706605746657192566166142909573E1), - P2 = L(1.040076477655245590871244795403659880304E2), - P3 = L(-1.400087608918906358323551402881238180553E2), - P4 = L(2.221047917671449176051896400503615543757E1), - P5 = L(9.643714856395587663736110523917499638702E1), - P6 = L(-5.158406639829833829027457284942389079196E1), - P7 = L(-1.578651828337585944715290382181219741813E1), - P8 = L(1.093632715903802870546857764647931045906E1), - P9 = L(5.448925479898460003048760932274085300103E-1), - P10 = L(-3.315886001095605268470690485170092986337E-1), - Q0 = L(-1.958219113487162405143608843774587557016E0), - Q1 = L(2.614577866876185080678907676023269360520E1), - Q2 = L(-9.990858606464150981009763389881793660938E1), - Q3 = L(1.443958741356995763628660823395334281596E2), - Q4 = L(-3.206441012484232867657763518369723873129E1), - Q5 = L(-1.048560885341833443564920145642588991492E2), - Q6 = L(6.745883931909770880159915641984874746358E1), - Q7 = L(1.806809656342804436118449982647641392951E1), - Q8 = L(-1.770150690652438294290020775359580915464E1), - Q9 = L(-5.659156469628629327045433069052560211164E-1), - /* 1.000000000000000000000000000000000000000E0 */ - - acosr4375 = L(1.1179797320499710475919903296900511518755E0), - pimacosr4375 = L(2.0236129215398221908706530535894517323217E0), - - /* asin(x) = x + x^3 pS(x^2) / qS(x^2) - 0 <= x <= 0.5 - peak relative error 1.9e-35 */ - pS0 = L(-8.358099012470680544198472400254596543711E2), - pS1 = L(3.674973957689619490312782828051860366493E3), - pS2 = L(-6.730729094812979665807581609853656623219E3), - pS3 = L(6.643843795209060298375552684423454077633E3), - pS4 = L(-3.817341990928606692235481812252049415993E3), - pS5 = L(1.284635388402653715636722822195716476156E3), - pS6 = L(-2.410736125231549204856567737329112037867E2), - pS7 = L(2.219191969382402856557594215833622156220E1), - pS8 = L(-7.249056260830627156600112195061001036533E-1), - pS9 = L(1.055923570937755300061509030361395604448E-3), - - qS0 = L(-5.014859407482408326519083440151745519205E3), - qS1 = L(2.430653047950480068881028451580393430537E4), - qS2 = L(-4.997904737193653607449250593976069726962E4), - qS3 = L(5.675712336110456923807959930107347511086E4), - qS4 = L(-3.881523118339661268482937768522572588022E4), - qS5 = L(1.634202194895541569749717032234510811216E4), - qS6 = L(-4.151452662440709301601820849901296953752E3), - qS7 = L(5.956050864057192019085175976175695342168E2), - qS8 = L(-4.175375777334867025769346564600396877176E1); - /* 1.000000000000000000000000000000000000000E0 */ - -_Float128 -__ieee754_acosl (_Float128 x) -{ - _Float128 z, r, w, p, q, s, t, f2; - int32_t ix, sign; - ieee854_long_double_shape_type u; - - u.value = x; - sign = u.parts32.w0; - ix = sign & 0x7fffffff; - u.parts32.w0 = ix; /* |x| */ - if (ix >= 0x3fff0000) /* |x| >= 1 */ - { - if (ix == 0x3fff0000 - && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - { /* |x| == 1 */ - if ((sign & 0x80000000) == 0) - return 0.0; /* acos(1) = 0 */ - else - return (2.0 * pio2_hi) + (2.0 * pio2_lo); /* acos(-1)= pi */ - } - return (x - x) / (x - x); /* acos(|x| > 1) is NaN */ - } - else if (ix < 0x3ffe0000) /* |x| < 0.5 */ - { - if (ix < 0x3f8e0000) /* |x| < 2**-113 */ - return pio2_hi + pio2_lo; - if (ix < 0x3ffde000) /* |x| < .4375 */ - { - /* Arcsine of x. */ - z = x * x; - p = (((((((((pS9 * z - + pS8) * z - + pS7) * z - + pS6) * z - + pS5) * z - + pS4) * z - + pS3) * z - + pS2) * z - + pS1) * z - + pS0) * z; - q = (((((((( z - + qS8) * z - + qS7) * z - + qS6) * z - + qS5) * z - + qS4) * z - + qS3) * z - + qS2) * z - + qS1) * z - + qS0; - r = x + x * p / q; - z = pio2_hi - (r - pio2_lo); - return z; - } - /* .4375 <= |x| < .5 */ - t = u.value - L(0.4375); - p = ((((((((((P10 * t - + P9) * t - + P8) * t - + P7) * t - + P6) * t - + P5) * t - + P4) * t - + P3) * t - + P2) * t - + P1) * t - + P0) * t; - - q = (((((((((t - + Q9) * t - + Q8) * t - + Q7) * t - + Q6) * t - + Q5) * t - + Q4) * t - + Q3) * t - + Q2) * t - + Q1) * t - + Q0; - r = p / q; - if (sign & 0x80000000) - r = pimacosr4375 - r; - else - r = acosr4375 + r; - return r; - } - else if (ix < 0x3ffe4000) /* |x| < 0.625 */ - { - t = u.value - L(0.5625); - p = ((((((((((rS10 * t - + rS9) * t - + rS8) * t - + rS7) * t - + rS6) * t - + rS5) * t - + rS4) * t - + rS3) * t - + rS2) * t - + rS1) * t - + rS0) * t; - - q = (((((((((t - + sS9) * t - + sS8) * t - + sS7) * t - + sS6) * t - + sS5) * t - + sS4) * t - + sS3) * t - + sS2) * t - + sS1) * t - + sS0; - if (sign & 0x80000000) - r = pimacosr5625 - p / q; - else - r = acosr5625 + p / q; - return r; - } - else - { /* |x| >= .625 */ - z = (one - u.value) * 0.5; - s = __ieee754_sqrtl (z); - /* Compute an extended precision square root from - the Newton iteration s -> 0.5 * (s + z / s). - The change w from s to the improved value is - w = 0.5 * (s + z / s) - s = (s^2 + z)/2s - s = (z - s^2)/2s. - Express s = f1 + f2 where f1 * f1 is exactly representable. - w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s . - s + w has extended precision. */ - u.value = s; - u.parts32.w2 = 0; - u.parts32.w3 = 0; - f2 = s - u.value; - w = z - u.value * u.value; - w = w - 2.0 * u.value * f2; - w = w - f2 * f2; - w = w / (2.0 * s); - /* Arcsine of s. */ - p = (((((((((pS9 * z - + pS8) * z - + pS7) * z - + pS6) * z - + pS5) * z - + pS4) * z - + pS3) * z - + pS2) * z - + pS1) * z - + pS0) * z; - q = (((((((( z - + qS8) * z - + qS7) * z - + qS6) * z - + qS5) * z - + qS4) * z - + qS3) * z - + qS2) * z - + qS1) * z - + qS0; - r = s + (w + s * p / q); - - if (sign & 0x80000000) - w = pio2_hi + (pio2_lo - r); - else - w = r; - return 2.0 * w; - } -} -strong_alias (__ieee754_acosl, __acosl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_asinl.c b/sysdeps/ieee754/ldbl-128/e_asinl.c deleted file mode 100644 index 1edf1c05a1..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_asinl.c +++ /dev/null @@ -1,258 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - Long double expansions are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under the - following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __ieee754_asin(x) - * Method : - * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... - * we approximate asin(x) on [0,0.5] by - * asin(x) = x + x*x^2*R(x^2) - * Between .5 and .625 the approximation is - * asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) - * For x in [0.625,1] - * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) - * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; - * then for x>0.98 - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) - * For x<=0.98, let pio4_hi = pio2_hi/2, then - * f = hi part of s; - * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) - * and - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) - * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - */ - - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 - one = 1, - huge = L(1.0e+4932), - pio2_hi = L(1.5707963267948966192313216916397514420986), - pio2_lo = L(4.3359050650618905123985220130216759843812E-35), - pio4_hi = L(7.8539816339744830961566084581987569936977E-1), - - /* coefficient for R(x^2) */ - - /* asin(x) = x + x^3 pS(x^2) / qS(x^2) - 0 <= x <= 0.5 - peak relative error 1.9e-35 */ - pS0 = L(-8.358099012470680544198472400254596543711E2), - pS1 = L(3.674973957689619490312782828051860366493E3), - pS2 = L(-6.730729094812979665807581609853656623219E3), - pS3 = L(6.643843795209060298375552684423454077633E3), - pS4 = L(-3.817341990928606692235481812252049415993E3), - pS5 = L(1.284635388402653715636722822195716476156E3), - pS6 = L(-2.410736125231549204856567737329112037867E2), - pS7 = L(2.219191969382402856557594215833622156220E1), - pS8 = L(-7.249056260830627156600112195061001036533E-1), - pS9 = L(1.055923570937755300061509030361395604448E-3), - - qS0 = L(-5.014859407482408326519083440151745519205E3), - qS1 = L(2.430653047950480068881028451580393430537E4), - qS2 = L(-4.997904737193653607449250593976069726962E4), - qS3 = L(5.675712336110456923807959930107347511086E4), - qS4 = L(-3.881523118339661268482937768522572588022E4), - qS5 = L(1.634202194895541569749717032234510811216E4), - qS6 = L(-4.151452662440709301601820849901296953752E3), - qS7 = L(5.956050864057192019085175976175695342168E2), - qS8 = L(-4.175375777334867025769346564600396877176E1), - /* 1.000000000000000000000000000000000000000E0 */ - - /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x) - -0.0625 <= x <= 0.0625 - peak relative error 3.3e-35 */ - rS0 = L(-5.619049346208901520945464704848780243887E0), - rS1 = L(4.460504162777731472539175700169871920352E1), - rS2 = L(-1.317669505315409261479577040530751477488E2), - rS3 = L(1.626532582423661989632442410808596009227E2), - rS4 = L(-3.144806644195158614904369445440583873264E1), - rS5 = L(-9.806674443470740708765165604769099559553E1), - rS6 = L(5.708468492052010816555762842394927806920E1), - rS7 = L(1.396540499232262112248553357962639431922E1), - rS8 = L(-1.126243289311910363001762058295832610344E1), - rS9 = L(-4.956179821329901954211277873774472383512E-1), - rS10 = L(3.313227657082367169241333738391762525780E-1), - - sS0 = L(-4.645814742084009935700221277307007679325E0), - sS1 = L(3.879074822457694323970438316317961918430E1), - sS2 = L(-1.221986588013474694623973554726201001066E2), - sS3 = L(1.658821150347718105012079876756201905822E2), - sS4 = L(-4.804379630977558197953176474426239748977E1), - sS5 = L(-1.004296417397316948114344573811562952793E2), - sS6 = L(7.530281592861320234941101403870010111138E1), - sS7 = L(1.270735595411673647119592092304357226607E1), - sS8 = L(-1.815144839646376500705105967064792930282E1), - sS9 = L(-7.821597334910963922204235247786840828217E-2), - /* 1.000000000000000000000000000000000000000E0 */ - - asinr5625 = L(5.9740641664535021430381036628424864397707E-1); - - - -_Float128 -__ieee754_asinl (_Float128 x) -{ - _Float128 t, w, p, q, c, r, s; - int32_t ix, sign, flag; - ieee854_long_double_shape_type u; - - flag = 0; - u.value = x; - sign = u.parts32.w0; - ix = sign & 0x7fffffff; - u.parts32.w0 = ix; /* |x| */ - if (ix >= 0x3fff0000) /* |x|>= 1 */ - { - if (ix == 0x3fff0000 - && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - /* asin(1)=+-pi/2 with inexact */ - return x * pio2_hi + x * pio2_lo; - return (x - x) / (x - x); /* asin(|x|>1) is NaN */ - } - else if (ix < 0x3ffe0000) /* |x| < 0.5 */ - { - if (ix < 0x3fc60000) /* |x| < 2**-57 */ - { - math_check_force_underflow (x); - _Float128 force_inexact = huge + x; - math_force_eval (force_inexact); - return x; /* return x with inexact if x!=0 */ - } - else - { - t = x * x; - /* Mark to use pS, qS later on. */ - flag = 1; - } - } - else if (ix < 0x3ffe4000) /* 0.625 */ - { - t = u.value - 0.5625; - p = ((((((((((rS10 * t - + rS9) * t - + rS8) * t - + rS7) * t - + rS6) * t - + rS5) * t - + rS4) * t - + rS3) * t - + rS2) * t - + rS1) * t - + rS0) * t; - - q = ((((((((( t - + sS9) * t - + sS8) * t - + sS7) * t - + sS6) * t - + sS5) * t - + sS4) * t - + sS3) * t - + sS2) * t - + sS1) * t - + sS0; - t = asinr5625 + p / q; - if ((sign & 0x80000000) == 0) - return t; - else - return -t; - } - else - { - /* 1 > |x| >= 0.625 */ - w = one - u.value; - t = w * 0.5; - } - - p = (((((((((pS9 * t - + pS8) * t - + pS7) * t - + pS6) * t - + pS5) * t - + pS4) * t - + pS3) * t - + pS2) * t - + pS1) * t - + pS0) * t; - - q = (((((((( t - + qS8) * t - + qS7) * t - + qS6) * t - + qS5) * t - + qS4) * t - + qS3) * t - + qS2) * t - + qS1) * t - + qS0; - - if (flag) /* 2^-57 < |x| < 0.5 */ - { - w = p / q; - return x + x * w; - } - - s = __ieee754_sqrtl (t); - if (ix >= 0x3ffef333) /* |x| > 0.975 */ - { - w = p / q; - t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); - } - else - { - u.value = s; - u.parts32.w3 = 0; - u.parts32.w2 = 0; - w = u.value; - c = (t - w * w) / (s + w); - r = p / q; - p = 2.0 * s * r - (pio2_lo - 2.0 * c); - q = pio4_hi - 2.0 * w; - t = pio4_hi - (p - q); - } - - if ((sign & 0x80000000) == 0) - return t; - else - return -t; -} -strong_alias (__ieee754_asinl, __asinl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_atan2l.c b/sysdeps/ieee754/ldbl-128/e_atan2l.c deleted file mode 100644 index faecd1a63b..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_atan2l.c +++ /dev/null @@ -1,122 +0,0 @@ -/* e_atan2l.c -- long double version of e_atan2.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_atan2l(y,x) - * Method : - * 1. Reduce y to positive by atan2l(y,x)=-atan2l(-y,x). - * 2. Reduce x to positive by (if x and y are unexceptional): - * ARG (x+iy) = arctan(y/x) ... if x > 0, - * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, - * - * Special cases: - * - * ATAN2((anything), NaN ) is NaN; - * ATAN2(NAN , (anything) ) is NaN; - * ATAN2(+-0, +(anything but NaN)) is +-0 ; - * ATAN2(+-0, -(anything but NaN)) is +-pi ; - * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; - * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; - * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; - * ATAN2(+-INF,+INF ) is +-pi/4 ; - * ATAN2(+-INF,-INF ) is +-3pi/4; - * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -tiny = L(1.0e-4900), -zero = 0.0, -pi_o_4 = L(7.85398163397448309615660845819875699e-01), /* 3ffe921fb54442d18469898cc51701b8 */ -pi_o_2 = L(1.57079632679489661923132169163975140e+00), /* 3fff921fb54442d18469898cc51701b8 */ -pi = L(3.14159265358979323846264338327950280e+00), /* 4000921fb54442d18469898cc51701b8 */ -pi_lo = L(8.67181013012378102479704402604335225e-35); /* 3f8dcd129024e088a67cc74020bbea64 */ - -_Float128 -__ieee754_atan2l(_Float128 y, _Float128 x) -{ - _Float128 z; - int64_t k,m,hx,hy,ix,iy; - u_int64_t lx,ly; - - GET_LDOUBLE_WORDS64(hx,lx,x); - ix = hx&0x7fffffffffffffffLL; - GET_LDOUBLE_WORDS64(hy,ly,y); - iy = hy&0x7fffffffffffffffLL; - if(((ix|((lx|-lx)>>63))>0x7fff000000000000LL)|| - ((iy|((ly|-ly)>>63))>0x7fff000000000000LL)) /* x or y is NaN */ - return x+y; - if(((hx-0x3fff000000000000LL)|lx)==0) return __atanl(y); /* x=1.0L */ - m = ((hy>>63)&1)|((hx>>62)&2); /* 2*sign(x)+sign(y) */ - - /* when y = 0 */ - if((iy|ly)==0) { - switch(m) { - case 0: - case 1: return y; /* atan(+-0,+anything)=+-0 */ - case 2: return pi+tiny;/* atan(+0,-anything) = pi */ - case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ - } - } - /* when x = 0 */ - if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* when x is INF */ - if(ix==0x7fff000000000000LL) { - if(iy==0x7fff000000000000LL) { - switch(m) { - case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ - case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ - case 2: return 3*pi_o_4+tiny;/*atan(+INF,-INF)*/ - case 3: return -3*pi_o_4-tiny;/*atan(-INF,-INF)*/ - } - } else { - switch(m) { - case 0: return zero ; /* atan(+...,+INF) */ - case 1: return -zero ; /* atan(-...,+INF) */ - case 2: return pi+tiny ; /* atan(+...,-INF) */ - case 3: return -pi-tiny ; /* atan(-...,-INF) */ - } - } - } - /* when y is INF */ - if(iy==0x7fff000000000000LL) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* compute y/x */ - k = (iy-ix)>>48; - if(k > 120) z=pi_o_2+L(0.5)*pi_lo; /* |y/x| > 2**120 */ - else if(hx<0&&k<-120) z=0; /* |y|/x < -2**120 */ - else z=__atanl(fabsl(y/x)); /* safe to do y/x */ - switch (m) { - case 0: return z ; /* atan(+,+) */ - case 1: { - u_int64_t zh; - GET_LDOUBLE_MSW64(zh,z); - SET_LDOUBLE_MSW64(z,zh ^ 0x8000000000000000ULL); - } - return z ; /* atan(-,+) */ - case 2: return pi-(z-pi_lo);/* atan(+,-) */ - default: /* case 3 */ - return (z-pi_lo)-pi;/* atan(-,-) */ - } -} -strong_alias (__ieee754_atan2l, __atan2l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_atanhl.c b/sysdeps/ieee754/ldbl-128/e_atanhl.c deleted file mode 100644 index 3905af4dfc..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_atanhl.c +++ /dev/null @@ -1,74 +0,0 @@ -/* s_atanhl.c -- long double version of s_atan.c. - * Conversion to long double by Ulrich Drepper, - * Cygnus Support, drepper@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_atanhl(x) - * Method : - * 1.Reduced x to positive by atanh(-x) = -atanh(x) - * 2.For x>=0.5 - * 1 2x x - * atanhl(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) - * 2 1 - x 1 - x - * - * For x<0.5 - * atanhl(x) = 0.5*log1pl(2x+2x*x/(1-x)) - * - * Special cases: - * atanhl(x) is NaN if |x| > 1 with signal; - * atanhl(NaN) is that NaN with no signal; - * atanhl(+-1) is +-INF with signal. - * - */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1, huge = L(1e4900); - -static const _Float128 zero = 0; - -_Float128 -__ieee754_atanhl(_Float128 x) -{ - _Float128 t; - u_int32_t jx, ix; - ieee854_long_double_shape_type u; - - u.value = x; - jx = u.parts32.w0; - ix = jx & 0x7fffffff; - u.parts32.w0 = ix; - if (ix >= 0x3fff0000) /* |x| >= 1.0 or infinity or NaN */ - { - if (u.value == one) - return x/zero; - else - return (x-x)/(x-x); - } - if(ix<0x3fc60000 && (huge+x)>zero) /* x < 2^-57 */ - { - math_check_force_underflow (x); - return x; - } - - if(ix<0x3ffe0000) { /* x < 0.5 */ - t = u.value+u.value; - t = 0.5*__log1pl(t+t*u.value/(one-u.value)); - } else - t = 0.5*__log1pl((u.value+u.value)/(one-u.value)); - if(jx & 0x80000000) return -t; else return t; -} -strong_alias (__ieee754_atanhl, __atanhl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_coshl.c b/sysdeps/ieee754/ldbl-128/e_coshl.c deleted file mode 100644 index 70a2fe3e84..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_coshl.c +++ /dev/null @@ -1,110 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Changes for 128-bit long double are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __ieee754_coshl(x) - * Method : - * mathematically coshl(x) if defined to be (exp(x)+exp(-x))/2 - * 1. Replace x by |x| (coshl(x) = coshl(-x)). - * 2. - * [ exp(x) - 1 ]^2 - * 0 <= x <= ln2/2 : coshl(x) := 1 + ------------------- - * 2*exp(x) - * - * exp(x) + 1/exp(x) - * ln2/2 <= x <= 22 : coshl(x) := ------------------- - * 2 - * 22 <= x <= lnovft : coshl(x) := expl(x)/2 - * lnovft <= x <= ln2ovft: coshl(x) := expl(x/2)/2 * expl(x/2) - * ln2ovft < x : coshl(x) := huge*huge (overflow) - * - * Special cases: - * coshl(x) is |x| if x is +INF, -INF, or NaN. - * only coshl(0)=1 is exact for finite x. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1.0, half = 0.5, huge = L(1.0e4900), -ovf_thresh = L(1.1357216553474703894801348310092223067821E4); - -_Float128 -__ieee754_coshl (_Float128 x) -{ - _Float128 t, w; - int32_t ex; - ieee854_long_double_shape_type u; - - u.value = x; - ex = u.parts32.w0 & 0x7fffffff; - - /* Absolute value of x. */ - u.parts32.w0 = ex; - - /* x is INF or NaN */ - if (ex >= 0x7fff0000) - return x * x; - - /* |x| in [0,0.5*ln2], return 1+expm1l(|x|)^2/(2*expl(|x|)) */ - if (ex < 0x3ffd62e4) /* 0.3465728759765625 */ - { - if (ex < 0x3fb80000) /* |x| < 2^-116 */ - return one; /* cosh(tiny) = 1 */ - t = __expm1l (u.value); - w = one + t; - - return one + (t * t) / (w + w); - } - - /* |x| in [0.5*ln2,40], return (exp(|x|)+1/exp(|x|)/2; */ - if (ex < 0x40044000) - { - t = __ieee754_expl (u.value); - return half * t + half / t; - } - - /* |x| in [22, ln(maxdouble)] return half*exp(|x|) */ - if (ex <= 0x400c62e3) /* 11356.375 */ - return half * __ieee754_expl (u.value); - - /* |x| in [log(maxdouble), overflowthresold] */ - if (u.value <= ovf_thresh) - { - w = __ieee754_expl (half * u.value); - t = half * w; - return t * w; - } - - /* |x| > overflowthresold, cosh(x) overflow */ - return huge * huge; -} -strong_alias (__ieee754_coshl, __coshl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_exp10l.c b/sysdeps/ieee754/ldbl-128/e_exp10l.c deleted file mode 100644 index 05a470fa39..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_exp10l.c +++ /dev/null @@ -1,49 +0,0 @@ -/* Copyright (C) 2012-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <float.h> - -static const _Float128 log10_high = L(0x2.4d763776aaa2bp0); -static const _Float128 log10_low = L(0x5.ba95b58ae0b4c28a38a3fb3e7698p-60); - -_Float128 -__ieee754_exp10l (_Float128 arg) -{ - ieee854_long_double_shape_type u; - _Float128 arg_high, arg_low; - _Float128 exp_high, exp_low; - - if (!isfinite (arg)) - return __ieee754_expl (arg); - if (arg < LDBL_MIN_10_EXP - LDBL_DIG - 10) - return LDBL_MIN * LDBL_MIN; - else if (arg > LDBL_MAX_10_EXP + 1) - return LDBL_MAX * LDBL_MAX; - else if (fabsl (arg) < L(0x1p-116)) - return 1; - - u.value = arg; - u.parts64.lsw &= 0xfe00000000000000LL; - arg_high = u.value; - arg_low = arg - arg_high; - exp_high = arg_high * log10_high; - exp_low = arg_high * log10_low + arg_low * M_LN10l; - return __ieee754_expl (exp_high) * __ieee754_expl (exp_low); -} -strong_alias (__ieee754_exp10l, __exp10l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_expl.c b/sysdeps/ieee754/ldbl-128/e_expl.c deleted file mode 100644 index 15639d1da1..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_expl.c +++ /dev/null @@ -1,253 +0,0 @@ -/* Quad-precision floating point e^x. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - Partly based on double-precision code - by Geoffrey Keating <geoffk@ozemail.com.au> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* The basic design here is from - Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with - Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991, - pp. 410-423. - - We work with number pairs where the first number is the high part and - the second one is the low part. Arithmetic with the high part numbers must - be exact, without any roundoff errors. - - The input value, X, is written as - X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x - - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl - - where: - - n is an integer, 16384 >= n >= -16495; - - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205 - - t1 is an integer, 89 >= t1 >= -89 - - t2 is an integer, 65 >= t2 >= -65 - - |arg1[t1]-t1/256.0| < 2^-53 - - |arg2[t2]-t2/32768.0| < 2^-53 - - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53 - - Then e^x is approximated as - - e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) - + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1) - * p (x + xl + n * ln(2)_1)) - where: - - p(x) is a polynomial approximating e(x)-1 - - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table - - e^(arg2[t2]_0 + arg2[t2]_1) likewise - - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1. - - If it happens that n_1 == 0 (this is the usual case), that multiplication - is omitted. - */ - -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif -#include <float.h> -#include <ieee754.h> -#include <math.h> -#include <fenv.h> -#include <inttypes.h> -#include <math_private.h> -#include <stdlib.h> -#include "t_expl.h" - -static const _Float128 C[] = { -/* Smallest integer x for which e^x overflows. */ -#define himark C[0] - L(11356.523406294143949491931077970765), - -/* Largest integer x for which e^x underflows. */ -#define lomark C[1] -L(-11433.4627433362978788372438434526231), - -/* 3x2^96 */ -#define THREEp96 C[2] - L(59421121885698253195157962752.0), - -/* 3x2^103 */ -#define THREEp103 C[3] - L(30423614405477505635920876929024.0), - -/* 3x2^111 */ -#define THREEp111 C[4] - L(7788445287802241442795744493830144.0), - -/* 1/ln(2) */ -#define M_1_LN2 C[5] - L(1.44269504088896340735992468100189204), - -/* first 93 bits of ln(2) */ -#define M_LN2_0 C[6] - L(0.693147180559945309417232121457981864), - -/* ln2_0 - ln(2) */ -#define M_LN2_1 C[7] -L(-1.94704509238074995158795957333327386E-31), - -/* very small number */ -#define TINY C[8] - L(1.0e-4900), - -/* 2^16383 */ -#define TWO16383 C[9] - L(5.94865747678615882542879663314003565E+4931), - -/* 256 */ -#define TWO8 C[10] - 256, - -/* 32768 */ -#define TWO15 C[11] - 32768, - -/* Chebyshev polynom coefficients for (exp(x)-1)/x */ -#define P1 C[12] -#define P2 C[13] -#define P3 C[14] -#define P4 C[15] -#define P5 C[16] -#define P6 C[17] - L(0.5), - L(1.66666666666666666666666666666666683E-01), - L(4.16666666666666666666654902320001674E-02), - L(8.33333333333333333333314659767198461E-03), - L(1.38888888889899438565058018857254025E-03), - L(1.98412698413981650382436541785404286E-04), -}; - -_Float128 -__ieee754_expl (_Float128 x) -{ - /* Check for usual case. */ - if (isless (x, himark) && isgreater (x, lomark)) - { - int tval1, tval2, unsafe, n_i; - _Float128 x22, n, t, result, xl; - union ieee854_long_double ex2_u, scale_u; - fenv_t oldenv; - - feholdexcept (&oldenv); -#ifdef FE_TONEAREST - fesetround (FE_TONEAREST); -#endif - - /* Calculate n. */ - n = x * M_1_LN2 + THREEp111; - n -= THREEp111; - x = x - n * M_LN2_0; - xl = n * M_LN2_1; - - /* Calculate t/256. */ - t = x + THREEp103; - t -= THREEp103; - - /* Compute tval1 = t. */ - tval1 = (int) (t * TWO8); - - x -= __expl_table[T_EXPL_ARG1+2*tval1]; - xl -= __expl_table[T_EXPL_ARG1+2*tval1+1]; - - /* Calculate t/32768. */ - t = x + THREEp96; - t -= THREEp96; - - /* Compute tval2 = t. */ - tval2 = (int) (t * TWO15); - - x -= __expl_table[T_EXPL_ARG2+2*tval2]; - xl -= __expl_table[T_EXPL_ARG2+2*tval2+1]; - - x = x + xl; - - /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */ - ex2_u.d = __expl_table[T_EXPL_RES1 + tval1] - * __expl_table[T_EXPL_RES2 + tval2]; - n_i = (int)n; - /* 'unsafe' is 1 iff n_1 != 0. */ - unsafe = abs(n_i) >= 15000; - ex2_u.ieee.exponent += n_i >> unsafe; - - /* Compute scale = 2^n_1. */ - scale_u.d = 1; - scale_u.ieee.exponent += n_i - (n_i >> unsafe); - - /* Approximate e^x2 - 1, using a seventh-degree polynomial, - with maximum error in [-2^-16-2^-53,2^-16+2^-53] - less than 4.8e-39. */ - x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6))))); - - /* Return result. */ - fesetenv (&oldenv); - - result = x22 * ex2_u.d + ex2_u.d; - - /* Now we can test whether the result is ultimate or if we are unsure. - In the later case we should probably call a mpn based routine to give - the ultimate result. - Empirically, this routine is already ultimate in about 99.9986% of - cases, the test below for the round to nearest case will be false - in ~ 99.9963% of cases. - Without proc2 routine maximum error which has been seen is - 0.5000262 ulp. - - union ieee854_long_double ex3_u; - - #ifdef FE_TONEAREST - fesetround (FE_TONEAREST); - #endif - ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d; - ex2_u.d = result; - ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS - - ex2_u.ieee.exponent; - n_i = abs (ex3_u.d); - n_i = (n_i + 1) / 2; - fesetenv (&oldenv); - #ifdef FE_TONEAREST - if (fegetround () == FE_TONEAREST) - n_i -= 0x4000; - #endif - if (!n_i) { - return __ieee754_expl_proc2 (origx); - } - */ - if (!unsafe) - return result; - else - { - result *= scale_u.d; - math_check_force_underflow_nonneg (result); - return result; - } - } - /* Exceptional cases: */ - else if (isless (x, himark)) - { - if (isinf (x)) - /* e^-inf == 0, with no error. */ - return 0; - else - /* Underflow */ - return TINY * TINY; - } - else - /* Return x, if x is a NaN or Inf; or overflow, otherwise. */ - return TWO16383*x; -} -strong_alias (__ieee754_expl, __expl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_fmodl.c b/sysdeps/ieee754/ldbl-128/e_fmodl.c deleted file mode 100644 index f27cd4f8ff..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_fmodl.c +++ /dev/null @@ -1,131 +0,0 @@ -/* e_fmodl.c -- long double version of e_fmod.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ -/* - * ==================================================== - * Copyright (C) 1993, 2011 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_fmodl(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1.0, Zero[] = {0.0, -0.0,}; - -_Float128 -__ieee754_fmodl (_Float128 x, _Float128 y) -{ - int64_t n,hx,hy,hz,ix,iy,sx,i; - u_int64_t lx,ly,lz; - - GET_LDOUBLE_WORDS64(hx,lx,x); - GET_LDOUBLE_WORDS64(hy,ly,y); - sx = hx&0x8000000000000000ULL; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffffffffffffLL; /* |y| */ - - /* purge off exception values */ - if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */ - ((hy|((ly|-ly)>>63))>0x7fff000000000000LL)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<=hy) { - if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ - if(lx==ly) - return Zero[(u_int64_t)sx>>63]; /* |x|=|y| return x*0*/ - } - - /* determine ix = ilogb(x) */ - if(hx<0x0001000000000000LL) { /* subnormal x */ - if(hx==0) { - for (ix = -16431, i=lx; i>0; i<<=1) ix -=1; - } else { - for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1; - } - } else ix = (hx>>48)-0x3fff; - - /* determine iy = ilogb(y) */ - if(hy<0x0001000000000000LL) { /* subnormal y */ - if(hy==0) { - for (iy = -16431, i=ly; i>0; i<<=1) iy -=1; - } else { - for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1; - } - } else iy = (hy>>48)-0x3fff; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -16382) - hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx); - else { /* subnormal x, shift x to normal */ - n = -16382-ix; - if(n<=63) { - hx = (hx<<n)|(lx>>(64-n)); - lx <<= n; - } else { - hx = lx<<(n-64); - lx = 0; - } - } - if(iy >= -16382) - hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy); - else { /* subnormal y, shift y to normal */ - n = -16382-iy; - if(n<=63) { - hy = (hy<<n)|(ly>>(64-n)); - ly <<= n; - } else { - hy = ly<<(n-64); - ly = 0; - } - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;} - else { - if((hz|lz)==0) /* return sign(x)*0 */ - return Zero[(u_int64_t)sx>>63]; - hx = hz+hz+(lz>>63); lx = lz+lz; - } - } - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz>=0) {hx=hz;lx=lz;} - - /* convert back to floating value and restore the sign */ - if((hx|lx)==0) /* return sign(x)*0 */ - return Zero[(u_int64_t)sx>>63]; - while(hx<0x0001000000000000LL) { /* normalize x */ - hx = hx+hx+(lx>>63); lx = lx+lx; - iy -= 1; - } - if(iy>= -16382) { /* normalize output */ - hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48)); - SET_LDOUBLE_WORDS64(x,hx|sx,lx); - } else { /* subnormal output */ - n = -16382 - iy; - if(n<=48) { - lx = (lx>>n)|((u_int64_t)hx<<(64-n)); - hx >>= n; - } else if (n<=63) { - lx = (hx<<(64-n))|(lx>>n); hx = sx; - } else { - lx = hx>>(n-64); hx = sx; - } - SET_LDOUBLE_WORDS64(x,hx|sx,lx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} -strong_alias (__ieee754_fmodl, __fmodl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_gammal_r.c b/sysdeps/ieee754/ldbl-128/e_gammal_r.c deleted file mode 100644 index 3a5317ade1..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_gammal_r.c +++ /dev/null @@ -1,218 +0,0 @@ -/* Implementation of gamma function according to ISO C. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's - approximation to gamma function. */ - -static const _Float128 gamma_coeff[] = - { - L(0x1.5555555555555555555555555555p-4), - L(-0xb.60b60b60b60b60b60b60b60b60b8p-12), - L(0x3.4034034034034034034034034034p-12), - L(-0x2.7027027027027027027027027028p-12), - L(0x3.72a3c5631fe46ae1d4e700dca8f2p-12), - L(-0x7.daac36664f1f207daac36664f1f4p-12), - L(0x1.a41a41a41a41a41a41a41a41a41ap-8), - L(-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8), - L(0x2.dfd2c703c0cfff430edfd2c703cp-4), - L(-0x1.6476701181f39edbdb9ce625987dp+0), - L(0xd.672219167002d3a7a9c886459cp+0), - L(-0x9.cd9292e6660d55b3f712eb9e07c8p+4), - L(0x8.911a740da740da740da740da741p+8), - L(-0x8.d0cc570e255bf59ff6eec24b49p+12), - }; - -#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0])) - -/* Return gamma (X), for positive X less than 1775, in the form R * - 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to - avoid overflow or underflow in intermediate calculations. */ - -static _Float128 -gammal_positive (_Float128 x, int *exp2_adj) -{ - int local_signgam; - if (x < L(0.5)) - { - *exp2_adj = 0; - return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x; - } - else if (x <= L(1.5)) - { - *exp2_adj = 0; - return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam)); - } - else if (x < L(12.5)) - { - /* Adjust into the range for using exp (lgamma). */ - *exp2_adj = 0; - _Float128 n = __ceill (x - L(1.5)); - _Float128 x_adj = x - n; - _Float128 eps; - _Float128 prod = __gamma_productl (x_adj, 0, n, &eps); - return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam)) - * prod * (1 + eps)); - } - else - { - _Float128 eps = 0; - _Float128 x_eps = 0; - _Float128 x_adj = x; - _Float128 prod = 1; - if (x < 24) - { - /* Adjust into the range for applying Stirling's - approximation. */ - _Float128 n = __ceill (24 - x); - x_adj = x + n; - x_eps = (x - (x_adj - n)); - prod = __gamma_productl (x_adj - n, x_eps, n, &eps); - } - /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)). - Compute gamma (X_ADJ + X_EPS) using Stirling's approximation, - starting by computing pow (X_ADJ, X_ADJ) with a power of 2 - factored out. */ - _Float128 exp_adj = -eps; - _Float128 x_adj_int = __roundl (x_adj); - _Float128 x_adj_frac = x_adj - x_adj_int; - int x_adj_log2; - _Float128 x_adj_mant = __frexpl (x_adj, &x_adj_log2); - if (x_adj_mant < M_SQRT1_2l) - { - x_adj_log2--; - x_adj_mant *= 2; - } - *exp2_adj = x_adj_log2 * (int) x_adj_int; - _Float128 ret = (__ieee754_powl (x_adj_mant, x_adj) - * __ieee754_exp2l (x_adj_log2 * x_adj_frac) - * __ieee754_expl (-x_adj) - * __ieee754_sqrtl (2 * M_PIl / x_adj) - / prod); - exp_adj += x_eps * __ieee754_logl (x_adj); - _Float128 bsum = gamma_coeff[NCOEFF - 1]; - _Float128 x_adj2 = x_adj * x_adj; - for (size_t i = 1; i <= NCOEFF - 1; i++) - bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i]; - exp_adj += bsum / x_adj; - return ret + ret * __expm1l (exp_adj); - } -} - -_Float128 -__ieee754_gammal_r (_Float128 x, int *signgamp) -{ - int64_t hx; - u_int64_t lx; - _Float128 ret; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - - if (((hx & 0x7fffffffffffffffLL) | lx) == 0) - { - /* Return value for x == 0 is Inf with divide by zero exception. */ - *signgamp = 0; - return 1.0 / x; - } - if (hx < 0 && (u_int64_t) hx < 0xffff000000000000ULL && __rintl (x) == x) - { - /* Return value for integer x < 0 is NaN with invalid exception. */ - *signgamp = 0; - return (x - x) / (x - x); - } - if (hx == 0xffff000000000000ULL && lx == 0) - { - /* x == -Inf. According to ISO this is NaN. */ - *signgamp = 0; - return x - x; - } - if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL) - { - /* Positive infinity (return positive infinity) or NaN (return - NaN). */ - *signgamp = 0; - return x + x; - } - - if (x >= 1756) - { - /* Overflow. */ - *signgamp = 0; - return LDBL_MAX * LDBL_MAX; - } - else - { - SET_RESTORE_ROUNDL (FE_TONEAREST); - if (x > 0) - { - *signgamp = 0; - int exp2_adj; - ret = gammal_positive (x, &exp2_adj); - ret = __scalbnl (ret, exp2_adj); - } - else if (x >= -LDBL_EPSILON / 4) - { - *signgamp = 0; - ret = 1 / x; - } - else - { - _Float128 tx = __truncl (x); - *signgamp = (tx == 2 * __truncl (tx / 2)) ? -1 : 1; - if (x <= -1775) - /* Underflow. */ - ret = LDBL_MIN * LDBL_MIN; - else - { - _Float128 frac = tx - x; - if (frac > L(0.5)) - frac = 1 - frac; - _Float128 sinpix = (frac <= L(0.25) - ? __sinl (M_PIl * frac) - : __cosl (M_PIl * (L(0.5) - frac))); - int exp2_adj; - ret = M_PIl / (-x * sinpix - * gammal_positive (-x, &exp2_adj)); - ret = __scalbnl (ret, -exp2_adj); - math_check_force_underflow_nonneg (ret); - } - } - } - if (isinf (ret) && x != 0) - { - if (*signgamp < 0) - return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX); - else - return __copysignl (LDBL_MAX, ret) * LDBL_MAX; - } - else if (ret == 0) - { - if (*signgamp < 0) - return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN); - else - return __copysignl (LDBL_MIN, ret) * LDBL_MIN; - } - else - return ret; -} -strong_alias (__ieee754_gammal_r, __gammal_r_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_hypotl.c b/sysdeps/ieee754/ldbl-128/e_hypotl.c deleted file mode 100644 index 6c4e178fbe..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_hypotl.c +++ /dev/null @@ -1,140 +0,0 @@ -/* e_hypotl.c -- long double version of e_hypot.c. - * Conversion to long double by Jakub Jelinek, jakub@redhat.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_hypotl(x,y) - * - * Method : - * If (assume round-to-nearest) z=x*x+y*y - * has error less than sqrtl(2)/2 ulp, than - * sqrtl(z) has error less than 1 ulp (exercise). - * - * So, compute sqrtl(x*x+y*y) with some care as - * follows to get the error below 1 ulp: - * - * Assume x>y>0; - * (if possible, set rounding to round-to-nearest) - * 1. if x > 2y use - * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y - * where x1 = x with lower 64 bits cleared, x2 = x-x1; else - * 2. if x <= 2y use - * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) - * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, - * y1= y with lower 64 bits chopped, y2 = y-y1. - * - * NOTE: scaling may be necessary if some argument is too - * large or too tiny - * - * Special cases: - * hypotl(x,y) is INF if x or y is +INF or -INF; else - * hypotl(x,y) is NAN if x or y is NAN. - * - * Accuracy: - * hypotl(x,y) returns sqrtl(x^2+y^2) with error less - * than 1 ulps (units in the last place) - */ - -#include <math.h> -#include <math_private.h> - -_Float128 -__ieee754_hypotl(_Float128 x, _Float128 y) -{ - _Float128 a,b,t1,t2,y1,y2,w; - int64_t j,k,ha,hb; - - GET_LDOUBLE_MSW64(ha,x); - ha &= 0x7fffffffffffffffLL; - GET_LDOUBLE_MSW64(hb,y); - hb &= 0x7fffffffffffffffLL; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_LDOUBLE_MSW64(a,ha); /* a <- |a| */ - SET_LDOUBLE_MSW64(b,hb); /* b <- |b| */ - if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */ - k=0; - if(ha > 0x5f3f000000000000LL) { /* a>2**8000 */ - if(ha >= 0x7fff000000000000LL) { /* Inf or NaN */ - u_int64_t low; - w = a+b; /* for sNaN */ - if (issignaling (a) || issignaling (b)) - return w; - GET_LDOUBLE_LSW64(low,a); - if(((ha&0xffffffffffffLL)|low)==0) w = a; - GET_LDOUBLE_LSW64(low,b); - if(((hb^0x7fff000000000000LL)|low)==0) w = b; - return w; - } - /* scale a and b by 2**-9600 */ - ha -= 0x2580000000000000LL; - hb -= 0x2580000000000000LL; k += 9600; - SET_LDOUBLE_MSW64(a,ha); - SET_LDOUBLE_MSW64(b,hb); - } - if(hb < 0x20bf000000000000LL) { /* b < 2**-8000 */ - if(hb <= 0x0000ffffffffffffLL) { /* subnormal b or 0 */ - u_int64_t low; - GET_LDOUBLE_LSW64(low,b); - if((hb|low)==0) return a; - t1=0; - SET_LDOUBLE_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */ - b *= t1; - a *= t1; - k -= 16382; - GET_LDOUBLE_MSW64 (ha, a); - GET_LDOUBLE_MSW64 (hb, b); - if (hb > ha) - { - t1 = a; - a = b; - b = t1; - j = ha; - ha = hb; - hb = j; - } - } else { /* scale a and b by 2^9600 */ - ha += 0x2580000000000000LL; /* a *= 2^9600 */ - hb += 0x2580000000000000LL; /* b *= 2^9600 */ - k -= 9600; - SET_LDOUBLE_MSW64(a,ha); - SET_LDOUBLE_MSW64(b,hb); - } - } - /* medium size a and b */ - w = a-b; - if (w>b) { - t1 = 0; - SET_LDOUBLE_MSW64(t1,ha); - t2 = a-t1; - w = __ieee754_sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - y1 = 0; - SET_LDOUBLE_MSW64(y1,hb); - y2 = b - y1; - t1 = 0; - SET_LDOUBLE_MSW64(t1,ha+0x0001000000000000LL); - t2 = a - t1; - w = __ieee754_sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - u_int64_t high; - t1 = 1; - GET_LDOUBLE_MSW64(high,t1); - SET_LDOUBLE_MSW64(t1,high+(k<<48)); - w *= t1; - math_check_force_underflow_nonneg (w); - return w; - } else return w; -} -strong_alias (__ieee754_hypotl, __hypotl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_ilogbl.c b/sysdeps/ieee754/ldbl-128/e_ilogbl.c deleted file mode 100644 index 9effe6386a..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_ilogbl.c +++ /dev/null @@ -1,56 +0,0 @@ -/* s_ilogbl.c -- long double version of s_ilogb.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* ilogbl(long double x) - * return the binary exponent of non-zero x - * ilogbl(0) = FP_ILOGB0 - * ilogbl(NaN) = FP_ILOGBNAN (no signal is raised) - * ilogbl(+-Inf) = INT_MAX (no signal is raised) - */ - -#include <limits.h> -#include <math.h> -#include <math_private.h> - -int __ieee754_ilogbl (_Float128 x) -{ - int64_t hx,lx; - int ix; - - GET_LDOUBLE_WORDS64(hx,lx,x); - hx &= 0x7fffffffffffffffLL; - if(hx <= 0x0001000000000000LL) { - if((hx|lx)==0) - return FP_ILOGB0; /* ilogbl(0) = FP_ILOGB0 */ - else /* subnormal x */ - if(hx==0) { - for (ix = -16431; lx>0; lx<<=1) ix -=1; - } else { - for (ix = -16382, hx<<=15; hx>0; hx<<=1) ix -=1; - } - return ix; - } - else if (hx<0x7fff000000000000LL) return (hx>>48)-0x3fff; - else if (FP_ILOGBNAN != INT_MAX) { - /* ISO C99 requires ilogbl(+-Inf) == INT_MAX. */ - if (((hx^0x7fff000000000000LL)|lx) == 0) - return INT_MAX; - } - return FP_ILOGBNAN; -} diff --git a/sysdeps/ieee754/ldbl-128/e_j0l.c b/sysdeps/ieee754/ldbl-128/e_j0l.c deleted file mode 100644 index fb8d3518ce..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_j0l.c +++ /dev/null @@ -1,937 +0,0 @@ -/* j0l.c - * - * Bessel function of order zero - * - * - * - * SYNOPSIS: - * - * long double x, y, j0l(); - * - * y = j0l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of first kind, order zero of the argument. - * - * The domain is divided into two major intervals [0, 2] and - * (2, infinity). In the first interval the rational approximation - * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2) - * The second interval is further partitioned into eight equal segments - * of 1/x. - * - * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)), - * X = x - pi/4, - * - * and the auxiliary functions are given by - * - * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x), - * P0(x) = 1 + 1/x^2 R(1/x^2) - * - * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x), - * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 1.7e-34 2.4e-35 - * - * - */ - -/* y0l.c - * - * Bessel function of the second kind, order zero - * - * - * - * SYNOPSIS: - * - * double x, y, y0l(); - * - * y = y0l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind, of order - * zero, of the argument. - * - * The approximation is the same as for J0(x), and - * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)). - * - * ACCURACY: - * - * Absolute error, when y0(x) < 1; else relative error: - * - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 3.0e-34 2.7e-35 - * - */ - -/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov). - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* 1 / sqrt(pi) */ -static const _Float128 ONEOSQPI = L(5.6418958354775628694807945156077258584405E-1); -/* 2 / pi */ -static const _Float128 TWOOPI = L(6.3661977236758134307553505349005744813784E-1); -static const _Float128 zero = 0; - -/* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2) - Peak relative error 3.4e-37 - 0 <= x <= 2 */ -#define NJ0_2N 6 -static const _Float128 J0_2N[NJ0_2N + 1] = { - L(3.133239376997663645548490085151484674892E16), - L(-5.479944965767990821079467311839107722107E14), - L(6.290828903904724265980249871997551894090E12), - L(-3.633750176832769659849028554429106299915E10), - L(1.207743757532429576399485415069244807022E8), - L(-2.107485999925074577174305650549367415465E5), - L(1.562826808020631846245296572935547005859E2), -}; -#define NJ0_2D 6 -static const _Float128 J0_2D[NJ0_2D + 1] = { - L(2.005273201278504733151033654496928968261E18), - L(2.063038558793221244373123294054149790864E16), - L(1.053350447931127971406896594022010524994E14), - L(3.496556557558702583143527876385508882310E11), - L(8.249114511878616075860654484367133976306E8), - L(1.402965782449571800199759247964242790589E6), - L(1.619910762853439600957801751815074787351E3), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2), - 0 <= 1/x <= .0625 - Peak relative error 3.3e-36 */ -#define NP16_IN 9 -static const _Float128 P16_IN[NP16_IN + 1] = { - L(-1.901689868258117463979611259731176301065E-16), - L(-1.798743043824071514483008340803573980931E-13), - L(-6.481746687115262291873324132944647438959E-11), - L(-1.150651553745409037257197798528294248012E-8), - L(-1.088408467297401082271185599507222695995E-6), - L(-5.551996725183495852661022587879817546508E-5), - L(-1.477286941214245433866838787454880214736E-3), - L(-1.882877976157714592017345347609200402472E-2), - L(-9.620983176855405325086530374317855880515E-2), - L(-1.271468546258855781530458854476627766233E-1), -}; -#define NP16_ID 9 -static const _Float128 P16_ID[NP16_ID + 1] = { - L(2.704625590411544837659891569420764475007E-15), - L(2.562526347676857624104306349421985403573E-12), - L(9.259137589952741054108665570122085036246E-10), - L(1.651044705794378365237454962653430805272E-7), - L(1.573561544138733044977714063100859136660E-5), - L(8.134482112334882274688298469629884804056E-4), - L(2.219259239404080863919375103673593571689E-2), - L(2.976990606226596289580242451096393862792E-1), - L(1.713895630454693931742734911930937246254E0), - L(3.231552290717904041465898249160757368855E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - 0.0625 <= 1/x <= 0.125 - Peak relative error 2.4e-35 */ -#define NP8_16N 10 -static const _Float128 P8_16N[NP8_16N + 1] = { - L(-2.335166846111159458466553806683579003632E-15), - L(-1.382763674252402720401020004169367089975E-12), - L(-3.192160804534716696058987967592784857907E-10), - L(-3.744199606283752333686144670572632116899E-8), - L(-2.439161236879511162078619292571922772224E-6), - L(-9.068436986859420951664151060267045346549E-5), - L(-1.905407090637058116299757292660002697359E-3), - L(-2.164456143936718388053842376884252978872E-2), - L(-1.212178415116411222341491717748696499966E-1), - L(-2.782433626588541494473277445959593334494E-1), - L(-1.670703190068873186016102289227646035035E-1), -}; -#define NP8_16D 10 -static const _Float128 P8_16D[NP8_16D + 1] = { - L(3.321126181135871232648331450082662856743E-14), - L(1.971894594837650840586859228510007703641E-11), - L(4.571144364787008285981633719513897281690E-9), - L(5.396419143536287457142904742849052402103E-7), - L(3.551548222385845912370226756036899901549E-5), - L(1.342353874566932014705609788054598013516E-3), - L(2.899133293006771317589357444614157734385E-2), - L(3.455374978185770197704507681491574261545E-1), - L(2.116616964297512311314454834712634820514E0), - L(5.850768316827915470087758636881584174432E0), - L(5.655273858938766830855753983631132928968E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - 0.125 <= 1/x <= 0.1875 - Peak relative error 2.7e-35 */ -#define NP5_8N 10 -static const _Float128 P5_8N[NP5_8N + 1] = { - L(-1.270478335089770355749591358934012019596E-12), - L(-4.007588712145412921057254992155810347245E-10), - L(-4.815187822989597568124520080486652009281E-8), - L(-2.867070063972764880024598300408284868021E-6), - L(-9.218742195161302204046454768106063638006E-5), - L(-1.635746821447052827526320629828043529997E-3), - L(-1.570376886640308408247709616497261011707E-2), - L(-7.656484795303305596941813361786219477807E-2), - L(-1.659371030767513274944805479908858628053E-1), - L(-1.185340550030955660015841796219919804915E-1), - L(-8.920026499909994671248893388013790366712E-3), -}; -#define NP5_8D 9 -static const _Float128 P5_8D[NP5_8D + 1] = { - L(1.806902521016705225778045904631543990314E-11), - L(5.728502760243502431663549179135868966031E-9), - L(6.938168504826004255287618819550667978450E-7), - L(4.183769964807453250763325026573037785902E-5), - L(1.372660678476925468014882230851637878587E-3), - L(2.516452105242920335873286419212708961771E-2), - L(2.550502712902647803796267951846557316182E-1), - L(1.365861559418983216913629123778747617072E0), - L(3.523825618308783966723472468855042541407E0), - L(3.656365803506136165615111349150536282434E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - Peak relative error 3.5e-35 - 0.1875 <= 1/x <= 0.25 */ -#define NP4_5N 9 -static const _Float128 P4_5N[NP4_5N + 1] = { - L(-9.791405771694098960254468859195175708252E-10), - L(-1.917193059944531970421626610188102836352E-7), - L(-1.393597539508855262243816152893982002084E-5), - L(-4.881863490846771259880606911667479860077E-4), - L(-8.946571245022470127331892085881699269853E-3), - L(-8.707474232568097513415336886103899434251E-2), - L(-4.362042697474650737898551272505525973766E-1), - L(-1.032712171267523975431451359962375617386E0), - L(-9.630502683169895107062182070514713702346E-1), - L(-2.251804386252969656586810309252357233320E-1), -}; -#define NP4_5D 9 -static const _Float128 P4_5D[NP4_5D + 1] = { - L(1.392555487577717669739688337895791213139E-8), - L(2.748886559120659027172816051276451376854E-6), - L(2.024717710644378047477189849678576659290E-4), - L(7.244868609350416002930624752604670292469E-3), - L(1.373631762292244371102989739300382152416E-1), - L(1.412298581400224267910294815260613240668E0), - L(7.742495637843445079276397723849017617210E0), - L(2.138429269198406512028307045259503811861E1), - L(2.651547684548423476506826951831712762610E1), - L(1.167499382465291931571685222882909166935E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - Peak relative error 2.3e-36 - 0.25 <= 1/x <= 0.3125 */ -#define NP3r2_4N 9 -static const _Float128 P3r2_4N[NP3r2_4N + 1] = { - L(-2.589155123706348361249809342508270121788E-8), - L(-3.746254369796115441118148490849195516593E-6), - L(-1.985595497390808544622893738135529701062E-4), - L(-5.008253705202932091290132760394976551426E-3), - L(-6.529469780539591572179155511840853077232E-2), - L(-4.468736064761814602927408833818990271514E-1), - L(-1.556391252586395038089729428444444823380E0), - L(-2.533135309840530224072920725976994981638E0), - L(-1.605509621731068453869408718565392869560E0), - L(-2.518966692256192789269859830255724429375E-1), -}; -#define NP3r2_4D 9 -static const _Float128 P3r2_4D[NP3r2_4D + 1] = { - L(3.682353957237979993646169732962573930237E-7), - L(5.386741661883067824698973455566332102029E-5), - L(2.906881154171822780345134853794241037053E-3), - L(7.545832595801289519475806339863492074126E-2), - L(1.029405357245594877344360389469584526654E0), - L(7.565706120589873131187989560509757626725E0), - L(2.951172890699569545357692207898667665796E1), - L(5.785723537170311456298467310529815457536E1), - L(5.095621464598267889126015412522773474467E1), - L(1.602958484169953109437547474953308401442E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - Peak relative error 1.0e-35 - 0.3125 <= 1/x <= 0.375 */ -#define NP2r7_3r2N 9 -static const _Float128 P2r7_3r2N[NP2r7_3r2N + 1] = { - L(-1.917322340814391131073820537027234322550E-7), - L(-1.966595744473227183846019639723259011906E-5), - L(-7.177081163619679403212623526632690465290E-4), - L(-1.206467373860974695661544653741899755695E-2), - L(-1.008656452188539812154551482286328107316E-1), - L(-4.216016116408810856620947307438823892707E-1), - L(-8.378631013025721741744285026537009814161E-1), - L(-6.973895635309960850033762745957946272579E-1), - L(-1.797864718878320770670740413285763554812E-1), - L(-4.098025357743657347681137871388402849581E-3), -}; -#define NP2r7_3r2D 8 -static const _Float128 P2r7_3r2D[NP2r7_3r2D + 1] = { - L(2.726858489303036441686496086962545034018E-6), - L(2.840430827557109238386808968234848081424E-4), - L(1.063826772041781947891481054529454088832E-2), - L(1.864775537138364773178044431045514405468E-1), - L(1.665660052857205170440952607701728254211E0), - L(7.723745889544331153080842168958348568395E0), - L(1.810726427571829798856428548102077799835E1), - L(1.986460672157794440666187503833545388527E1), - L(8.645503204552282306364296517220055815488E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - Peak relative error 1.3e-36 - 0.3125 <= 1/x <= 0.4375 */ -#define NP2r3_2r7N 9 -static const _Float128 P2r3_2r7N[NP2r3_2r7N + 1] = { - L(-1.594642785584856746358609622003310312622E-6), - L(-1.323238196302221554194031733595194539794E-4), - L(-3.856087818696874802689922536987100372345E-3), - L(-5.113241710697777193011470733601522047399E-2), - L(-3.334229537209911914449990372942022350558E-1), - L(-1.075703518198127096179198549659283422832E0), - L(-1.634174803414062725476343124267110981807E0), - L(-1.030133247434119595616826842367268304880E0), - L(-1.989811539080358501229347481000707289391E-1), - L(-3.246859189246653459359775001466924610236E-3), -}; -#define NP2r3_2r7D 8 -static const _Float128 P2r3_2r7D[NP2r3_2r7D + 1] = { - L(2.267936634217251403663034189684284173018E-5), - L(1.918112982168673386858072491437971732237E-3), - L(5.771704085468423159125856786653868219522E-2), - L(8.056124451167969333717642810661498890507E-1), - L(5.687897967531010276788680634413789328776E0), - L(2.072596760717695491085444438270778394421E1), - L(3.801722099819929988585197088613160496684E1), - L(3.254620235902912339534998592085115836829E1), - L(1.104847772130720331801884344645060675036E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2) - Peak relative error 1.2e-35 - 0.4375 <= 1/x <= 0.5 */ -#define NP2_2r3N 8 -static const _Float128 P2_2r3N[NP2_2r3N + 1] = { - L(-1.001042324337684297465071506097365389123E-4), - L(-6.289034524673365824853547252689991418981E-3), - L(-1.346527918018624234373664526930736205806E-1), - L(-1.268808313614288355444506172560463315102E0), - L(-5.654126123607146048354132115649177406163E0), - L(-1.186649511267312652171775803270911971693E1), - L(-1.094032424931998612551588246779200724257E1), - L(-3.728792136814520055025256353193674625267E0), - L(-3.000348318524471807839934764596331810608E-1), -}; -#define NP2_2r3D 8 -static const _Float128 P2_2r3D[NP2_2r3D + 1] = { - L(1.423705538269770974803901422532055612980E-3), - L(9.171476630091439978533535167485230575894E-2), - L(2.049776318166637248868444600215942828537E0), - L(2.068970329743769804547326701946144899583E1), - L(1.025103500560831035592731539565060347709E2), - L(2.528088049697570728252145557167066708284E2), - L(2.992160327587558573740271294804830114205E2), - L(1.540193761146551025832707739468679973036E2), - L(2.779516701986912132637672140709452502650E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 2.2e-35 - 0 <= 1/x <= .0625 */ -#define NQ16_IN 10 -static const _Float128 Q16_IN[NQ16_IN + 1] = { - L(2.343640834407975740545326632205999437469E-18), - L(2.667978112927811452221176781536278257448E-15), - L(1.178415018484555397390098879501969116536E-12), - L(2.622049767502719728905924701288614016597E-10), - L(3.196908059607618864801313380896308968673E-8), - L(2.179466154171673958770030655199434798494E-6), - L(8.139959091628545225221976413795645177291E-5), - L(1.563900725721039825236927137885747138654E-3), - L(1.355172364265825167113562519307194840307E-2), - L(3.928058355906967977269780046844768588532E-2), - L(1.107891967702173292405380993183694932208E-2), -}; -#define NQ16_ID 9 -static const _Float128 Q16_ID[NQ16_ID + 1] = { - L(3.199850952578356211091219295199301766718E-17), - L(3.652601488020654842194486058637953363918E-14), - L(1.620179741394865258354608590461839031281E-11), - L(3.629359209474609630056463248923684371426E-9), - L(4.473680923894354600193264347733477363305E-7), - L(3.106368086644715743265603656011050476736E-5), - L(1.198239259946770604954664925153424252622E-3), - L(2.446041004004283102372887804475767568272E-2), - L(2.403235525011860603014707768815113698768E-1), - L(9.491006790682158612266270665136910927149E-1), - /* 1.000000000000000000000000000000000000000E0 */ - }; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 5.1e-36 - 0.0625 <= 1/x <= 0.125 */ -#define NQ8_16N 11 -static const _Float128 Q8_16N[NQ8_16N + 1] = { - L(1.001954266485599464105669390693597125904E-17), - L(7.545499865295034556206475956620160007849E-15), - L(2.267838684785673931024792538193202559922E-12), - L(3.561909705814420373609574999542459912419E-10), - L(3.216201422768092505214730633842924944671E-8), - L(1.731194793857907454569364622452058554314E-6), - L(5.576944613034537050396518509871004586039E-5), - L(1.051787760316848982655967052985391418146E-3), - L(1.102852974036687441600678598019883746959E-2), - L(5.834647019292460494254225988766702933571E-2), - L(1.290281921604364618912425380717127576529E-1), - L(7.598886310387075708640370806458926458301E-2), -}; -#define NQ8_16D 11 -static const _Float128 Q8_16D[NQ8_16D + 1] = { - L(1.368001558508338469503329967729951830843E-16), - L(1.034454121857542147020549303317348297289E-13), - L(3.128109209247090744354764050629381674436E-11), - L(4.957795214328501986562102573522064468671E-9), - L(4.537872468606711261992676606899273588899E-7), - L(2.493639207101727713192687060517509774182E-5), - L(8.294957278145328349785532236663051405805E-4), - L(1.646471258966713577374948205279380115839E-2), - L(1.878910092770966718491814497982191447073E-1), - L(1.152641605706170353727903052525652504075E0), - L(3.383550240669773485412333679367792932235E0), - L(3.823875252882035706910024716609908473970E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 3.9e-35 - 0.125 <= 1/x <= 0.1875 */ -#define NQ5_8N 10 -static const _Float128 Q5_8N[NQ5_8N + 1] = { - L(1.750399094021293722243426623211733898747E-13), - L(6.483426211748008735242909236490115050294E-11), - L(9.279430665656575457141747875716899958373E-9), - L(6.696634968526907231258534757736576340266E-7), - L(2.666560823798895649685231292142838188061E-5), - L(6.025087697259436271271562769707550594540E-4), - L(7.652807734168613251901945778921336353485E-3), - L(5.226269002589406461622551452343519078905E-2), - L(1.748390159751117658969324896330142895079E-1), - L(2.378188719097006494782174902213083589660E-1), - L(8.383984859679804095463699702165659216831E-2), -}; -#define NQ5_8D 10 -static const _Float128 Q5_8D[NQ5_8D + 1] = { - L(2.389878229704327939008104855942987615715E-12), - L(8.926142817142546018703814194987786425099E-10), - L(1.294065862406745901206588525833274399038E-7), - L(9.524139899457666250828752185212769682191E-6), - L(3.908332488377770886091936221573123353489E-4), - L(9.250427033957236609624199884089916836748E-3), - L(1.263420066165922645975830877751588421451E-1), - L(9.692527053860420229711317379861733180654E-1), - L(3.937813834630430172221329298841520707954E0), - L(7.603126427436356534498908111445191312181E0), - L(5.670677653334105479259958485084550934305E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 3.2e-35 - 0.1875 <= 1/x <= 0.25 */ -#define NQ4_5N 10 -static const _Float128 Q4_5N[NQ4_5N + 1] = { - L(2.233870042925895644234072357400122854086E-11), - L(5.146223225761993222808463878999151699792E-9), - L(4.459114531468296461688753521109797474523E-7), - L(1.891397692931537975547242165291668056276E-5), - L(4.279519145911541776938964806470674565504E-4), - L(5.275239415656560634702073291768904783989E-3), - L(3.468698403240744801278238473898432608887E-2), - L(1.138773146337708415188856882915457888274E-1), - L(1.622717518946443013587108598334636458955E-1), - L(7.249040006390586123760992346453034628227E-2), - L(1.941595365256460232175236758506411486667E-3), -}; -#define NQ4_5D 9 -static const _Float128 Q4_5D[NQ4_5D + 1] = { - L(3.049977232266999249626430127217988047453E-10), - L(7.120883230531035857746096928889676144099E-8), - L(6.301786064753734446784637919554359588859E-6), - L(2.762010530095069598480766869426308077192E-4), - L(6.572163250572867859316828886203406361251E-3), - L(8.752566114841221958200215255461843397776E-2), - L(6.487654992874805093499285311075289932664E-1), - L(2.576550017826654579451615283022812801435E0), - L(5.056392229924022835364779562707348096036E0), - L(4.179770081068251464907531367859072157773E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 1.4e-36 - 0.25 <= 1/x <= 0.3125 */ -#define NQ3r2_4N 10 -static const _Float128 Q3r2_4N[NQ3r2_4N + 1] = { - L(6.126167301024815034423262653066023684411E-10), - L(1.043969327113173261820028225053598975128E-7), - L(6.592927270288697027757438170153763220190E-6), - L(2.009103660938497963095652951912071336730E-4), - L(3.220543385492643525985862356352195896964E-3), - L(2.774405975730545157543417650436941650990E-2), - L(1.258114008023826384487378016636555041129E-1), - L(2.811724258266902502344701449984698323860E-1), - L(2.691837665193548059322831687432415014067E-1), - L(7.949087384900985370683770525312735605034E-2), - L(1.229509543620976530030153018986910810747E-3), -}; -#define NQ3r2_4D 9 -static const _Float128 Q3r2_4D[NQ3r2_4D + 1] = { - L(8.364260446128475461539941389210166156568E-9), - L(1.451301850638956578622154585560759862764E-6), - L(9.431830010924603664244578867057141839463E-5), - L(3.004105101667433434196388593004526182741E-3), - L(5.148157397848271739710011717102773780221E-2), - L(4.901089301726939576055285374953887874895E-1), - L(2.581760991981709901216967665934142240346E0), - L(7.257105880775059281391729708630912791847E0), - L(1.006014717326362868007913423810737369312E1), - L(5.879416600465399514404064187445293212470E0), - /* 1.000000000000000000000000000000000000000E0*/ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 3.8e-36 - 0.3125 <= 1/x <= 0.375 */ -#define NQ2r7_3r2N 9 -static const _Float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = { - L(7.584861620402450302063691901886141875454E-8), - L(9.300939338814216296064659459966041794591E-6), - L(4.112108906197521696032158235392604947895E-4), - L(8.515168851578898791897038357239630654431E-3), - L(8.971286321017307400142720556749573229058E-2), - L(4.885856732902956303343015636331874194498E-1), - L(1.334506268733103291656253500506406045846E0), - L(1.681207956863028164179042145803851824654E0), - L(8.165042692571721959157677701625853772271E-1), - L(9.805848115375053300608712721986235900715E-2), -}; -#define NQ2r7_3r2D 9 -static const _Float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = { - L(1.035586492113036586458163971239438078160E-6), - L(1.301999337731768381683593636500979713689E-4), - L(5.993695702564527062553071126719088859654E-3), - L(1.321184892887881883489141186815457808785E-1), - L(1.528766555485015021144963194165165083312E0), - L(9.561463309176490874525827051566494939295E0), - L(3.203719484883967351729513662089163356911E1), - L(5.497294687660930446641539152123568668447E1), - L(4.391158169390578768508675452986948391118E1), - L(1.347836630730048077907818943625789418378E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 2.2e-35 - 0.375 <= 1/x <= 0.4375 */ -#define NQ2r3_2r7N 9 -static const _Float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = { - L(4.455027774980750211349941766420190722088E-7), - L(4.031998274578520170631601850866780366466E-5), - L(1.273987274325947007856695677491340636339E-3), - L(1.818754543377448509897226554179659122873E-2), - L(1.266748858326568264126353051352269875352E-1), - L(4.327578594728723821137731555139472880414E-1), - L(6.892532471436503074928194969154192615359E-1), - L(4.490775818438716873422163588640262036506E-1), - L(8.649615949297322440032000346117031581572E-2), - L(7.261345286655345047417257611469066147561E-4), -}; -#define NQ2r3_2r7D 8 -static const _Float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = { - L(6.082600739680555266312417978064954793142E-6), - L(5.693622538165494742945717226571441747567E-4), - L(1.901625907009092204458328768129666975975E-2), - L(2.958689532697857335456896889409923371570E-1), - L(2.343124711045660081603809437993368799568E0), - L(9.665894032187458293568704885528192804376E0), - L(2.035273104990617136065743426322454881353E1), - L(2.044102010478792896815088858740075165531E1), - L(8.445937177863155827844146643468706599304E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x), - Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2)) - Peak relative error 3.1e-36 - 0.4375 <= 1/x <= 0.5 */ -#define NQ2_2r3N 9 -static const _Float128 Q2_2r3N[NQ2_2r3N + 1] = { - L(2.817566786579768804844367382809101929314E-6), - L(2.122772176396691634147024348373539744935E-4), - L(5.501378031780457828919593905395747517585E-3), - L(6.355374424341762686099147452020466524659E-2), - L(3.539652320122661637429658698954748337223E-1), - L(9.571721066119617436343740541777014319695E-1), - L(1.196258777828426399432550698612171955305E0), - L(6.069388659458926158392384709893753793967E-1), - L(9.026746127269713176512359976978248763621E-2), - L(5.317668723070450235320878117210807236375E-4), -}; -#define NQ2_2r3D 8 -static const _Float128 Q2_2r3D[NQ2_2r3D + 1] = { - L(3.846924354014260866793741072933159380158E-5), - L(3.017562820057704325510067178327449946763E-3), - L(8.356305620686867949798885808540444210935E-2), - L(1.068314930499906838814019619594424586273E0), - L(6.900279623894821067017966573640732685233E0), - L(2.307667390886377924509090271780839563141E1), - L(3.921043465412723970791036825401273528513E1), - L(3.167569478939719383241775717095729233436E1), - L(1.051023841699200920276198346301543665909E1), - /* 1.000000000000000000000000000000000000000E0*/ -}; - - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Bessel function of the first kind, order zero. */ - -_Float128 -__ieee754_j0l (_Float128 x) -{ - _Float128 xx, xinv, z, p, q, c, s, cc, ss; - - if (! isfinite (x)) - { - if (x != x) - return x + x; - else - return 0; - } - if (x == 0) - return 1; - - xx = fabsl (x); - if (xx <= 2) - { - if (xx < L(0x1p-57)) - return 1; - /* 0 <= x <= 2 */ - z = xx * xx; - p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D); - p -= L(0.25) * z; - p += 1; - return p; - } - - /* X = x - pi/4 - cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4) - = 1/sqrt(2) * (cos(x) + sin(x)) - sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4) - = 1/sqrt(2) * (sin(x) - cos(x)) - sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - cf. Fdlibm. */ - __sincosl (xx, &s, &c); - ss = s - c; - cc = s + c; - if (xx <= LDBL_MAX / 2) - { - z = -__cosl (xx + xx); - if ((s * c) < 0) - cc = z / ss; - else - ss = z / cc; - } - - if (xx > L(0x1p256)) - return ONEOSQPI * cc / __ieee754_sqrtl (xx); - - xinv = 1 / xx; - z = xinv * xinv; - if (xinv <= 0.25) - { - if (xinv <= 0.125) - { - if (xinv <= 0.0625) - { - p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); - q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); - } - else - { - p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); - q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); - } - } - else if (xinv <= 0.1875) - { - p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); - q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); - } - else - { - p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); - q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); - } - } /* .25 */ - else /* if (xinv <= 0.5) */ - { - if (xinv <= 0.375) - { - if (xinv <= 0.3125) - { - p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); - q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); - } - else - { - p = neval (z, P2r7_3r2N, NP2r7_3r2N) - / deval (z, P2r7_3r2D, NP2r7_3r2D); - q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) - / deval (z, Q2r7_3r2D, NQ2r7_3r2D); - } - } - else if (xinv <= 0.4375) - { - p = neval (z, P2r3_2r7N, NP2r3_2r7N) - / deval (z, P2r3_2r7D, NP2r3_2r7D); - q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) - / deval (z, Q2r3_2r7D, NQ2r3_2r7D); - } - else - { - p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); - q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); - } - } - p = 1 + z * p; - q = z * xinv * q; - q = q - L(0.125) * xinv; - z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx); - return z; -} -strong_alias (__ieee754_j0l, __j0l_finite) - - -/* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2) - Peak absolute error 1.7e-36 (relative where Y0 > 1) - 0 <= x <= 2 */ -#define NY0_2N 7 -static _Float128 Y0_2N[NY0_2N + 1] = { - L(-1.062023609591350692692296993537002558155E19), - L(2.542000883190248639104127452714966858866E19), - L(-1.984190771278515324281415820316054696545E18), - L(4.982586044371592942465373274440222033891E16), - L(-5.529326354780295177243773419090123407550E14), - L(3.013431465522152289279088265336861140391E12), - L(-7.959436160727126750732203098982718347785E9), - L(8.230845651379566339707130644134372793322E6), -}; -#define NY0_2D 7 -static _Float128 Y0_2D[NY0_2D + 1] = { - L(1.438972634353286978700329883122253752192E20), - L(1.856409101981569254247700169486907405500E18), - L(1.219693352678218589553725579802986255614E16), - L(5.389428943282838648918475915779958097958E13), - L(1.774125762108874864433872173544743051653E11), - L(4.522104832545149534808218252434693007036E8), - L(8.872187401232943927082914504125234454930E5), - L(1.251945613186787532055610876304669413955E3), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -static const _Float128 U0 = L(-7.3804295108687225274343927948483016310862e-02); - -/* Bessel function of the second kind, order zero. */ - -_Float128 - __ieee754_y0l(_Float128 x) -{ - _Float128 xx, xinv, z, p, q, c, s, cc, ss; - - if (! isfinite (x)) - return 1 / (x + x * x); - if (x <= 0) - { - if (x < 0) - return (zero / (zero * x)); - return -1 / zero; /* -inf and divide by zero exception. */ - } - xx = fabsl (x); - if (xx <= 0x1p-57) - return U0 + TWOOPI * __ieee754_logl (x); - if (xx <= 2) - { - /* 0 <= x <= 2 */ - z = xx * xx; - p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D); - p = TWOOPI * __ieee754_logl (x) * __ieee754_j0l (x) + p; - return p; - } - - /* X = x - pi/4 - cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4) - = 1/sqrt(2) * (cos(x) + sin(x)) - sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4) - = 1/sqrt(2) * (sin(x) - cos(x)) - sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - cf. Fdlibm. */ - __sincosl (x, &s, &c); - ss = s - c; - cc = s + c; - if (xx <= LDBL_MAX / 2) - { - z = -__cosl (x + x); - if ((s * c) < 0) - cc = z / ss; - else - ss = z / cc; - } - - if (xx > L(0x1p256)) - return ONEOSQPI * ss / __ieee754_sqrtl (x); - - xinv = 1 / xx; - z = xinv * xinv; - if (xinv <= 0.25) - { - if (xinv <= 0.125) - { - if (xinv <= 0.0625) - { - p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); - q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); - } - else - { - p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); - q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); - } - } - else if (xinv <= 0.1875) - { - p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); - q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); - } - else - { - p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); - q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); - } - } /* .25 */ - else /* if (xinv <= 0.5) */ - { - if (xinv <= 0.375) - { - if (xinv <= 0.3125) - { - p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); - q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); - } - else - { - p = neval (z, P2r7_3r2N, NP2r7_3r2N) - / deval (z, P2r7_3r2D, NP2r7_3r2D); - q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) - / deval (z, Q2r7_3r2D, NQ2r7_3r2D); - } - } - else if (xinv <= 0.4375) - { - p = neval (z, P2r3_2r7N, NP2r3_2r7N) - / deval (z, P2r3_2r7D, NP2r3_2r7D); - q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) - / deval (z, Q2r3_2r7D, NQ2r3_2r7D); - } - else - { - p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); - q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); - } - } - p = 1 + z * p; - q = z * xinv * q; - q = q - L(0.125) * xinv; - z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (x); - return z; -} -strong_alias (__ieee754_y0l, __y0l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_j1l.c b/sysdeps/ieee754/ldbl-128/e_j1l.c deleted file mode 100644 index 6fc69faa3c..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_j1l.c +++ /dev/null @@ -1,961 +0,0 @@ -/* j1l.c - * - * Bessel function of order one - * - * - * - * SYNOPSIS: - * - * long double x, y, j1l(); - * - * y = j1l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of first kind, order one of the argument. - * - * The domain is divided into two major intervals [0, 2] and - * (2, infinity). In the first interval the rational approximation is - * J1(x) = .5x + x x^2 R(x^2) - * - * The second interval is further partitioned into eight equal segments - * of 1/x. - * J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)), - * X = x - 3 pi / 4, - * - * and the auxiliary functions are given by - * - * J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x), - * P1(x) = 1 + 1/x^2 R(1/x^2) - * - * Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x), - * Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)). - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 2.8e-34 2.7e-35 - * - * - */ - -/* y1l.c - * - * Bessel function of the second kind, order one - * - * - * - * SYNOPSIS: - * - * double x, y, y1l(); - * - * y = y1l( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind, of order - * one, of the argument. - * - * The domain is divided into two major intervals [0, 2] and - * (2, infinity). In the first interval the rational approximation is - * Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) . - * In the second interval the approximation is the same as for J1(x), and - * Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)), - * X = x - 3 pi / 4. - * - * ACCURACY: - * - * Absolute error, when y0(x) < 1; else relative error: - * - * arithmetic domain # trials peak rms - * IEEE 0, 30 100000 2.7e-34 2.9e-35 - * - */ - -/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.onrl.gov). - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* 1 / sqrt(pi) */ -static const _Float128 ONEOSQPI = L(5.6418958354775628694807945156077258584405E-1); -/* 2 / pi */ -static const _Float128 TWOOPI = L(6.3661977236758134307553505349005744813784E-1); -static const _Float128 zero = 0; - -/* J1(x) = .5x + x x^2 R(x^2) - Peak relative error 1.9e-35 - 0 <= x <= 2 */ -#define NJ0_2N 6 -static const _Float128 J0_2N[NJ0_2N + 1] = { - L(-5.943799577386942855938508697619735179660E16), - L(1.812087021305009192259946997014044074711E15), - L(-2.761698314264509665075127515729146460895E13), - L(2.091089497823600978949389109350658815972E11), - L(-8.546413231387036372945453565654130054307E8), - L(1.797229225249742247475464052741320612261E6), - L(-1.559552840946694171346552770008812083969E3) -}; -#define NJ0_2D 6 -static const _Float128 J0_2D[NJ0_2D + 1] = { - L(9.510079323819108569501613916191477479397E17), - L(1.063193817503280529676423936545854693915E16), - L(5.934143516050192600795972192791775226920E13), - L(2.168000911950620999091479265214368352883E11), - L(5.673775894803172808323058205986256928794E8), - L(1.080329960080981204840966206372671147224E6), - L(1.411951256636576283942477881535283304912E3), - /* 1.000000000000000000000000000000000000000E0L */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - 0 <= 1/x <= .0625 - Peak relative error 3.6e-36 */ -#define NP16_IN 9 -static const _Float128 P16_IN[NP16_IN + 1] = { - L(5.143674369359646114999545149085139822905E-16), - L(4.836645664124562546056389268546233577376E-13), - L(1.730945562285804805325011561498453013673E-10), - L(3.047976856147077889834905908605310585810E-8), - L(2.855227609107969710407464739188141162386E-6), - L(1.439362407936705484122143713643023998457E-4), - L(3.774489768532936551500999699815873422073E-3), - L(4.723962172984642566142399678920790598426E-2), - L(2.359289678988743939925017240478818248735E-1), - L(3.032580002220628812728954785118117124520E-1), -}; -#define NP16_ID 9 -static const _Float128 P16_ID[NP16_ID + 1] = { - L(4.389268795186898018132945193912677177553E-15), - L(4.132671824807454334388868363256830961655E-12), - L(1.482133328179508835835963635130894413136E-9), - L(2.618941412861122118906353737117067376236E-7), - L(2.467854246740858470815714426201888034270E-5), - L(1.257192927368839847825938545925340230490E-3), - L(3.362739031941574274949719324644120720341E-2), - L(4.384458231338934105875343439265370178858E-1), - L(2.412830809841095249170909628197264854651E0), - L(4.176078204111348059102962617368214856874E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - 0.0625 <= 1/x <= 0.125 - Peak relative error 1.9e-36 */ -#define NP8_16N 11 -static const _Float128 P8_16N[NP8_16N + 1] = { - L(2.984612480763362345647303274082071598135E-16), - L(1.923651877544126103941232173085475682334E-13), - L(4.881258879388869396043760693256024307743E-11), - L(6.368866572475045408480898921866869811889E-9), - L(4.684818344104910450523906967821090796737E-7), - L(2.005177298271593587095982211091300382796E-5), - L(4.979808067163957634120681477207147536182E-4), - L(6.946005761642579085284689047091173581127E-3), - L(5.074601112955765012750207555985299026204E-2), - L(1.698599455896180893191766195194231825379E-1), - L(1.957536905259237627737222775573623779638E-1), - L(2.991314703282528370270179989044994319374E-2), -}; -#define NP8_16D 10 -static const _Float128 P8_16D[NP8_16D + 1] = { - L(2.546869316918069202079580939942463010937E-15), - L(1.644650111942455804019788382157745229955E-12), - L(4.185430770291694079925607420808011147173E-10), - L(5.485331966975218025368698195861074143153E-8), - L(4.062884421686912042335466327098932678905E-6), - L(1.758139661060905948870523641319556816772E-4), - L(4.445143889306356207566032244985607493096E-3), - L(6.391901016293512632765621532571159071158E-2), - L(4.933040207519900471177016015718145795434E-1), - L(1.839144086168947712971630337250761842976E0), - L(2.715120873995490920415616716916149586579E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - 0.125 <= 1/x <= 0.1875 - Peak relative error 1.3e-36 */ -#define NP5_8N 10 -static const _Float128 P5_8N[NP5_8N + 1] = { - L(2.837678373978003452653763806968237227234E-12), - L(9.726641165590364928442128579282742354806E-10), - L(1.284408003604131382028112171490633956539E-7), - L(8.524624695868291291250573339272194285008E-6), - L(3.111516908953172249853673787748841282846E-4), - L(6.423175156126364104172801983096596409176E-3), - L(7.430220589989104581004416356260692450652E-2), - L(4.608315409833682489016656279567605536619E-1), - L(1.396870223510964882676225042258855977512E0), - L(1.718500293904122365894630460672081526236E0), - L(5.465927698800862172307352821870223855365E-1) -}; -#define NP5_8D 10 -static const _Float128 P5_8D[NP5_8D + 1] = { - L(2.421485545794616609951168511612060482715E-11), - L(8.329862750896452929030058039752327232310E-9), - L(1.106137992233383429630592081375289010720E-6), - L(7.405786153760681090127497796448503306939E-5), - L(2.740364785433195322492093333127633465227E-3), - L(5.781246470403095224872243564165254652198E-2), - L(6.927711353039742469918754111511109983546E-1), - L(4.558679283460430281188304515922826156690E0), - L(1.534468499844879487013168065728837900009E1), - L(2.313927430889218597919624843161569422745E1), - L(1.194506341319498844336768473218382828637E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - Peak relative error 1.4e-36 - 0.1875 <= 1/x <= 0.25 */ -#define NP4_5N 10 -static const _Float128 P4_5N[NP4_5N + 1] = { - L(1.846029078268368685834261260420933914621E-10), - L(3.916295939611376119377869680335444207768E-8), - L(3.122158792018920627984597530935323997312E-6), - L(1.218073444893078303994045653603392272450E-4), - L(2.536420827983485448140477159977981844883E-3), - L(2.883011322006690823959367922241169171315E-2), - L(1.755255190734902907438042414495469810830E-1), - L(5.379317079922628599870898285488723736599E-1), - L(7.284904050194300773890303361501726561938E-1), - L(3.270110346613085348094396323925000362813E-1), - L(1.804473805689725610052078464951722064757E-2), -}; -#define NP4_5D 9 -static const _Float128 P4_5D[NP4_5D + 1] = { - L(1.575278146806816970152174364308980863569E-9), - L(3.361289173657099516191331123405675054321E-7), - L(2.704692281550877810424745289838790693708E-5), - L(1.070854930483999749316546199273521063543E-3), - L(2.282373093495295842598097265627962125411E-2), - L(2.692025460665354148328762368240343249830E-1), - L(1.739892942593664447220951225734811133759E0), - L(5.890727576752230385342377570386657229324E0), - L(9.517442287057841500750256954117735128153E0), - L(6.100616353935338240775363403030137736013E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - Peak relative error 3.0e-36 - 0.25 <= 1/x <= 0.3125 */ -#define NP3r2_4N 9 -static const _Float128 P3r2_4N[NP3r2_4N + 1] = { - L(8.240803130988044478595580300846665863782E-8), - L(1.179418958381961224222969866406483744580E-5), - L(6.179787320956386624336959112503824397755E-4), - L(1.540270833608687596420595830747166658383E-2), - L(1.983904219491512618376375619598837355076E-1), - L(1.341465722692038870390470651608301155565E0), - L(4.617865326696612898792238245990854646057E0), - L(7.435574801812346424460233180412308000587E0), - L(4.671327027414635292514599201278557680420E0), - L(7.299530852495776936690976966995187714739E-1), -}; -#define NP3r2_4D 9 -static const _Float128 P3r2_4D[NP3r2_4D + 1] = { - L(7.032152009675729604487575753279187576521E-7), - L(1.015090352324577615777511269928856742848E-4), - L(5.394262184808448484302067955186308730620E-3), - L(1.375291438480256110455809354836988584325E-1), - L(1.836247144461106304788160919310404376670E0), - L(1.314378564254376655001094503090935880349E1), - L(4.957184590465712006934452500894672343488E1), - L(9.287394244300647738855415178790263465398E1), - L(7.652563275535900609085229286020552768399E1), - L(2.147042473003074533150718117770093209096E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - Peak relative error 1.0e-35 - 0.3125 <= 1/x <= 0.375 */ -#define NP2r7_3r2N 9 -static const _Float128 P2r7_3r2N[NP2r7_3r2N + 1] = { - L(4.599033469240421554219816935160627085991E-7), - L(4.665724440345003914596647144630893997284E-5), - L(1.684348845667764271596142716944374892756E-3), - L(2.802446446884455707845985913454440176223E-2), - L(2.321937586453963310008279956042545173930E-1), - L(9.640277413988055668692438709376437553804E-1), - L(1.911021064710270904508663334033003246028E0), - L(1.600811610164341450262992138893970224971E0), - L(4.266299218652587901171386591543457861138E-1), - L(1.316470424456061252962568223251247207325E-2), -}; -#define NP2r7_3r2D 8 -static const _Float128 P2r7_3r2D[NP2r7_3r2D + 1] = { - L(3.924508608545520758883457108453520099610E-6), - L(4.029707889408829273226495756222078039823E-4), - L(1.484629715787703260797886463307469600219E-2), - L(2.553136379967180865331706538897231588685E-1), - L(2.229457223891676394409880026887106228740E0), - L(1.005708903856384091956550845198392117318E1), - L(2.277082659664386953166629360352385889558E1), - L(2.384726835193630788249826630376533988245E1), - L(9.700989749041320895890113781610939632410E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - Peak relative error 1.7e-36 - 0.3125 <= 1/x <= 0.4375 */ -#define NP2r3_2r7N 9 -static const _Float128 P2r3_2r7N[NP2r3_2r7N + 1] = { - L(3.916766777108274628543759603786857387402E-6), - L(3.212176636756546217390661984304645137013E-4), - L(9.255768488524816445220126081207248947118E-3), - L(1.214853146369078277453080641911700735354E-1), - L(7.855163309847214136198449861311404633665E-1), - L(2.520058073282978403655488662066019816540E0), - L(3.825136484837545257209234285382183711466E0), - L(2.432569427554248006229715163865569506873E0), - L(4.877934835018231178495030117729800489743E-1), - L(1.109902737860249670981355149101343427885E-2), -}; -#define NP2r3_2r7D 8 -static const _Float128 P2r3_2r7D[NP2r3_2r7D + 1] = { - L(3.342307880794065640312646341190547184461E-5), - L(2.782182891138893201544978009012096558265E-3), - L(8.221304931614200702142049236141249929207E-2), - L(1.123728246291165812392918571987858010949E0), - L(7.740482453652715577233858317133423434590E0), - L(2.737624677567945952953322566311201919139E1), - L(4.837181477096062403118304137851260715475E1), - L(3.941098643468580791437772701093795299274E1), - L(1.245821247166544627558323920382547533630E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* J1(x)cosX + Y1(x)sinX = sqrt( 2/(pi x)) P1(x), P1(x) = 1 + 1/x^2 R(1/x^2), - Peak relative error 1.7e-35 - 0.4375 <= 1/x <= 0.5 */ -#define NP2_2r3N 8 -static const _Float128 P2_2r3N[NP2_2r3N + 1] = { - L(3.397930802851248553545191160608731940751E-4), - L(2.104020902735482418784312825637833698217E-2), - L(4.442291771608095963935342749477836181939E-1), - L(4.131797328716583282869183304291833754967E0), - L(1.819920169779026500146134832455189917589E1), - L(3.781779616522937565300309684282401791291E1), - L(3.459605449728864218972931220783543410347E1), - L(1.173594248397603882049066603238568316561E1), - L(9.455702270242780642835086549285560316461E-1), -}; -#define NP2_2r3D 8 -static const _Float128 P2_2r3D[NP2_2r3D + 1] = { - L(2.899568897241432883079888249845707400614E-3), - L(1.831107138190848460767699919531132426356E-1), - L(3.999350044057883839080258832758908825165E0), - L(3.929041535867957938340569419874195303712E1), - L(1.884245613422523323068802689915538908291E2), - L(4.461469948819229734353852978424629815929E2), - L(5.004998753999796821224085972610636347903E2), - L(2.386342520092608513170837883757163414100E2), - L(3.791322528149347975999851588922424189957E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 8.0e-36 - 0 <= 1/x <= .0625 */ -#define NQ16_IN 10 -static const _Float128 Q16_IN[NQ16_IN + 1] = { - L(-3.917420835712508001321875734030357393421E-18), - L(-4.440311387483014485304387406538069930457E-15), - L(-1.951635424076926487780929645954007139616E-12), - L(-4.318256438421012555040546775651612810513E-10), - L(-5.231244131926180765270446557146989238020E-8), - L(-3.540072702902043752460711989234732357653E-6), - L(-1.311017536555269966928228052917534882984E-4), - L(-2.495184669674631806622008769674827575088E-3), - L(-2.141868222987209028118086708697998506716E-2), - L(-6.184031415202148901863605871197272650090E-2), - L(-1.922298704033332356899546792898156493887E-2), -}; -#define NQ16_ID 9 -static const _Float128 Q16_ID[NQ16_ID + 1] = { - L(3.820418034066293517479619763498400162314E-17), - L(4.340702810799239909648911373329149354911E-14), - L(1.914985356383416140706179933075303538524E-11), - L(4.262333682610888819476498617261895474330E-9), - L(5.213481314722233980346462747902942182792E-7), - L(3.585741697694069399299005316809954590558E-5), - L(1.366513429642842006385029778105539457546E-3), - L(2.745282599850704662726337474371355160594E-2), - L(2.637644521611867647651200098449903330074E-1), - L(1.006953426110765984590782655598680488746E0), - /* 1.000000000000000000000000000000000000000E0 */ - }; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 1.9e-36 - 0.0625 <= 1/x <= 0.125 */ -#define NQ8_16N 11 -static const _Float128 Q8_16N[NQ8_16N + 1] = { - L(-2.028630366670228670781362543615221542291E-17), - L(-1.519634620380959966438130374006858864624E-14), - L(-4.540596528116104986388796594639405114524E-12), - L(-7.085151756671466559280490913558388648274E-10), - L(-6.351062671323970823761883833531546885452E-8), - L(-3.390817171111032905297982523519503522491E-6), - L(-1.082340897018886970282138836861233213972E-4), - L(-2.020120801187226444822977006648252379508E-3), - L(-2.093169910981725694937457070649605557555E-2), - L(-1.092176538874275712359269481414448063393E-1), - L(-2.374790947854765809203590474789108718733E-1), - L(-1.365364204556573800719985118029601401323E-1), -}; -#define NQ8_16D 11 -static const _Float128 Q8_16D[NQ8_16D + 1] = { - L(1.978397614733632533581207058069628242280E-16), - L(1.487361156806202736877009608336766720560E-13), - L(4.468041406888412086042576067133365913456E-11), - L(7.027822074821007443672290507210594648877E-9), - L(6.375740580686101224127290062867976007374E-7), - L(3.466887658320002225888644977076410421940E-5), - L(1.138625640905289601186353909213719596986E-3), - L(2.224470799470414663443449818235008486439E-2), - L(2.487052928527244907490589787691478482358E-1), - L(1.483927406564349124649083853892380899217E0), - L(4.182773513276056975777258788903489507705E0), - L(4.419665392573449746043880892524360870944E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 1.5e-35 - 0.125 <= 1/x <= 0.1875 */ -#define NQ5_8N 10 -static const _Float128 Q5_8N[NQ5_8N + 1] = { - L(-3.656082407740970534915918390488336879763E-13), - L(-1.344660308497244804752334556734121771023E-10), - L(-1.909765035234071738548629788698150760791E-8), - L(-1.366668038160120210269389551283666716453E-6), - L(-5.392327355984269366895210704976314135683E-5), - L(-1.206268245713024564674432357634540343884E-3), - L(-1.515456784370354374066417703736088291287E-2), - L(-1.022454301137286306933217746545237098518E-1), - L(-3.373438906472495080504907858424251082240E-1), - L(-4.510782522110845697262323973549178453405E-1), - L(-1.549000892545288676809660828213589804884E-1), -}; -#define NQ5_8D 10 -static const _Float128 Q5_8D[NQ5_8D + 1] = { - L(3.565550843359501079050699598913828460036E-12), - L(1.321016015556560621591847454285330528045E-9), - L(1.897542728662346479999969679234270605975E-7), - L(1.381720283068706710298734234287456219474E-5), - L(5.599248147286524662305325795203422873725E-4), - L(1.305442352653121436697064782499122164843E-2), - L(1.750234079626943298160445750078631894985E-1), - L(1.311420542073436520965439883806946678491E0), - L(5.162757689856842406744504211089724926650E0), - L(9.527760296384704425618556332087850581308E0), - L(6.604648207463236667912921642545100248584E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 1.3e-35 - 0.1875 <= 1/x <= 0.25 */ -#define NQ4_5N 10 -static const _Float128 Q4_5N[NQ4_5N + 1] = { - L(-4.079513568708891749424783046520200903755E-11), - L(-9.326548104106791766891812583019664893311E-9), - L(-8.016795121318423066292906123815687003356E-7), - L(-3.372350544043594415609295225664186750995E-5), - L(-7.566238665947967882207277686375417983917E-4), - L(-9.248861580055565402130441618521591282617E-3), - L(-6.033106131055851432267702948850231270338E-2), - L(-1.966908754799996793730369265431584303447E-1), - L(-2.791062741179964150755788226623462207560E-1), - L(-1.255478605849190549914610121863534191666E-1), - L(-4.320429862021265463213168186061696944062E-3), -}; -#define NQ4_5D 9 -static const _Float128 Q4_5D[NQ4_5D + 1] = { - L(3.978497042580921479003851216297330701056E-10), - L(9.203304163828145809278568906420772246666E-8), - L(8.059685467088175644915010485174545743798E-6), - L(3.490187375993956409171098277561669167446E-4), - L(8.189109654456872150100501732073810028829E-3), - L(1.072572867311023640958725265762483033769E-1), - L(7.790606862409960053675717185714576937994E-1), - L(3.016049768232011196434185423512777656328E0), - L(5.722963851442769787733717162314477949360E0), - L(4.510527838428473279647251350931380867663E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 2.1e-35 - 0.25 <= 1/x <= 0.3125 */ -#define NQ3r2_4N 9 -static const _Float128 Q3r2_4N[NQ3r2_4N + 1] = { - L(-1.087480809271383885936921889040388133627E-8), - L(-1.690067828697463740906962973479310170932E-6), - L(-9.608064416995105532790745641974762550982E-5), - L(-2.594198839156517191858208513873961837410E-3), - L(-3.610954144421543968160459863048062977822E-2), - L(-2.629866798251843212210482269563961685666E-1), - L(-9.709186825881775885917984975685752956660E-1), - L(-1.667521829918185121727268867619982417317E0), - L(-1.109255082925540057138766105229900943501E0), - L(-1.812932453006641348145049323713469043328E-1), -}; -#define NQ3r2_4D 9 -static const _Float128 Q3r2_4D[NQ3r2_4D + 1] = { - L(1.060552717496912381388763753841473407026E-7), - L(1.676928002024920520786883649102388708024E-5), - L(9.803481712245420839301400601140812255737E-4), - L(2.765559874262309494758505158089249012930E-2), - L(4.117921827792571791298862613287549140706E-1), - L(3.323769515244751267093378361930279161413E0), - L(1.436602494405814164724810151689705353670E1), - L(3.163087869617098638064881410646782408297E1), - L(3.198181264977021649489103980298349589419E1), - L(1.203649258862068431199471076202897823272E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 1.6e-36 - 0.3125 <= 1/x <= 0.375 */ -#define NQ2r7_3r2N 9 -static const _Float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = { - L(-1.723405393982209853244278760171643219530E-7), - L(-2.090508758514655456365709712333460087442E-5), - L(-9.140104013370974823232873472192719263019E-4), - L(-1.871349499990714843332742160292474780128E-2), - L(-1.948930738119938669637865956162512983416E-1), - L(-1.048764684978978127908439526343174139788E0), - L(-2.827714929925679500237476105843643064698E0), - L(-3.508761569156476114276988181329773987314E0), - L(-1.669332202790211090973255098624488308989E0), - L(-1.930796319299022954013840684651016077770E-1), -}; -#define NQ2r7_3r2D 9 -static const _Float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = { - L(1.680730662300831976234547482334347983474E-6), - L(2.084241442440551016475972218719621841120E-4), - L(9.445316642108367479043541702688736295579E-3), - L(2.044637889456631896650179477133252184672E-1), - L(2.316091982244297350829522534435350078205E0), - L(1.412031891783015085196708811890448488865E1), - L(4.583830154673223384837091077279595496149E1), - L(7.549520609270909439885998474045974122261E1), - L(5.697605832808113367197494052388203310638E1), - L(1.601496240876192444526383314589371686234E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 9.5e-36 - 0.375 <= 1/x <= 0.4375 */ -#define NQ2r3_2r7N 9 -static const _Float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = { - L(-8.603042076329122085722385914954878953775E-7), - L(-7.701746260451647874214968882605186675720E-5), - L(-2.407932004380727587382493696877569654271E-3), - L(-3.403434217607634279028110636919987224188E-2), - L(-2.348707332185238159192422084985713102877E-1), - L(-7.957498841538254916147095255700637463207E-1), - L(-1.258469078442635106431098063707934348577E0), - L(-8.162415474676345812459353639449971369890E-1), - L(-1.581783890269379690141513949609572806898E-1), - L(-1.890595651683552228232308756569450822905E-3), -}; -#define NQ2r3_2r7D 8 -static const _Float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = { - L(8.390017524798316921170710533381568175665E-6), - L(7.738148683730826286477254659973968763659E-4), - L(2.541480810958665794368759558791634341779E-2), - L(3.878879789711276799058486068562386244873E-1), - L(3.003783779325811292142957336802456109333E0), - L(1.206480374773322029883039064575464497400E1), - L(2.458414064785315978408974662900438351782E1), - L(2.367237826273668567199042088835448715228E1), - L(9.231451197519171090875569102116321676763E0), - /* 1.000000000000000000000000000000000000000E0 */ -}; - -/* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), - Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)), - Peak relative error 1.4e-36 - 0.4375 <= 1/x <= 0.5 */ -#define NQ2_2r3N 9 -static const _Float128 Q2_2r3N[NQ2_2r3N + 1] = { - L(-5.552507516089087822166822364590806076174E-6), - L(-4.135067659799500521040944087433752970297E-4), - L(-1.059928728869218962607068840646564457980E-2), - L(-1.212070036005832342565792241385459023801E-1), - L(-6.688350110633603958684302153362735625156E-1), - L(-1.793587878197360221340277951304429821582E0), - L(-2.225407682237197485644647380483725045326E0), - L(-1.123402135458940189438898496348239744403E0), - L(-1.679187241566347077204805190763597299805E-1), - L(-1.458550613639093752909985189067233504148E-3), -}; -#define NQ2_2r3D 8 -static const _Float128 Q2_2r3D[NQ2_2r3D + 1] = { - L(5.415024336507980465169023996403597916115E-5), - L(4.179246497380453022046357404266022870788E-3), - L(1.136306384261959483095442402929502368598E-1), - L(1.422640343719842213484515445393284072830E0), - L(8.968786703393158374728850922289204805764E0), - L(2.914542473339246127533384118781216495934E1), - L(4.781605421020380669870197378210457054685E1), - L(3.693865837171883152382820584714795072937E1), - L(1.153220502744204904763115556224395893076E1), - /* 1.000000000000000000000000000000000000000E0 */ -}; - - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Bessel function of the first kind, order one. */ - -_Float128 -__ieee754_j1l (_Float128 x) -{ - _Float128 xx, xinv, z, p, q, c, s, cc, ss; - - if (! isfinite (x)) - { - if (x != x) - return x + x; - else - return 0; - } - if (x == 0) - return x; - xx = fabsl (x); - if (xx <= L(0x1p-58)) - { - _Float128 ret = x * L(0.5); - math_check_force_underflow (ret); - if (ret == 0) - __set_errno (ERANGE); - return ret; - } - if (xx <= 2) - { - /* 0 <= x <= 2 */ - z = xx * xx; - p = xx * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D); - p += L(0.5) * xx; - if (x < 0) - p = -p; - return p; - } - - /* X = x - 3 pi/4 - cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4) - = 1/sqrt(2) * (-cos(x) + sin(x)) - sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4) - = -1/sqrt(2) * (sin(x) + cos(x)) - cf. Fdlibm. */ - __sincosl (xx, &s, &c); - ss = -s - c; - cc = s - c; - if (xx <= LDBL_MAX / 2) - { - z = __cosl (xx + xx); - if ((s * c) > 0) - cc = z / ss; - else - ss = z / cc; - } - - if (xx > L(0x1p256)) - { - z = ONEOSQPI * cc / __ieee754_sqrtl (xx); - if (x < 0) - z = -z; - return z; - } - - xinv = 1 / xx; - z = xinv * xinv; - if (xinv <= 0.25) - { - if (xinv <= 0.125) - { - if (xinv <= 0.0625) - { - p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); - q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); - } - else - { - p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); - q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); - } - } - else if (xinv <= 0.1875) - { - p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); - q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); - } - else - { - p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); - q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); - } - } /* .25 */ - else /* if (xinv <= 0.5) */ - { - if (xinv <= 0.375) - { - if (xinv <= 0.3125) - { - p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); - q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); - } - else - { - p = neval (z, P2r7_3r2N, NP2r7_3r2N) - / deval (z, P2r7_3r2D, NP2r7_3r2D); - q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) - / deval (z, Q2r7_3r2D, NQ2r7_3r2D); - } - } - else if (xinv <= 0.4375) - { - p = neval (z, P2r3_2r7N, NP2r3_2r7N) - / deval (z, P2r3_2r7D, NP2r3_2r7D); - q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) - / deval (z, Q2r3_2r7D, NQ2r3_2r7D); - } - else - { - p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); - q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); - } - } - p = 1 + z * p; - q = z * q; - q = q * xinv + L(0.375) * xinv; - z = ONEOSQPI * (p * cc - q * ss) / __ieee754_sqrtl (xx); - if (x < 0) - z = -z; - return z; -} -strong_alias (__ieee754_j1l, __j1l_finite) - - -/* Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) - Peak relative error 6.2e-38 - 0 <= x <= 2 */ -#define NY0_2N 7 -static _Float128 Y0_2N[NY0_2N + 1] = { - L(-6.804415404830253804408698161694720833249E19), - L(1.805450517967019908027153056150465849237E19), - L(-8.065747497063694098810419456383006737312E17), - L(1.401336667383028259295830955439028236299E16), - L(-1.171654432898137585000399489686629680230E14), - L(5.061267920943853732895341125243428129150E11), - L(-1.096677850566094204586208610960870217970E9), - L(9.541172044989995856117187515882879304461E5), -}; -#define NY0_2D 7 -static _Float128 Y0_2D[NY0_2D + 1] = { - L(3.470629591820267059538637461549677594549E20), - L(4.120796439009916326855848107545425217219E18), - L(2.477653371652018249749350657387030814542E16), - L(9.954678543353888958177169349272167762797E13), - L(2.957927997613630118216218290262851197754E11), - L(6.748421382188864486018861197614025972118E8), - L(1.173453425218010888004562071020305709319E6), - L(1.450335662961034949894009554536003377187E3), - /* 1.000000000000000000000000000000000000000E0 */ -}; - - -/* Bessel function of the second kind, order one. */ - -_Float128 -__ieee754_y1l (_Float128 x) -{ - _Float128 xx, xinv, z, p, q, c, s, cc, ss; - - if (! isfinite (x)) - return 1 / (x + x * x); - if (x <= 0) - { - if (x < 0) - return (zero / (zero * x)); - return -1 / zero; /* -inf and divide by zero exception. */ - } - xx = fabsl (x); - if (xx <= 0x1p-114) - { - z = -TWOOPI / x; - if (isinf (z)) - __set_errno (ERANGE); - return z; - } - if (xx <= 2) - { - /* 0 <= x <= 2 */ - SET_RESTORE_ROUNDL (FE_TONEAREST); - z = xx * xx; - p = xx * neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D); - p = -TWOOPI / xx + p; - p = TWOOPI * __ieee754_logl (x) * __ieee754_j1l (x) + p; - return p; - } - - /* X = x - 3 pi/4 - cos(X) = cos(x) cos(3 pi/4) + sin(x) sin(3 pi/4) - = 1/sqrt(2) * (-cos(x) + sin(x)) - sin(X) = sin(x) cos(3 pi/4) - cos(x) sin(3 pi/4) - = -1/sqrt(2) * (sin(x) + cos(x)) - cf. Fdlibm. */ - __sincosl (xx, &s, &c); - ss = -s - c; - cc = s - c; - if (xx <= LDBL_MAX / 2) - { - z = __cosl (xx + xx); - if ((s * c) > 0) - cc = z / ss; - else - ss = z / cc; - } - - if (xx > L(0x1p256)) - return ONEOSQPI * ss / __ieee754_sqrtl (xx); - - xinv = 1 / xx; - z = xinv * xinv; - if (xinv <= 0.25) - { - if (xinv <= 0.125) - { - if (xinv <= 0.0625) - { - p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID); - q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID); - } - else - { - p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D); - q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D); - } - } - else if (xinv <= 0.1875) - { - p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D); - q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D); - } - else - { - p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D); - q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D); - } - } /* .25 */ - else /* if (xinv <= 0.5) */ - { - if (xinv <= 0.375) - { - if (xinv <= 0.3125) - { - p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D); - q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D); - } - else - { - p = neval (z, P2r7_3r2N, NP2r7_3r2N) - / deval (z, P2r7_3r2D, NP2r7_3r2D); - q = neval (z, Q2r7_3r2N, NQ2r7_3r2N) - / deval (z, Q2r7_3r2D, NQ2r7_3r2D); - } - } - else if (xinv <= 0.4375) - { - p = neval (z, P2r3_2r7N, NP2r3_2r7N) - / deval (z, P2r3_2r7D, NP2r3_2r7D); - q = neval (z, Q2r3_2r7N, NQ2r3_2r7N) - / deval (z, Q2r3_2r7D, NQ2r3_2r7D); - } - else - { - p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D); - q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D); - } - } - p = 1 + z * p; - q = z * q; - q = q * xinv + L(0.375) * xinv; - z = ONEOSQPI * (p * ss + q * cc) / __ieee754_sqrtl (xx); - return z; -} -strong_alias (__ieee754_y1l, __y1l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_jnl.c b/sysdeps/ieee754/ldbl-128/e_jnl.c deleted file mode 100644 index 470631e600..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_jnl.c +++ /dev/null @@ -1,419 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Modifications for 128-bit long double are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* - * __ieee754_jn(n, x), __ieee754_yn(n, x) - * floating point Bessel's function of the 1st and 2nd kind - * of order n - * - * Special cases: - * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; - * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. - * Note 2. About jn(n,x), yn(n,x) - * For n=0, j0(x) is called, - * for n=1, j1(x) is called, - * for n<x, forward recursion us used starting - * from values of j0(x) and j1(x). - * for n>x, a continued fraction approximation to - * j(n,x)/j(n-1,x) is evaluated and then backward - * recursion is used starting from a supposed value - * for j(n,x). The resulting value of j(0,x) is - * compared with the actual value to correct the - * supposed value of j(n,x). - * - * yn(n,x) is similar in all respects, except - * that forward recursion is used for all - * values of n>1. - * - */ - -#include <errno.h> -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 - invsqrtpi = L(5.6418958354775628694807945156077258584405E-1), - two = 2, - one = 1, - zero = 0; - - -_Float128 -__ieee754_jnl (int n, _Float128 x) -{ - u_int32_t se; - int32_t i, ix, sgn; - _Float128 a, b, temp, di, ret; - _Float128 z, w; - ieee854_long_double_shape_type u; - - - /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) - * Thus, J(-n,x) = J(n,-x) - */ - - u.value = x; - se = u.parts32.w0; - ix = se & 0x7fffffff; - - /* if J(n,NaN) is NaN */ - if (ix >= 0x7fff0000) - { - if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) - return x + x; - } - - if (n < 0) - { - n = -n; - x = -x; - se ^= 0x80000000; - } - if (n == 0) - return (__ieee754_j0l (x)); - if (n == 1) - return (__ieee754_j1l (x)); - sgn = (n & 1) & (se >> 31); /* even n -- 0, odd n -- sign(x) */ - x = fabsl (x); - - { - SET_RESTORE_ROUNDL (FE_TONEAREST); - if (x == 0 || ix >= 0x7fff0000) /* if x is 0 or inf */ - return sgn == 1 ? -zero : zero; - else if ((_Float128) n <= x) - { - /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ - if (ix >= 0x412D0000) - { /* x > 2**302 */ - - /* ??? Could use an expansion for large x here. */ - - /* (x >> n**2) - * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Let s=sin(x), c=cos(x), - * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - * - * n sin(xn)*sqt2 cos(xn)*sqt2 - * ---------------------------------- - * 0 s-c c+s - * 1 -s-c -c+s - * 2 -s+c -c-s - * 3 s+c c-s - */ - _Float128 s; - _Float128 c; - __sincosl (x, &s, &c); - switch (n & 3) - { - case 0: - temp = c + s; - break; - case 1: - temp = -c + s; - break; - case 2: - temp = -c - s; - break; - case 3: - temp = c - s; - break; - } - b = invsqrtpi * temp / __ieee754_sqrtl (x); - } - else - { - a = __ieee754_j0l (x); - b = __ieee754_j1l (x); - for (i = 1; i < n; i++) - { - temp = b; - b = b * ((_Float128) (i + i) / x) - a; /* avoid underflow */ - a = temp; - } - } - } - else - { - if (ix < 0x3fc60000) - { /* x < 2**-57 */ - /* x is tiny, return the first Taylor expansion of J(n,x) - * J(n,x) = 1/n!*(x/2)^n - ... - */ - if (n >= 400) /* underflow, result < 10^-4952 */ - b = zero; - else - { - temp = x * 0.5; - b = temp; - for (a = one, i = 2; i <= n; i++) - { - a *= (_Float128) i; /* a = n! */ - b *= temp; /* b = (x/2)^n */ - } - b = b / a; - } - } - else - { - /* use backward recurrence */ - /* x x^2 x^2 - * J(n,x)/J(n-1,x) = ---- ------ ------ ..... - * 2n - 2(n+1) - 2(n+2) - * - * 1 1 1 - * (for large x) = ---- ------ ------ ..... - * 2n 2(n+1) 2(n+2) - * -- - ------ - ------ - - * x x x - * - * Let w = 2n/x and h=2/x, then the above quotient - * is equal to the continued fraction: - * 1 - * = ----------------------- - * 1 - * w - ----------------- - * 1 - * w+h - --------- - * w+2h - ... - * - * To determine how many terms needed, let - * Q(0) = w, Q(1) = w(w+h) - 1, - * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), - * When Q(k) > 1e4 good for single - * When Q(k) > 1e9 good for double - * When Q(k) > 1e17 good for quadruple - */ - /* determine k */ - _Float128 t, v; - _Float128 q0, q1, h, tmp; - int32_t k, m; - w = (n + n) / (_Float128) x; - h = 2 / (_Float128) x; - q0 = w; - z = w + h; - q1 = w * z - 1; - k = 1; - while (q1 < L(1.0e17)) - { - k += 1; - z += h; - tmp = z * q1 - q0; - q0 = q1; - q1 = tmp; - } - m = n + n; - for (t = zero, i = 2 * (n + k); i >= m; i -= 2) - t = one / (i / x - t); - a = t; - b = one; - /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) - * Hence, if n*(log(2n/x)) > ... - * single 8.8722839355e+01 - * double 7.09782712893383973096e+02 - * long double 1.1356523406294143949491931077970765006170e+04 - * then recurrent value may overflow and the result is - * likely underflow to zero - */ - tmp = n; - v = two / x; - tmp = tmp * __ieee754_logl (fabsl (v * tmp)); - - if (tmp < L(1.1356523406294143949491931077970765006170e+04)) - { - for (i = n - 1, di = (_Float128) (i + i); i > 0; i--) - { - temp = b; - b *= di; - b = b / x - a; - a = temp; - di -= two; - } - } - else - { - for (i = n - 1, di = (_Float128) (i + i); i > 0; i--) - { - temp = b; - b *= di; - b = b / x - a; - a = temp; - di -= two; - /* scale b to avoid spurious overflow */ - if (b > L(1e100)) - { - a /= b; - t /= b; - b = one; - } - } - } - /* j0() and j1() suffer enormous loss of precision at and - * near zero; however, we know that their zero points never - * coincide, so just choose the one further away from zero. - */ - z = __ieee754_j0l (x); - w = __ieee754_j1l (x); - if (fabsl (z) >= fabsl (w)) - b = (t * z / b); - else - b = (t * w / a); - } - } - if (sgn == 1) - ret = -b; - else - ret = b; - } - if (ret == 0) - { - ret = __copysignl (LDBL_MIN, ret) * LDBL_MIN; - __set_errno (ERANGE); - } - else - math_check_force_underflow (ret); - return ret; -} -strong_alias (__ieee754_jnl, __jnl_finite) - -_Float128 -__ieee754_ynl (int n, _Float128 x) -{ - u_int32_t se; - int32_t i, ix; - int32_t sign; - _Float128 a, b, temp, ret; - ieee854_long_double_shape_type u; - - u.value = x; - se = u.parts32.w0; - ix = se & 0x7fffffff; - - /* if Y(n,NaN) is NaN */ - if (ix >= 0x7fff0000) - { - if ((u.parts32.w0 & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) - return x + x; - } - if (x <= 0) - { - if (x == 0) - return ((n < 0 && (n & 1) != 0) ? 1 : -1) / L(0.0); - if (se & 0x80000000) - return zero / (zero * x); - } - sign = 1; - if (n < 0) - { - n = -n; - sign = 1 - ((n & 1) << 1); - } - if (n == 0) - return (__ieee754_y0l (x)); - { - SET_RESTORE_ROUNDL (FE_TONEAREST); - if (n == 1) - { - ret = sign * __ieee754_y1l (x); - goto out; - } - if (ix >= 0x7fff0000) - return zero; - if (ix >= 0x412D0000) - { /* x > 2**302 */ - - /* ??? See comment above on the possible futility of this. */ - - /* (x >> n**2) - * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Let s=sin(x), c=cos(x), - * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - * - * n sin(xn)*sqt2 cos(xn)*sqt2 - * ---------------------------------- - * 0 s-c c+s - * 1 -s-c -c+s - * 2 -s+c -c-s - * 3 s+c c-s - */ - _Float128 s; - _Float128 c; - __sincosl (x, &s, &c); - switch (n & 3) - { - case 0: - temp = s - c; - break; - case 1: - temp = -s - c; - break; - case 2: - temp = -s + c; - break; - case 3: - temp = s + c; - break; - } - b = invsqrtpi * temp / __ieee754_sqrtl (x); - } - else - { - a = __ieee754_y0l (x); - b = __ieee754_y1l (x); - /* quit if b is -inf */ - u.value = b; - se = u.parts32.w0 & 0xffff0000; - for (i = 1; i < n && se != 0xffff0000; i++) - { - temp = b; - b = ((_Float128) (i + i) / x) * b - a; - u.value = b; - se = u.parts32.w0 & 0xffff0000; - a = temp; - } - } - /* If B is +-Inf, set up errno accordingly. */ - if (! isfinite (b)) - __set_errno (ERANGE); - if (sign > 0) - ret = b; - else - ret = -b; - } - out: - if (isinf (ret)) - ret = __copysignl (LDBL_MAX, ret) * LDBL_MAX; - return ret; -} -strong_alias (__ieee754_ynl, __ynl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_lgammal_r.c b/sysdeps/ieee754/ldbl-128/e_lgammal_r.c deleted file mode 100644 index bef2601bce..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_lgammal_r.c +++ /dev/null @@ -1,1046 +0,0 @@ -/* lgammal - * - * Natural logarithm of gamma function - * - * - * - * SYNOPSIS: - * - * long double x, y, lgammal(); - * extern int sgngam; - * - * y = lgammal(x); - * - * - * - * DESCRIPTION: - * - * Returns the base e (2.718...) logarithm of the absolute - * value of the gamma function of the argument. - * The sign (+1 or -1) of the gamma function is returned in a - * global (extern) variable named sgngam. - * - * The positive domain is partitioned into numerous segments for approximation. - * For x > 10, - * log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2) - * Near the minimum at x = x0 = 1.46... the approximation is - * log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z) - * for small z. - * Elsewhere between 0 and 10, - * log gamma(n + z) = log gamma(n) + z P(z)/Q(z) - * for various selected n and small z. - * - * The cosecant reflection formula is employed for negative arguments. - * - * - * - * ACCURACY: - * - * - * arithmetic domain # trials peak rms - * Relative error: - * IEEE 10, 30 100000 3.9e-34 9.8e-35 - * IEEE 0, 10 100000 3.8e-34 5.3e-35 - * Absolute error: - * IEEE -10, 0 100000 8.0e-34 8.0e-35 - * IEEE -30, -10 100000 4.4e-34 1.0e-34 - * IEEE -100, 100 100000 1.0e-34 - * - * The absolute error criterion is the same as relative error - * when the function magnitude is greater than one but it is absolute - * when the magnitude is less than one. - * - */ - -/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov> - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <float.h> - -static const _Float128 PIL = L(3.1415926535897932384626433832795028841972E0); -#if LDBL_MANT_DIG == 106 -static const _Float128 MAXLGM = L(0x5.d53649e2d469dbc1f01e99fd66p+1012); -#else -static const _Float128 MAXLGM = L(1.0485738685148938358098967157129705071571E4928); -#endif -static const _Float128 one = 1; -static const _Float128 huge = LDBL_MAX; - -/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2) - 1/x <= 0.0741 (x >= 13.495...) - Peak relative error 1.5e-36 */ -static const _Float128 ls2pi = L(9.1893853320467274178032973640561763986140E-1); -#define NRASY 12 -static const _Float128 RASY[NRASY + 1] = -{ - L(8.333333333333333333333333333310437112111E-2), - L(-2.777777777777777777777774789556228296902E-3), - L(7.936507936507936507795933938448586499183E-4), - L(-5.952380952380952041799269756378148574045E-4), - L(8.417508417507928904209891117498524452523E-4), - L(-1.917526917481263997778542329739806086290E-3), - L(6.410256381217852504446848671499409919280E-3), - L(-2.955064066900961649768101034477363301626E-2), - L(1.796402955865634243663453415388336954675E-1), - L(-1.391522089007758553455753477688592767741E0), - L(1.326130089598399157988112385013829305510E1), - L(-1.420412699593782497803472576479997819149E2), - L(1.218058922427762808938869872528846787020E3) -}; - - -/* log gamma(x+13) = log gamma(13) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 12.5 <= x+13 <= 13.5 - Peak relative error 1.1e-36 */ -static const _Float128 lgam13a = L(1.9987213134765625E1); -static const _Float128 lgam13b = L(1.3608962611495173623870550785125024484248E-6); -#define NRN13 7 -static const _Float128 RN13[NRN13 + 1] = -{ - L(8.591478354823578150238226576156275285700E11), - L(2.347931159756482741018258864137297157668E11), - L(2.555408396679352028680662433943000804616E10), - L(1.408581709264464345480765758902967123937E9), - L(4.126759849752613822953004114044451046321E7), - L(6.133298899622688505854211579222889943778E5), - L(3.929248056293651597987893340755876578072E3), - L(6.850783280018706668924952057996075215223E0) -}; -#define NRD13 6 -static const _Float128 RD13[NRD13 + 1] = -{ - L(3.401225382297342302296607039352935541669E11), - L(8.756765276918037910363513243563234551784E10), - L(8.873913342866613213078554180987647243903E9), - L(4.483797255342763263361893016049310017973E8), - L(1.178186288833066430952276702931512870676E7), - L(1.519928623743264797939103740132278337476E5), - L(7.989298844938119228411117593338850892311E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+12) = log gamma(12) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 11.5 <= x+12 <= 12.5 - Peak relative error 4.1e-36 */ -static const _Float128 lgam12a = L(1.75023040771484375E1); -static const _Float128 lgam12b = L(3.7687254483392876529072161996717039575982E-6); -#define NRN12 7 -static const _Float128 RN12[NRN12 + 1] = -{ - L(4.709859662695606986110997348630997559137E11), - L(1.398713878079497115037857470168777995230E11), - L(1.654654931821564315970930093932954900867E10), - L(9.916279414876676861193649489207282144036E8), - L(3.159604070526036074112008954113411389879E7), - L(5.109099197547205212294747623977502492861E5), - L(3.563054878276102790183396740969279826988E3), - L(6.769610657004672719224614163196946862747E0) -}; -#define NRD12 6 -static const _Float128 RD12[NRD12 + 1] = -{ - L(1.928167007860968063912467318985802726613E11), - L(5.383198282277806237247492369072266389233E10), - L(5.915693215338294477444809323037871058363E9), - L(3.241438287570196713148310560147925781342E8), - L(9.236680081763754597872713592701048455890E6), - L(1.292246897881650919242713651166596478850E5), - L(7.366532445427159272584194816076600211171E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+11) = log gamma(11) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 10.5 <= x+11 <= 11.5 - Peak relative error 1.8e-35 */ -static const _Float128 lgam11a = L(1.5104400634765625E1); -static const _Float128 lgam11b = L(1.1938309890295225709329251070371882250744E-5); -#define NRN11 7 -static const _Float128 RN11[NRN11 + 1] = -{ - L(2.446960438029415837384622675816736622795E11), - L(7.955444974446413315803799763901729640350E10), - L(1.030555327949159293591618473447420338444E10), - L(6.765022131195302709153994345470493334946E8), - L(2.361892792609204855279723576041468347494E7), - L(4.186623629779479136428005806072176490125E5), - L(3.202506022088912768601325534149383594049E3), - L(6.681356101133728289358838690666225691363E0) -}; -#define NRD11 6 -static const _Float128 RD11[NRD11 + 1] = -{ - L(1.040483786179428590683912396379079477432E11), - L(3.172251138489229497223696648369823779729E10), - L(3.806961885984850433709295832245848084614E9), - L(2.278070344022934913730015420611609620171E8), - L(7.089478198662651683977290023829391596481E6), - L(1.083246385105903533237139380509590158658E5), - L(6.744420991491385145885727942219463243597E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+10) = log gamma(10) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 9.5 <= x+10 <= 10.5 - Peak relative error 5.4e-37 */ -static const _Float128 lgam10a = L(1.280181884765625E1); -static const _Float128 lgam10b = L(8.6324252196112077178745667061642811492557E-6); -#define NRN10 7 -static const _Float128 RN10[NRN10 + 1] = -{ - L(-1.239059737177249934158597996648808363783E14), - L(-4.725899566371458992365624673357356908719E13), - L(-7.283906268647083312042059082837754850808E12), - L(-5.802855515464011422171165179767478794637E11), - L(-2.532349691157548788382820303182745897298E10), - L(-5.884260178023777312587193693477072061820E8), - L(-6.437774864512125749845840472131829114906E6), - L(-2.350975266781548931856017239843273049384E4) -}; -#define NRD10 7 -static const _Float128 RD10[NRD10 + 1] = -{ - L(-5.502645997581822567468347817182347679552E13), - L(-1.970266640239849804162284805400136473801E13), - L(-2.819677689615038489384974042561531409392E12), - L(-2.056105863694742752589691183194061265094E11), - L(-8.053670086493258693186307810815819662078E9), - L(-1.632090155573373286153427982504851867131E8), - L(-1.483575879240631280658077826889223634921E6), - L(-4.002806669713232271615885826373550502510E3) - /* 1.0E0L */ -}; - - -/* log gamma(x+9) = log gamma(9) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 8.5 <= x+9 <= 9.5 - Peak relative error 3.6e-36 */ -static const _Float128 lgam9a = L(1.06045989990234375E1); -static const _Float128 lgam9b = L(3.9037218127284172274007216547549861681400E-6); -#define NRN9 7 -static const _Float128 RN9[NRN9 + 1] = -{ - L(-4.936332264202687973364500998984608306189E13), - L(-2.101372682623700967335206138517766274855E13), - L(-3.615893404644823888655732817505129444195E12), - L(-3.217104993800878891194322691860075472926E11), - L(-1.568465330337375725685439173603032921399E10), - L(-4.073317518162025744377629219101510217761E8), - L(-4.983232096406156139324846656819246974500E6), - L(-2.036280038903695980912289722995505277253E4) -}; -#define NRD9 7 -static const _Float128 RD9[NRD9 + 1] = -{ - L(-2.306006080437656357167128541231915480393E13), - L(-9.183606842453274924895648863832233799950E12), - L(-1.461857965935942962087907301194381010380E12), - L(-1.185728254682789754150068652663124298303E11), - L(-5.166285094703468567389566085480783070037E9), - L(-1.164573656694603024184768200787835094317E8), - L(-1.177343939483908678474886454113163527909E6), - L(-3.529391059783109732159524500029157638736E3) - /* 1.0E0L */ -}; - - -/* log gamma(x+8) = log gamma(8) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 7.5 <= x+8 <= 8.5 - Peak relative error 2.4e-37 */ -static const _Float128 lgam8a = L(8.525146484375E0); -static const _Float128 lgam8b = L(1.4876690414300165531036347125050759667737E-5); -#define NRN8 8 -static const _Float128 RN8[NRN8 + 1] = -{ - L(6.600775438203423546565361176829139703289E11), - L(3.406361267593790705240802723914281025800E11), - L(7.222460928505293914746983300555538432830E10), - L(8.102984106025088123058747466840656458342E9), - L(5.157620015986282905232150979772409345927E8), - L(1.851445288272645829028129389609068641517E7), - L(3.489261702223124354745894067468953756656E5), - L(2.892095396706665774434217489775617756014E3), - L(6.596977510622195827183948478627058738034E0) -}; -#define NRD8 7 -static const _Float128 RD8[NRD8 + 1] = -{ - L(3.274776546520735414638114828622673016920E11), - L(1.581811207929065544043963828487733970107E11), - L(3.108725655667825188135393076860104546416E10), - L(3.193055010502912617128480163681842165730E9), - L(1.830871482669835106357529710116211541839E8), - L(5.790862854275238129848491555068073485086E6), - L(9.305213264307921522842678835618803553589E4), - L(6.216974105861848386918949336819572333622E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+7) = log gamma(7) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 6.5 <= x+7 <= 7.5 - Peak relative error 3.2e-36 */ -static const _Float128 lgam7a = L(6.5792388916015625E0); -static const _Float128 lgam7b = L(1.2320408538495060178292903945321122583007E-5); -#define NRN7 8 -static const _Float128 RN7[NRN7 + 1] = -{ - L(2.065019306969459407636744543358209942213E11), - L(1.226919919023736909889724951708796532847E11), - L(2.996157990374348596472241776917953749106E10), - L(3.873001919306801037344727168434909521030E9), - L(2.841575255593761593270885753992732145094E8), - L(1.176342515359431913664715324652399565551E7), - L(2.558097039684188723597519300356028511547E5), - L(2.448525238332609439023786244782810774702E3), - L(6.460280377802030953041566617300902020435E0) -}; -#define NRD7 7 -static const _Float128 RD7[NRD7 + 1] = -{ - L(1.102646614598516998880874785339049304483E11), - L(6.099297512712715445879759589407189290040E10), - L(1.372898136289611312713283201112060238351E10), - L(1.615306270420293159907951633566635172343E9), - L(1.061114435798489135996614242842561967459E8), - L(3.845638971184305248268608902030718674691E6), - L(7.081730675423444975703917836972720495507E4), - L(5.423122582741398226693137276201344096370E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+6) = log gamma(6) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 5.5 <= x+6 <= 6.5 - Peak relative error 6.2e-37 */ -static const _Float128 lgam6a = L(4.7874908447265625E0); -static const _Float128 lgam6b = L(8.9805548349424770093452324304839959231517E-7); -#define NRN6 8 -static const _Float128 RN6[NRN6 + 1] = -{ - L(-3.538412754670746879119162116819571823643E13), - L(-2.613432593406849155765698121483394257148E13), - L(-8.020670732770461579558867891923784753062E12), - L(-1.322227822931250045347591780332435433420E12), - L(-1.262809382777272476572558806855377129513E11), - L(-7.015006277027660872284922325741197022467E9), - L(-2.149320689089020841076532186783055727299E8), - L(-3.167210585700002703820077565539658995316E6), - L(-1.576834867378554185210279285358586385266E4) -}; -#define NRD6 8 -static const _Float128 RD6[NRD6 + 1] = -{ - L(-2.073955870771283609792355579558899389085E13), - L(-1.421592856111673959642750863283919318175E13), - L(-4.012134994918353924219048850264207074949E12), - L(-6.013361045800992316498238470888523722431E11), - L(-5.145382510136622274784240527039643430628E10), - L(-2.510575820013409711678540476918249524123E9), - L(-6.564058379709759600836745035871373240904E7), - L(-7.861511116647120540275354855221373571536E5), - L(-2.821943442729620524365661338459579270561E3) - /* 1.0E0L */ -}; - - -/* log gamma(x+5) = log gamma(5) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 4.5 <= x+5 <= 5.5 - Peak relative error 3.4e-37 */ -static const _Float128 lgam5a = L(3.17803955078125E0); -static const _Float128 lgam5b = L(1.4279566695619646941601297055408873990961E-5); -#define NRN5 9 -static const _Float128 RN5[NRN5 + 1] = -{ - L(2.010952885441805899580403215533972172098E11), - L(1.916132681242540921354921906708215338584E11), - L(7.679102403710581712903937970163206882492E10), - L(1.680514903671382470108010973615268125169E10), - L(2.181011222911537259440775283277711588410E9), - L(1.705361119398837808244780667539728356096E8), - L(7.792391565652481864976147945997033946360E6), - L(1.910741381027985291688667214472560023819E5), - L(2.088138241893612679762260077783794329559E3), - L(6.330318119566998299106803922739066556550E0) -}; -#define NRD5 8 -static const _Float128 RD5[NRD5 + 1] = -{ - L(1.335189758138651840605141370223112376176E11), - L(1.174130445739492885895466097516530211283E11), - L(4.308006619274572338118732154886328519910E10), - L(8.547402888692578655814445003283720677468E9), - L(9.934628078575618309542580800421370730906E8), - L(6.847107420092173812998096295422311820672E7), - L(2.698552646016599923609773122139463150403E6), - L(5.526516251532464176412113632726150253215E4), - L(4.772343321713697385780533022595450486932E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+4) = log gamma(4) + x P(x)/Q(x) - -0.5 <= x <= 0.5 - 3.5 <= x+4 <= 4.5 - Peak relative error 6.7e-37 */ -static const _Float128 lgam4a = L(1.791748046875E0); -static const _Float128 lgam4b = L(1.1422353055000812477358380702272722990692E-5); -#define NRN4 9 -static const _Float128 RN4[NRN4 + 1] = -{ - L(-1.026583408246155508572442242188887829208E13), - L(-1.306476685384622809290193031208776258809E13), - L(-7.051088602207062164232806511992978915508E12), - L(-2.100849457735620004967624442027793656108E12), - L(-3.767473790774546963588549871673843260569E11), - L(-4.156387497364909963498394522336575984206E10), - L(-2.764021460668011732047778992419118757746E9), - L(-1.036617204107109779944986471142938641399E8), - L(-1.895730886640349026257780896972598305443E6), - L(-1.180509051468390914200720003907727988201E4) -}; -#define NRD4 9 -static const _Float128 RD4[NRD4 + 1] = -{ - L(-8.172669122056002077809119378047536240889E12), - L(-9.477592426087986751343695251801814226960E12), - L(-4.629448850139318158743900253637212801682E12), - L(-1.237965465892012573255370078308035272942E12), - L(-1.971624313506929845158062177061297598956E11), - L(-1.905434843346570533229942397763361493610E10), - L(-1.089409357680461419743730978512856675984E9), - L(-3.416703082301143192939774401370222822430E7), - L(-4.981791914177103793218433195857635265295E5), - L(-2.192507743896742751483055798411231453733E3) - /* 1.0E0L */ -}; - - -/* log gamma(x+3) = log gamma(3) + x P(x)/Q(x) - -0.25 <= x <= 0.5 - 2.75 <= x+3 <= 3.5 - Peak relative error 6.0e-37 */ -static const _Float128 lgam3a = L(6.93145751953125E-1); -static const _Float128 lgam3b = L(1.4286068203094172321214581765680755001344E-6); - -#define NRN3 9 -static const _Float128 RN3[NRN3 + 1] = -{ - L(-4.813901815114776281494823863935820876670E11), - L(-8.425592975288250400493910291066881992620E11), - L(-6.228685507402467503655405482985516909157E11), - L(-2.531972054436786351403749276956707260499E11), - L(-6.170200796658926701311867484296426831687E10), - L(-9.211477458528156048231908798456365081135E9), - L(-8.251806236175037114064561038908691305583E8), - L(-4.147886355917831049939930101151160447495E7), - L(-1.010851868928346082547075956946476932162E6), - L(-8.333374463411801009783402800801201603736E3) -}; -#define NRD3 9 -static const _Float128 RD3[NRD3 + 1] = -{ - L(-5.216713843111675050627304523368029262450E11), - L(-8.014292925418308759369583419234079164391E11), - L(-5.180106858220030014546267824392678611990E11), - L(-1.830406975497439003897734969120997840011E11), - L(-3.845274631904879621945745960119924118925E10), - L(-4.891033385370523863288908070309417710903E9), - L(-3.670172254411328640353855768698287474282E8), - L(-1.505316381525727713026364396635522516989E7), - L(-2.856327162923716881454613540575964890347E5), - L(-1.622140448015769906847567212766206894547E3) - /* 1.0E0L */ -}; - - -/* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x) - -0.125 <= x <= 0.25 - 2.375 <= x+2.5 <= 2.75 */ -static const _Float128 lgam2r5a = L(2.8466796875E-1); -static const _Float128 lgam2r5b = L(1.4901722919159632494669682701924320137696E-5); -#define NRN2r5 8 -static const _Float128 RN2r5[NRN2r5 + 1] = -{ - L(-4.676454313888335499356699817678862233205E9), - L(-9.361888347911187924389905984624216340639E9), - L(-7.695353600835685037920815799526540237703E9), - L(-3.364370100981509060441853085968900734521E9), - L(-8.449902011848163568670361316804900559863E8), - L(-1.225249050950801905108001246436783022179E8), - L(-9.732972931077110161639900388121650470926E6), - L(-3.695711763932153505623248207576425983573E5), - L(-4.717341584067827676530426007495274711306E3) -}; -#define NRD2r5 8 -static const _Float128 RD2r5[NRD2r5 + 1] = -{ - L(-6.650657966618993679456019224416926875619E9), - L(-1.099511409330635807899718829033488771623E10), - L(-7.482546968307837168164311101447116903148E9), - L(-2.702967190056506495988922973755870557217E9), - L(-5.570008176482922704972943389590409280950E8), - L(-6.536934032192792470926310043166993233231E7), - L(-4.101991193844953082400035444146067511725E6), - L(-1.174082735875715802334430481065526664020E5), - L(-9.932840389994157592102947657277692978511E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+2) = x P(x)/Q(x) - -0.125 <= x <= +0.375 - 1.875 <= x+2 <= 2.375 - Peak relative error 4.6e-36 */ -#define NRN2 9 -static const _Float128 RN2[NRN2 + 1] = -{ - L(-3.716661929737318153526921358113793421524E9), - L(-1.138816715030710406922819131397532331321E10), - L(-1.421017419363526524544402598734013569950E10), - L(-9.510432842542519665483662502132010331451E9), - L(-3.747528562099410197957514973274474767329E9), - L(-8.923565763363912474488712255317033616626E8), - L(-1.261396653700237624185350402781338231697E8), - L(-9.918402520255661797735331317081425749014E6), - L(-3.753996255897143855113273724233104768831E5), - L(-4.778761333044147141559311805999540765612E3) -}; -#define NRD2 9 -static const _Float128 RD2[NRD2 + 1] = -{ - L(-8.790916836764308497770359421351673950111E9), - L(-2.023108608053212516399197678553737477486E10), - L(-1.958067901852022239294231785363504458367E10), - L(-1.035515043621003101254252481625188704529E10), - L(-3.253884432621336737640841276619272224476E9), - L(-6.186383531162456814954947669274235815544E8), - L(-6.932557847749518463038934953605969951466E7), - L(-4.240731768287359608773351626528479703758E6), - L(-1.197343995089189188078944689846348116630E5), - L(-1.004622911670588064824904487064114090920E3) -/* 1.0E0 */ -}; - - -/* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x) - -0.125 <= x <= +0.125 - 1.625 <= x+1.75 <= 1.875 - Peak relative error 9.2e-37 */ -static const _Float128 lgam1r75a = L(-8.441162109375E-2); -static const _Float128 lgam1r75b = L(1.0500073264444042213965868602268256157604E-5); -#define NRN1r75 8 -static const _Float128 RN1r75[NRN1r75 + 1] = -{ - L(-5.221061693929833937710891646275798251513E7), - L(-2.052466337474314812817883030472496436993E8), - L(-2.952718275974940270675670705084125640069E8), - L(-2.132294039648116684922965964126389017840E8), - L(-8.554103077186505960591321962207519908489E7), - L(-1.940250901348870867323943119132071960050E7), - L(-2.379394147112756860769336400290402208435E6), - L(-1.384060879999526222029386539622255797389E5), - L(-2.698453601378319296159355612094598695530E3) -}; -#define NRD1r75 8 -static const _Float128 RD1r75[NRD1r75 + 1] = -{ - L(-2.109754689501705828789976311354395393605E8), - L(-5.036651829232895725959911504899241062286E8), - L(-4.954234699418689764943486770327295098084E8), - L(-2.589558042412676610775157783898195339410E8), - L(-7.731476117252958268044969614034776883031E7), - L(-1.316721702252481296030801191240867486965E7), - L(-1.201296501404876774861190604303728810836E6), - L(-5.007966406976106636109459072523610273928E4), - L(-6.155817990560743422008969155276229018209E2) - /* 1.0E0L */ -}; - - -/* log gamma(x+x0) = y0 + x^2 P(x)/Q(x) - -0.0867 <= x <= +0.1634 - 1.374932... <= x+x0 <= 1.625032... - Peak relative error 4.0e-36 */ -static const _Float128 x0a = L(1.4616241455078125); -static const _Float128 x0b = L(7.9994605498412626595423257213002588621246E-6); -static const _Float128 y0a = L(-1.21490478515625E-1); -static const _Float128 y0b = L(4.1879797753919044854428223084178486438269E-6); -#define NRN1r5 8 -static const _Float128 RN1r5[NRN1r5 + 1] = -{ - L(6.827103657233705798067415468881313128066E5), - L(1.910041815932269464714909706705242148108E6), - L(2.194344176925978377083808566251427771951E6), - L(1.332921400100891472195055269688876427962E6), - L(4.589080973377307211815655093824787123508E5), - L(8.900334161263456942727083580232613796141E4), - L(9.053840838306019753209127312097612455236E3), - L(4.053367147553353374151852319743594873771E2), - L(5.040631576303952022968949605613514584950E0) -}; -#define NRD1r5 8 -static const _Float128 RD1r5[NRD1r5 + 1] = -{ - L(1.411036368843183477558773688484699813355E6), - L(4.378121767236251950226362443134306184849E6), - L(5.682322855631723455425929877581697918168E6), - L(3.999065731556977782435009349967042222375E6), - L(1.653651390456781293163585493620758410333E6), - L(4.067774359067489605179546964969435858311E5), - L(5.741463295366557346748361781768833633256E4), - L(4.226404539738182992856094681115746692030E3), - L(1.316980975410327975566999780608618774469E2), - /* 1.0E0L */ -}; - - -/* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x) - -.125 <= x <= +.125 - 1.125 <= x+1.25 <= 1.375 - Peak relative error = 4.9e-36 */ -static const _Float128 lgam1r25a = L(-9.82818603515625E-2); -static const _Float128 lgam1r25b = L(1.0023929749338536146197303364159774377296E-5); -#define NRN1r25 9 -static const _Float128 RN1r25[NRN1r25 + 1] = -{ - L(-9.054787275312026472896002240379580536760E4), - L(-8.685076892989927640126560802094680794471E4), - L(2.797898965448019916967849727279076547109E5), - L(6.175520827134342734546868356396008898299E5), - L(5.179626599589134831538516906517372619641E5), - L(2.253076616239043944538380039205558242161E5), - L(5.312653119599957228630544772499197307195E4), - L(6.434329437514083776052669599834938898255E3), - L(3.385414416983114598582554037612347549220E2), - L(4.907821957946273805080625052510832015792E0) -}; -#define NRD1r25 8 -static const _Float128 RD1r25[NRD1r25 + 1] = -{ - L(3.980939377333448005389084785896660309000E5), - L(1.429634893085231519692365775184490465542E6), - L(2.145438946455476062850151428438668234336E6), - L(1.743786661358280837020848127465970357893E6), - L(8.316364251289743923178092656080441655273E5), - L(2.355732939106812496699621491135458324294E5), - L(3.822267399625696880571810137601310855419E4), - L(3.228463206479133236028576845538387620856E3), - L(1.152133170470059555646301189220117965514E2) - /* 1.0E0L */ -}; - - -/* log gamma(x + 1) = x P(x)/Q(x) - 0.0 <= x <= +0.125 - 1.0 <= x+1 <= 1.125 - Peak relative error 1.1e-35 */ -#define NRN1 8 -static const _Float128 RN1[NRN1 + 1] = -{ - L(-9.987560186094800756471055681088744738818E3), - L(-2.506039379419574361949680225279376329742E4), - L(-1.386770737662176516403363873617457652991E4), - L(1.439445846078103202928677244188837130744E4), - L(2.159612048879650471489449668295139990693E4), - L(1.047439813638144485276023138173676047079E4), - L(2.250316398054332592560412486630769139961E3), - L(1.958510425467720733041971651126443864041E2), - L(4.516830313569454663374271993200291219855E0) -}; -#define NRD1 7 -static const _Float128 RD1[NRD1 + 1] = -{ - L(1.730299573175751778863269333703788214547E4), - L(6.807080914851328611903744668028014678148E4), - L(1.090071629101496938655806063184092302439E5), - L(9.124354356415154289343303999616003884080E4), - L(4.262071638655772404431164427024003253954E4), - L(1.096981664067373953673982635805821283581E4), - L(1.431229503796575892151252708527595787588E3), - L(7.734110684303689320830401788262295992921E1) - /* 1.0E0 */ -}; - - -/* log gamma(x + 1) = x P(x)/Q(x) - -0.125 <= x <= 0 - 0.875 <= x+1 <= 1.0 - Peak relative error 7.0e-37 */ -#define NRNr9 8 -static const _Float128 RNr9[NRNr9 + 1] = -{ - L(4.441379198241760069548832023257571176884E5), - L(1.273072988367176540909122090089580368732E6), - L(9.732422305818501557502584486510048387724E5), - L(-5.040539994443998275271644292272870348684E5), - L(-1.208719055525609446357448132109723786736E6), - L(-7.434275365370936547146540554419058907156E5), - L(-2.075642969983377738209203358199008185741E5), - L(-2.565534860781128618589288075109372218042E4), - L(-1.032901669542994124131223797515913955938E3), -}; -#define NRDr9 8 -static const _Float128 RDr9[NRDr9 + 1] = -{ - L(-7.694488331323118759486182246005193998007E5), - L(-3.301918855321234414232308938454112213751E6), - L(-5.856830900232338906742924836032279404702E6), - L(-5.540672519616151584486240871424021377540E6), - L(-3.006530901041386626148342989181721176919E6), - L(-9.350378280513062139466966374330795935163E5), - L(-1.566179100031063346901755685375732739511E5), - L(-1.205016539620260779274902967231510804992E4), - L(-2.724583156305709733221564484006088794284E2) -/* 1.0E0 */ -}; - - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -_Float128 -__ieee754_lgammal_r (_Float128 x, int *signgamp) -{ - _Float128 p, q, w, z, nx; - int i, nn; - - *signgamp = 1; - - if (! isfinite (x)) - return x * x; - - if (x == 0) - { - if (signbit (x)) - *signgamp = -1; - } - - if (x < 0) - { - if (x < -2 && x > (LDBL_MANT_DIG == 106 ? -48 : -50)) - return __lgamma_negl (x, signgamp); - q = -x; - p = __floorl (q); - if (p == q) - return (one / __fabsl (p - p)); - _Float128 halfp = p * L(0.5); - if (halfp == __floorl (halfp)) - *signgamp = -1; - else - *signgamp = 1; - if (q < L(0x1p-120)) - return -__logl (q); - z = q - p; - if (z > L(0.5)) - { - p += 1; - z = p - q; - } - z = q * __sinl (PIL * z); - w = __ieee754_lgammal_r (q, &i); - z = __logl (PIL / z) - w; - return (z); - } - - if (x < L(13.5)) - { - p = 0; - nx = __floorl (x + L(0.5)); - nn = nx; - switch (nn) - { - case 0: - /* log gamma (x + 1) = log(x) + log gamma(x) */ - if (x < L(0x1p-120)) - return -__logl (x); - else if (x <= 0.125) - { - p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1); - } - else if (x <= 0.375) - { - z = x - L(0.25); - p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); - p += lgam1r25b; - p += lgam1r25a; - } - else if (x <= 0.625) - { - z = x + (1 - x0a); - z = z - x0b; - p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); - p = p * z * z; - p = p + y0b; - p = p + y0a; - } - else if (x <= 0.875) - { - z = x - L(0.75); - p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); - p += lgam1r75b; - p += lgam1r75a; - } - else - { - z = x - 1; - p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); - } - p = p - __logl (x); - break; - - case 1: - if (x < L(0.875)) - { - if (x <= 0.625) - { - z = x + (1 - x0a); - z = z - x0b; - p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); - p = p * z * z; - p = p + y0b; - p = p + y0a; - } - else if (x <= 0.875) - { - z = x - L(0.75); - p = z * neval (z, RN1r75, NRN1r75) - / deval (z, RD1r75, NRD1r75); - p += lgam1r75b; - p += lgam1r75a; - } - else - { - z = x - 1; - p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); - } - p = p - __logl (x); - } - else if (x < 1) - { - z = x - 1; - p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9); - } - else if (x == 1) - p = 0; - else if (x <= L(1.125)) - { - z = x - 1; - p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1); - } - else if (x <= 1.375) - { - z = x - L(1.25); - p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25); - p += lgam1r25b; - p += lgam1r25a; - } - else - { - /* 1.375 <= x+x0 <= 1.625 */ - z = x - x0a; - z = z - x0b; - p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); - p = p * z * z; - p = p + y0b; - p = p + y0a; - } - break; - - case 2: - if (x < L(1.625)) - { - z = x - x0a; - z = z - x0b; - p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5); - p = p * z * z; - p = p + y0b; - p = p + y0a; - } - else if (x < L(1.875)) - { - z = x - L(1.75); - p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75); - p += lgam1r75b; - p += lgam1r75a; - } - else if (x == 2) - p = 0; - else if (x < L(2.375)) - { - z = x - 2; - p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2); - } - else - { - z = x - L(2.5); - p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); - p += lgam2r5b; - p += lgam2r5a; - } - break; - - case 3: - if (x < 2.75) - { - z = x - L(2.5); - p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5); - p += lgam2r5b; - p += lgam2r5a; - } - else - { - z = x - 3; - p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3); - p += lgam3b; - p += lgam3a; - } - break; - - case 4: - z = x - 4; - p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4); - p += lgam4b; - p += lgam4a; - break; - - case 5: - z = x - 5; - p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5); - p += lgam5b; - p += lgam5a; - break; - - case 6: - z = x - 6; - p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6); - p += lgam6b; - p += lgam6a; - break; - - case 7: - z = x - 7; - p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7); - p += lgam7b; - p += lgam7a; - break; - - case 8: - z = x - 8; - p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8); - p += lgam8b; - p += lgam8a; - break; - - case 9: - z = x - 9; - p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9); - p += lgam9b; - p += lgam9a; - break; - - case 10: - z = x - 10; - p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10); - p += lgam10b; - p += lgam10a; - break; - - case 11: - z = x - 11; - p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11); - p += lgam11b; - p += lgam11a; - break; - - case 12: - z = x - 12; - p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12); - p += lgam12b; - p += lgam12a; - break; - - case 13: - z = x - 13; - p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13); - p += lgam13b; - p += lgam13a; - break; - } - return p; - } - - if (x > MAXLGM) - return (*signgamp * huge * huge); - - if (x > L(0x1p120)) - return x * (__logl (x) - 1); - q = ls2pi - x; - q = (x - L(0.5)) * __logl (x) + q; - if (x > L(1.0e18)) - return (q); - - p = 1 / (x * x); - q += neval (p, RASY, NRASY) / x; - return (q); -} -strong_alias (__ieee754_lgammal_r, __lgammal_r_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_log10l.c b/sysdeps/ieee754/ldbl-128/e_log10l.c deleted file mode 100644 index c992f6e5ee..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_log10l.c +++ /dev/null @@ -1,259 +0,0 @@ -/* log10l.c - * - * Common logarithm, 128-bit long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, log10l(); - * - * y = log10l( x ); - * - * - * - * DESCRIPTION: - * - * Returns the base 10 logarithm of x. - * - * The argument is separated into its exponent and fractional - * parts. If the exponent is between -1 and +1, the logarithm - * of the fraction is approximated by - * - * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). - * - * Otherwise, setting z = 2(x-1)/x+1), - * - * log(x) = z + z^3 P(z)/Q(z). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35 - * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35 - * - * In the tests over the interval exp(+-10000), the logarithms - * of the random arguments were uniformly distributed over - * [-10000, +10000]. - * - */ - -/* - Cephes Math Library Release 2.2: January, 1991 - Copyright 1984, 1991 by Stephen L. Moshier - Adapted for glibc November, 2001 - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see <http://www.gnu.org/licenses/>. - */ - -#include <math.h> -#include <math_private.h> - -/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 5.3e-37, - * relative peak error spread = 2.3e-14 - */ -static const _Float128 P[13] = -{ - L(1.313572404063446165910279910527789794488E4), - L(7.771154681358524243729929227226708890930E4), - L(2.014652742082537582487669938141683759923E5), - L(3.007007295140399532324943111654767187848E5), - L(2.854829159639697837788887080758954924001E5), - L(1.797628303815655343403735250238293741397E5), - L(7.594356839258970405033155585486712125861E4), - L(2.128857716871515081352991964243375186031E4), - L(3.824952356185897735160588078446136783779E3), - L(4.114517881637811823002128927449878962058E2), - L(2.321125933898420063925789532045674660756E1), - L(4.998469661968096229986658302195402690910E-1), - L(1.538612243596254322971797716843006400388E-6) -}; -static const _Float128 Q[12] = -{ - L(3.940717212190338497730839731583397586124E4), - L(2.626900195321832660448791748036714883242E5), - L(7.777690340007566932935753241556479363645E5), - L(1.347518538384329112529391120390701166528E6), - L(1.514882452993549494932585972882995548426E6), - L(1.158019977462989115839826904108208787040E6), - L(6.132189329546557743179177159925690841200E5), - L(2.248234257620569139969141618556349415120E5), - L(5.605842085972455027590989944010492125825E4), - L(9.147150349299596453976674231612674085381E3), - L(9.104928120962988414618126155557301584078E2), - L(4.839208193348159620282142911143429644326E1) -/* 1.000000000000000000000000000000000000000E0L, */ -}; - -/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), - * where z = 2(x-1)/(x+1) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 1.1e-35, - * relative peak error spread 1.1e-9 - */ -static const _Float128 R[6] = -{ - L(1.418134209872192732479751274970992665513E5), - L(-8.977257995689735303686582344659576526998E4), - L(2.048819892795278657810231591630928516206E4), - L(-2.024301798136027039250415126250455056397E3), - L(8.057002716646055371965756206836056074715E1), - L(-8.828896441624934385266096344596648080902E-1) -}; -static const _Float128 S[6] = -{ - L(1.701761051846631278975701529965589676574E6), - L(-1.332535117259762928288745111081235577029E6), - L(4.001557694070773974936904547424676279307E5), - L(-5.748542087379434595104154610899551484314E4), - L(3.998526750980007367835804959888064681098E3), - L(-1.186359407982897997337150403816839480438E2) -/* 1.000000000000000000000000000000000000000E0L, */ -}; - -static const _Float128 -/* log10(2) */ -L102A = L(0.3125), -L102B = L(-1.14700043360188047862611052755069732318101185E-2), -/* log10(e) */ -L10EA = L(0.5), -L10EB = L(-6.570551809674817234887108108339491770560299E-2), -/* sqrt(2)/2 */ -SQRTH = L(7.071067811865475244008443621048490392848359E-1); - - - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - - -_Float128 -__ieee754_log10l (_Float128 x) -{ - _Float128 z; - _Float128 y; - int e; - int64_t hx, lx; - -/* Test for domain */ - GET_LDOUBLE_WORDS64 (hx, lx, x); - if (((hx & 0x7fffffffffffffffLL) | lx) == 0) - return (-1 / __fabsl (x)); /* log10l(+-0)=-inf */ - if (hx < 0) - return (x - x) / (x - x); - if (hx >= 0x7fff000000000000LL) - return (x + x); - - if (x == 1) - return 0; - -/* separate mantissa from exponent */ - -/* Note, frexp is used so that denormal numbers - * will be handled properly. - */ - x = __frexpl (x, &e); - - -/* logarithm using log(x) = z + z**3 P(z)/Q(z), - * where z = 2(x-1)/x+1) - */ - if ((e > 2) || (e < -2)) - { - if (x < SQRTH) - { /* 2( 2x-1 )/( 2x+1 ) */ - e -= 1; - z = x - L(0.5); - y = L(0.5) * z + L(0.5); - } - else - { /* 2 (x-1)/(x+1) */ - z = x - L(0.5); - z -= L(0.5); - y = L(0.5) * x + L(0.5); - } - x = z / y; - z = x * x; - y = x * (z * neval (z, R, 5) / deval (z, S, 5)); - goto done; - } - - -/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ - - if (x < SQRTH) - { - e -= 1; - x = 2.0 * x - 1; /* 2x - 1 */ - } - else - { - x = x - 1; - } - z = x * x; - y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); - y = y - 0.5 * z; - -done: - - /* Multiply log of fraction by log10(e) - * and base 2 exponent by log10(2). - */ - z = y * L10EB; - z += x * L10EB; - z += e * L102B; - z += y * L10EA; - z += x * L10EA; - z += e * L102A; - return (z); -} -strong_alias (__ieee754_log10l, __log10l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_log2l.c b/sysdeps/ieee754/ldbl-128/e_log2l.c deleted file mode 100644 index cf4a380f16..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_log2l.c +++ /dev/null @@ -1,252 +0,0 @@ -/* log2l.c - * Base 2 logarithm, 128-bit long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, log2l(); - * - * y = log2l( x ); - * - * - * - * DESCRIPTION: - * - * Returns the base 2 logarithm of x. - * - * The argument is separated into its exponent and fractional - * parts. If the exponent is between -1 and +1, the (natural) - * logarithm of the fraction is approximated by - * - * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). - * - * Otherwise, setting z = 2(x-1)/x+1), - * - * log(x) = z + z^3 P(z)/Q(z). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35 - * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35 - * - * In the tests over the interval exp(+-10000), the logarithms - * of the random arguments were uniformly distributed over - * [-10000, +10000]. - * - */ - -/* - Cephes Math Library Release 2.2: January, 1991 - Copyright 1984, 1991 by Stephen L. Moshier - Adapted for glibc November, 2001 - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see <http://www.gnu.org/licenses/>. - */ - -#include <math.h> -#include <math_private.h> - -/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 5.3e-37, - * relative peak error spread = 2.3e-14 - */ -static const _Float128 P[13] = -{ - L(1.313572404063446165910279910527789794488E4), - L(7.771154681358524243729929227226708890930E4), - L(2.014652742082537582487669938141683759923E5), - L(3.007007295140399532324943111654767187848E5), - L(2.854829159639697837788887080758954924001E5), - L(1.797628303815655343403735250238293741397E5), - L(7.594356839258970405033155585486712125861E4), - L(2.128857716871515081352991964243375186031E4), - L(3.824952356185897735160588078446136783779E3), - L(4.114517881637811823002128927449878962058E2), - L(2.321125933898420063925789532045674660756E1), - L(4.998469661968096229986658302195402690910E-1), - L(1.538612243596254322971797716843006400388E-6) -}; -static const _Float128 Q[12] = -{ - L(3.940717212190338497730839731583397586124E4), - L(2.626900195321832660448791748036714883242E5), - L(7.777690340007566932935753241556479363645E5), - L(1.347518538384329112529391120390701166528E6), - L(1.514882452993549494932585972882995548426E6), - L(1.158019977462989115839826904108208787040E6), - L(6.132189329546557743179177159925690841200E5), - L(2.248234257620569139969141618556349415120E5), - L(5.605842085972455027590989944010492125825E4), - L(9.147150349299596453976674231612674085381E3), - L(9.104928120962988414618126155557301584078E2), - L(4.839208193348159620282142911143429644326E1) -/* 1.000000000000000000000000000000000000000E0L, */ -}; - -/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), - * where z = 2(x-1)/(x+1) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 1.1e-35, - * relative peak error spread 1.1e-9 - */ -static const _Float128 R[6] = -{ - L(1.418134209872192732479751274970992665513E5), - L(-8.977257995689735303686582344659576526998E4), - L(2.048819892795278657810231591630928516206E4), - L(-2.024301798136027039250415126250455056397E3), - L(8.057002716646055371965756206836056074715E1), - L(-8.828896441624934385266096344596648080902E-1) -}; -static const _Float128 S[6] = -{ - L(1.701761051846631278975701529965589676574E6), - L(-1.332535117259762928288745111081235577029E6), - L(4.001557694070773974936904547424676279307E5), - L(-5.748542087379434595104154610899551484314E4), - L(3.998526750980007367835804959888064681098E3), - L(-1.186359407982897997337150403816839480438E2) -/* 1.000000000000000000000000000000000000000E0L, */ -}; - -static const _Float128 -/* log2(e) - 1 */ -LOG2EA = L(4.4269504088896340735992468100189213742664595E-1), -/* sqrt(2)/2 */ -SQRTH = L(7.071067811865475244008443621048490392848359E-1); - - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - - -_Float128 -__ieee754_log2l (_Float128 x) -{ - _Float128 z; - _Float128 y; - int e; - int64_t hx, lx; - -/* Test for domain */ - GET_LDOUBLE_WORDS64 (hx, lx, x); - if (((hx & 0x7fffffffffffffffLL) | lx) == 0) - return (-1 / __fabsl (x)); /* log2l(+-0)=-inf */ - if (hx < 0) - return (x - x) / (x - x); - if (hx >= 0x7fff000000000000LL) - return (x + x); - - if (x == 1) - return 0; - -/* separate mantissa from exponent */ - -/* Note, frexp is used so that denormal numbers - * will be handled properly. - */ - x = __frexpl (x, &e); - - -/* logarithm using log(x) = z + z**3 P(z)/Q(z), - * where z = 2(x-1)/x+1) - */ - if ((e > 2) || (e < -2)) - { - if (x < SQRTH) - { /* 2( 2x-1 )/( 2x+1 ) */ - e -= 1; - z = x - L(0.5); - y = L(0.5) * z + L(0.5); - } - else - { /* 2 (x-1)/(x+1) */ - z = x - L(0.5); - z -= L(0.5); - y = L(0.5) * x + L(0.5); - } - x = z / y; - z = x * x; - y = x * (z * neval (z, R, 5) / deval (z, S, 5)); - goto done; - } - - -/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ - - if (x < SQRTH) - { - e -= 1; - x = 2.0 * x - 1; /* 2x - 1 */ - } - else - { - x = x - 1; - } - z = x * x; - y = x * (z * neval (x, P, 12) / deval (x, Q, 11)); - y = y - 0.5 * z; - -done: - -/* Multiply log of fraction by log2(e) - * and base 2 exponent by 1 - */ - z = y * LOG2EA; - z += x * LOG2EA; - z += y; - z += x; - z += e; - return (z); -} -strong_alias (__ieee754_log2l, __log2l_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_logl.c b/sysdeps/ieee754/ldbl-128/e_logl.c deleted file mode 100644 index 8672047e43..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_logl.c +++ /dev/null @@ -1,282 +0,0 @@ -/* logll.c - * - * Natural logarithm for 128-bit long double precision. - * - * - * - * SYNOPSIS: - * - * long double x, y, logl(); - * - * y = logl( x ); - * - * - * - * DESCRIPTION: - * - * Returns the base e (2.718...) logarithm of x. - * - * The argument is separated into its exponent and fractional - * parts. Use of a lookup table increases the speed of the routine. - * The program uses logarithms tabulated at intervals of 1/128 to - * cover the domain from approximately 0.7 to 1.4. - * - * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by - * log(1+x) = x - 0.5 x^2 + x^3 P(x) . - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35 - * IEEE 0.125, 8 100000 1.2e-34 4.1e-35 - * - * - * WARNING: - * - * This program uses integer operations on bit fields of floating-point - * numbers. It does not work with data structures other than the - * structure assumed. - * - */ - -/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov> - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> - -/* log(1+x) = x - .5 x^2 + x^3 l(x) - -.0078125 <= x <= +.0078125 - peak relative error 1.2e-37 */ -static const _Float128 -l3 = L(3.333333333333333333333333333333336096926E-1), -l4 = L(-2.499999999999999999999999999486853077002E-1), -l5 = L(1.999999999999999999999999998515277861905E-1), -l6 = L(-1.666666666666666666666798448356171665678E-1), -l7 = L(1.428571428571428571428808945895490721564E-1), -l8 = L(-1.249999999999999987884655626377588149000E-1), -l9 = L(1.111111111111111093947834982832456459186E-1), -l10 = L(-1.000000000000532974938900317952530453248E-1), -l11 = L(9.090909090915566247008015301349979892689E-2), -l12 = L(-8.333333211818065121250921925397567745734E-2), -l13 = L(7.692307559897661630807048686258659316091E-2), -l14 = L(-7.144242754190814657241902218399056829264E-2), -l15 = L(6.668057591071739754844678883223432347481E-2); - -/* Lookup table of ln(t) - (t-1) - t = 0.5 + (k+26)/128) - k = 0, ..., 91 */ -static const _Float128 logtbl[92] = { -L(-5.5345593589352099112142921677820359632418E-2), -L(-5.2108257402767124761784665198737642086148E-2), -L(-4.8991686870576856279407775480686721935120E-2), -L(-4.5993270766361228596215288742353061431071E-2), -L(-4.3110481649613269682442058976885699556950E-2), -L(-4.0340872319076331310838085093194799765520E-2), -L(-3.7682072451780927439219005993827431503510E-2), -L(-3.5131785416234343803903228503274262719586E-2), -L(-3.2687785249045246292687241862699949178831E-2), -L(-3.0347913785027239068190798397055267411813E-2), -L(-2.8110077931525797884641940838507561326298E-2), -L(-2.5972247078357715036426583294246819637618E-2), -L(-2.3932450635346084858612873953407168217307E-2), -L(-2.1988775689981395152022535153795155900240E-2), -L(-2.0139364778244501615441044267387667496733E-2), -L(-1.8382413762093794819267536615342902718324E-2), -L(-1.6716169807550022358923589720001638093023E-2), -L(-1.5138929457710992616226033183958974965355E-2), -L(-1.3649036795397472900424896523305726435029E-2), -L(-1.2244881690473465543308397998034325468152E-2), -L(-1.0924898127200937840689817557742469105693E-2), -L(-9.6875626072830301572839422532631079809328E-3), -L(-8.5313926245226231463436209313499745894157E-3), -L(-7.4549452072765973384933565912143044991706E-3), -L(-6.4568155251217050991200599386801665681310E-3), -L(-5.5356355563671005131126851708522185605193E-3), -L(-4.6900728132525199028885749289712348829878E-3), -L(-3.9188291218610470766469347968659624282519E-3), -L(-3.2206394539524058873423550293617843896540E-3), -L(-2.5942708080877805657374888909297113032132E-3), -L(-2.0385211375711716729239156839929281289086E-3), -L(-1.5522183228760777967376942769773768850872E-3), -L(-1.1342191863606077520036253234446621373191E-3), -L(-7.8340854719967065861624024730268350459991E-4), -L(-4.9869831458030115699628274852562992756174E-4), -L(-2.7902661731604211834685052867305795169688E-4), -L(-1.2335696813916860754951146082826952093496E-4), -L(-3.0677461025892873184042490943581654591817E-5), -#define ZERO logtbl[38] - L(0.0000000000000000000000000000000000000000E0), -L(-3.0359557945051052537099938863236321874198E-5), -L(-1.2081346403474584914595395755316412213151E-4), -L(-2.7044071846562177120083903771008342059094E-4), -L(-4.7834133324631162897179240322783590830326E-4), -L(-7.4363569786340080624467487620270965403695E-4), -L(-1.0654639687057968333207323853366578860679E-3), -L(-1.4429854811877171341298062134712230604279E-3), -L(-1.8753781835651574193938679595797367137975E-3), -L(-2.3618380914922506054347222273705859653658E-3), -L(-2.9015787624124743013946600163375853631299E-3), -L(-3.4938307889254087318399313316921940859043E-3), -L(-4.1378413103128673800485306215154712148146E-3), -L(-4.8328735414488877044289435125365629849599E-3), -L(-5.5782063183564351739381962360253116934243E-3), -L(-6.3731336597098858051938306767880719015261E-3), -L(-7.2169643436165454612058905294782949315193E-3), -L(-8.1090214990427641365934846191367315083867E-3), -L(-9.0486422112807274112838713105168375482480E-3), -L(-1.0035177140880864314674126398350812606841E-2), -L(-1.1067990155502102718064936259435676477423E-2), -L(-1.2146457974158024928196575103115488672416E-2), -L(-1.3269969823361415906628825374158424754308E-2), -L(-1.4437927104692837124388550722759686270765E-2), -L(-1.5649743073340777659901053944852735064621E-2), -L(-1.6904842527181702880599758489058031645317E-2), -L(-1.8202661505988007336096407340750378994209E-2), -L(-1.9542647000370545390701192438691126552961E-2), -L(-2.0924256670080119637427928803038530924742E-2), -L(-2.2346958571309108496179613803760727786257E-2), -L(-2.3810230892650362330447187267648486279460E-2), -L(-2.5313561699385640380910474255652501521033E-2), -L(-2.6856448685790244233704909690165496625399E-2), -L(-2.8438398935154170008519274953860128449036E-2), -L(-3.0058928687233090922411781058956589863039E-2), -L(-3.1717563112854831855692484086486099896614E-2), -L(-3.3413836095418743219397234253475252001090E-2), -L(-3.5147290019036555862676702093393332533702E-2), -L(-3.6917475563073933027920505457688955423688E-2), -L(-3.8723951502862058660874073462456610731178E-2), -L(-4.0566284516358241168330505467000838017425E-2), -L(-4.2444048996543693813649967076598766917965E-2), -L(-4.4356826869355401653098777649745233339196E-2), -L(-4.6304207416957323121106944474331029996141E-2), -L(-4.8285787106164123613318093945035804818364E-2), -L(-5.0301169421838218987124461766244507342648E-2), -L(-5.2349964705088137924875459464622098310997E-2), -L(-5.4431789996103111613753440311680967840214E-2), -L(-5.6546268881465384189752786409400404404794E-2), -L(-5.8693031345788023909329239565012647817664E-2), -L(-6.0871713627532018185577188079210189048340E-2), -L(-6.3081958078862169742820420185833800925568E-2), -L(-6.5323413029406789694910800219643791556918E-2), -L(-6.7595732653791419081537811574227049288168E-2) -}; - -/* ln(2) = ln2a + ln2b with extended precision. */ -static const _Float128 - ln2a = L(6.93145751953125e-1), - ln2b = L(1.4286068203094172321214581765680755001344E-6); - -_Float128 -__ieee754_logl(_Float128 x) -{ - _Float128 z, y, w; - ieee854_long_double_shape_type u, t; - unsigned int m; - int k, e; - - u.value = x; - m = u.parts32.w0; - - /* Check for IEEE special cases. */ - k = m & 0x7fffffff; - /* log(0) = -infinity. */ - if ((k | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - { - return L(-0.5) / ZERO; - } - /* log ( x < 0 ) = NaN */ - if (m & 0x80000000) - { - return (x - x) / ZERO; - } - /* log (infinity or NaN) */ - if (k >= 0x7fff0000) - { - return x + x; - } - - /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */ - u.value = __frexpl (x, &e); - m = u.parts32.w0 & 0xffff; - m |= 0x10000; - /* Find lookup table index k from high order bits of the significand. */ - if (m < 0x16800) - { - k = (m - 0xff00) >> 9; - /* t is the argument 0.5 + (k+26)/128 - of the nearest item to u in the lookup table. */ - t.parts32.w0 = 0x3fff0000 + (k << 9); - t.parts32.w1 = 0; - t.parts32.w2 = 0; - t.parts32.w3 = 0; - u.parts32.w0 += 0x10000; - e -= 1; - k += 64; - } - else - { - k = (m - 0xfe00) >> 10; - t.parts32.w0 = 0x3ffe0000 + (k << 10); - t.parts32.w1 = 0; - t.parts32.w2 = 0; - t.parts32.w3 = 0; - } - /* On this interval the table is not used due to cancellation error. */ - if ((x <= L(1.0078125)) && (x >= L(0.9921875))) - { - if (x == 1) - return 0; - z = x - 1; - k = 64; - t.value = 1; - e = 0; - } - else - { - /* log(u) = log( t u/t ) = log(t) + log(u/t) - log(t) is tabulated in the lookup table. - Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t. - cf. Cody & Waite. */ - z = (u.value - t.value) / t.value; - } - /* Series expansion of log(1+z). */ - w = z * z; - y = ((((((((((((l15 * z - + l14) * z - + l13) * z - + l12) * z - + l11) * z - + l10) * z - + l9) * z - + l8) * z - + l7) * z - + l6) * z - + l5) * z - + l4) * z - + l3) * z * w; - y -= 0.5 * w; - y += e * ln2b; /* Base 2 exponent offset times ln(2). */ - y += z; - y += logtbl[k-26]; /* log(t) - (t-1) */ - y += (t.value - 1); - y += e * ln2a; - return y; -} -strong_alias (__ieee754_logl, __logl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_powl.c b/sysdeps/ieee754/ldbl-128/e_powl.c deleted file mode 100644 index a344840090..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_powl.c +++ /dev/null @@ -1,451 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Expansions and modifications for 128-bit long double are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __ieee754_powl(x,y) return x**y - * - * n - * Method: Let x = 2 * (1+f) - * 1. Compute and return log2(x) in two pieces: - * log2(x) = w1 + w2, - * where w1 has 113-53 = 60 bit trailing zeros. - * 2. Perform y*log2(x) = n+y' by simulating muti-precision - * arithmetic, where |y'|<=0.5. - * 3. Return x**y = 2**n*exp(y'*log2) - * - * Special cases: - * 1. (anything) ** 0 is 1 - * 2. (anything) ** 1 is itself - * 3. (anything) ** NAN is NAN - * 4. NAN ** (anything except 0) is NAN - * 5. +-(|x| > 1) ** +INF is +INF - * 6. +-(|x| > 1) ** -INF is +0 - * 7. +-(|x| < 1) ** +INF is +0 - * 8. +-(|x| < 1) ** -INF is +INF - * 9. +-1 ** +-INF is NAN - * 10. +0 ** (+anything except 0, NAN) is +0 - * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 - * 12. +0 ** (-anything except 0, NAN) is +INF - * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF - * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) - * 15. +INF ** (+anything except 0,NAN) is +INF - * 16. +INF ** (-anything except 0,NAN) is +0 - * 17. -INF ** (anything) = -0 ** (-anything) - * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) - * 19. (-anything except 0 and inf) ** (non-integer) is NAN - * - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 bp[] = { - 1, - L(1.5), -}; - -/* log_2(1.5) */ -static const _Float128 dp_h[] = { - 0.0, - L(5.8496250072115607565592654282227158546448E-1) -}; - -/* Low part of log_2(1.5) */ -static const _Float128 dp_l[] = { - 0.0, - L(1.0579781240112554492329533686862998106046E-16) -}; - -static const _Float128 zero = 0, - one = 1, - two = 2, - two113 = L(1.0384593717069655257060992658440192E34), - huge = L(1.0e3000), - tiny = L(1.0e-3000); - -/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2)) - z = (x-1)/(x+1) - 1 <= x <= 1.25 - Peak relative error 2.3e-37 */ -static const _Float128 LN[] = -{ - L(-3.0779177200290054398792536829702930623200E1), - L(6.5135778082209159921251824580292116201640E1), - L(-4.6312921812152436921591152809994014413540E1), - L(1.2510208195629420304615674658258363295208E1), - L(-9.9266909031921425609179910128531667336670E-1) -}; -static const _Float128 LD[] = -{ - L(-5.129862866715009066465422805058933131960E1), - L(1.452015077564081884387441590064272782044E2), - L(-1.524043275549860505277434040464085593165E2), - L(7.236063513651544224319663428634139768808E1), - L(-1.494198912340228235853027849917095580053E1) - /* 1.0E0 */ -}; - -/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2))) - 0 <= x <= 0.5 - Peak relative error 5.7e-38 */ -static const _Float128 PN[] = -{ - L(5.081801691915377692446852383385968225675E8), - L(9.360895299872484512023336636427675327355E6), - L(4.213701282274196030811629773097579432957E4), - L(5.201006511142748908655720086041570288182E1), - L(9.088368420359444263703202925095675982530E-3), -}; -static const _Float128 PD[] = -{ - L(3.049081015149226615468111430031590411682E9), - L(1.069833887183886839966085436512368982758E8), - L(8.259257717868875207333991924545445705394E5), - L(1.872583833284143212651746812884298360922E3), - /* 1.0E0 */ -}; - -static const _Float128 - /* ln 2 */ - lg2 = L(6.9314718055994530941723212145817656807550E-1), - lg2_h = L(6.9314718055994528622676398299518041312695E-1), - lg2_l = L(2.3190468138462996154948554638754786504121E-17), - ovt = L(8.0085662595372944372e-0017), - /* 2/(3*log(2)) */ - cp = L(9.6179669392597560490661645400126142495110E-1), - cp_h = L(9.6179669392597555432899980587535537779331E-1), - cp_l = L(5.0577616648125906047157785230014751039424E-17); - -_Float128 -__ieee754_powl (_Float128 x, _Float128 y) -{ - _Float128 z, ax, z_h, z_l, p_h, p_l; - _Float128 y1, t1, t2, r, s, sgn, t, u, v, w; - _Float128 s2, s_h, s_l, t_h, t_l, ay; - int32_t i, j, k, yisint, n; - u_int32_t ix, iy; - int32_t hx, hy; - ieee854_long_double_shape_type o, p, q; - - p.value = x; - hx = p.parts32.w0; - ix = hx & 0x7fffffff; - - q.value = y; - hy = q.parts32.w0; - iy = hy & 0x7fffffff; - - - /* y==zero: x**0 = 1 */ - if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0 - && !issignaling (x)) - return one; - - /* 1.0**y = 1; -1.0**+-Inf = 1 */ - if (x == one && !issignaling (y)) - return one; - if (x == -1 && iy == 0x7fff0000 - && (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) - return one; - - /* +-NaN return x+y */ - if ((ix > 0x7fff0000) - || ((ix == 0x7fff0000) - && ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0)) - || (iy > 0x7fff0000) - || ((iy == 0x7fff0000) - && ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0))) - return x + y; - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - yisint = 0; - if (hx < 0) - { - if (iy >= 0x40700000) /* 2^113 */ - yisint = 2; /* even integer y */ - else if (iy >= 0x3fff0000) /* 1.0 */ - { - if (__floorl (y) == y) - { - z = 0.5 * y; - if (__floorl (z) == z) - yisint = 2; - else - yisint = 1; - } - } - } - - /* special value of y */ - if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0) - { - if (iy == 0x7fff0000) /* y is +-inf */ - { - if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3) - == 0) - return y - y; /* +-1**inf is NaN */ - else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */ - return (hy >= 0) ? y : zero; - else /* (|x|<1)**-,+inf = inf,0 */ - return (hy < 0) ? -y : zero; - } - if (iy == 0x3fff0000) - { /* y is +-1 */ - if (hy < 0) - return one / x; - else - return x; - } - if (hy == 0x40000000) - return x * x; /* y is 2 */ - if (hy == 0x3ffe0000) - { /* y is 0.5 */ - if (hx >= 0) /* x >= +0 */ - return __ieee754_sqrtl (x); - } - } - - ax = fabsl (x); - /* special value of x */ - if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0) - { - if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000) - { - z = ax; /*x is +-0,+-inf,+-1 */ - if (hy < 0) - z = one / z; /* z = (1/|x|) */ - if (hx < 0) - { - if (((ix - 0x3fff0000) | yisint) == 0) - { - z = (z - z) / (z - z); /* (-1)**non-int is NaN */ - } - else if (yisint == 1) - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - return z; - } - } - - /* (x<0)**(non-int) is NaN */ - if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) - return (x - x) / (x - x); - - /* sgn (sign of result -ve**odd) = -1 else = 1 */ - sgn = one; - if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) - sgn = -one; /* (-ve)**(odd int) */ - - /* |y| is huge. - 2^-16495 = 1/2 of smallest representable value. - If (1 - 1/131072)^y underflows, y > 1.4986e9 */ - if (iy > 0x401d654b) - { - /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */ - if (iy > 0x407d654b) - { - if (ix <= 0x3ffeffff) - return (hy < 0) ? huge * huge : tiny * tiny; - if (ix >= 0x3fff0000) - return (hy > 0) ? huge * huge : tiny * tiny; - } - /* over/underflow if x is not close to one */ - if (ix < 0x3ffeffff) - return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny; - if (ix > 0x3fff0000) - return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny; - } - - ay = y > 0 ? y : -y; - if (ay < 0x1p-128) - y = y < 0 ? -0x1p-128 : 0x1p-128; - - n = 0; - /* take care subnormal number */ - if (ix < 0x00010000) - { - ax *= two113; - n -= 113; - o.value = ax; - ix = o.parts32.w0; - } - n += ((ix) >> 16) - 0x3fff; - j = ix & 0x0000ffff; - /* determine interval */ - ix = j | 0x3fff0000; /* normalize ix */ - if (j <= 0x3988) - k = 0; /* |x|<sqrt(3/2) */ - else if (j < 0xbb67) - k = 1; /* |x|<sqrt(3) */ - else - { - k = 0; - n += 1; - ix -= 0x00010000; - } - - o.value = ax; - o.parts32.w0 = ix; - ax = o.value; - - /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ - u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ - v = one / (ax + bp[k]); - s = u * v; - s_h = s; - - o.value = s_h; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - s_h = o.value; - /* t_h=ax+bp[k] High */ - t_h = ax + bp[k]; - o.value = t_h; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - t_h = o.value; - t_l = ax - (t_h - bp[k]); - s_l = v * ((u - s_h * t_h) - s_h * t_l); - /* compute log(ax) */ - s2 = s * s; - u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4]))); - v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2)))); - r = s2 * s2 * u / v; - r += s_l * (s_h + s); - s2 = s_h * s_h; - t_h = 3.0 + s2 + r; - o.value = t_h; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - t_h = o.value; - t_l = r - ((t_h - 3.0) - s2); - /* u+v = s*(1+...) */ - u = s_h * t_h; - v = s_l * t_h + t_l * s; - /* 2/(3log2)*(s+...) */ - p_h = u + v; - o.value = p_h; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - p_h = o.value; - p_l = v - (p_h - u); - z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ - z_l = cp_l * p_h + p_l * cp + dp_l[k]; - /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - t = (_Float128) n; - t1 = (((z_h + z_l) + dp_h[k]) + t); - o.value = t1; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - t1 = o.value; - t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); - - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - y1 = y; - o.value = y1; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - y1 = o.value; - p_l = (y - y1) * t1 + y * t2; - p_h = y1 * t1; - z = p_l + p_h; - o.value = z; - j = o.parts32.w0; - if (j >= 0x400d0000) /* z >= 16384 */ - { - /* if z > 16384 */ - if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0) - return sgn * huge * huge; /* overflow */ - else - { - if (p_l + ovt > z - p_h) - return sgn * huge * huge; /* overflow */ - } - } - else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */ - { - /* z < -16495 */ - if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) - != 0) - return sgn * tiny * tiny; /* underflow */ - else - { - if (p_l <= z - p_h) - return sgn * tiny * tiny; /* underflow */ - } - } - /* compute 2**(p_h+p_l) */ - i = j & 0x7fffffff; - k = (i >> 16) - 0x3fff; - n = 0; - if (i > 0x3ffe0000) - { /* if |z| > 0.5, set n = [z+0.5] */ - n = __floorl (z + L(0.5)); - t = n; - p_h -= t; - } - t = p_l + p_h; - o.value = t; - o.parts32.w3 = 0; - o.parts32.w2 &= 0xf8000000; - t = o.value; - u = t * lg2_h; - v = (p_l - (t - p_h)) * lg2 + t * lg2_l; - z = u + v; - w = v - (z - u); - /* exp(z) */ - t = z * z; - u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4]))); - v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t))); - t1 = z - t * u / v; - r = (z * t1) / (t1 - two) - (w + z * w); - z = one - (r - z); - o.value = z; - j = o.parts32.w0; - j += (n << 16); - if ((j >> 16) <= 0) - { - z = __scalbnl (z, n); /* subnormal output */ - _Float128 force_underflow = z * z; - math_force_eval (force_underflow); - } - else - { - o.parts32.w0 = j; - z = o.value; - } - return sgn * z; -} -strong_alias (__ieee754_powl, __powl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c b/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c deleted file mode 100644 index 21b440762f..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c +++ /dev/null @@ -1,273 +0,0 @@ -/* Quad-precision floating point argument reduction. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> - -/* - * Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi - */ -static const int32_t two_over_pi[] = { -0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62, -0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a, -0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129, -0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41, -0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8, -0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf, -0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5, -0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08, -0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3, -0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880, -0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b, -0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6, -0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2, -0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35, -0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30, -0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c, -0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4, -0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770, -0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7, -0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19, -0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522, -0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16, -0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6, -0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e, -0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48, -0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3, -0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf, -0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55, -0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612, -0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929, -0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec, -0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b, -0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c, -0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4, -0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb, -0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc, -0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c, -0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f, -0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5, -0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437, -0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b, -0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea, -0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad, -0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3, -0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3, -0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717, -0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f, -0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61, -0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db, -0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51, -0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0, -0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c, -0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6, -0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc, -0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed, -0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328, -0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d, -0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0, -0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b, -0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4, -0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3, -0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f, -0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad, -0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b, -0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4, -0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761, -0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31, -0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30, -0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262, -0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e, -0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1, -0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c, -0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4, -0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08, -0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196, -0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9, -0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4, -0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc, -0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c, -0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0, -0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c, -0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0, -0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac, -0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22, -0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893, -0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7, -0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5, -0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f, -0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4, -0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf, -0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b, -0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2, -0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138, -0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e, -0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569, -0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34, -0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9, -0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d, -0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f, -0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855, -0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569, -0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b, -0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe, -0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41, -0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49, -0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f, -0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110, -0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8, -0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365, -0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a, -0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270, -0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5, -0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616, -0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b, -0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0, -0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb, -0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a, -0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e, -0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa, -0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5, -0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0, -0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2, -0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886, -0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142, -0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba, -0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4, -0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708, -0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555, -0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3, -0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55, -0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58, -0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5, -0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c, -0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe, -0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b, -0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8, -0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005, -0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7, -0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50, -0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604, -0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643, -0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485, -0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d, -0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6, -0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2, -0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02, -0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3, -0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412, -0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274, -0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755, -0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849, -0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce, -0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5, -0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba, -0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6, -0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d, -0x7b7b89, 0x483d38, -}; - -static const _Float128 c[] = { -/* 113 bits of pi/2 */ -#define PI_2_1 c[0] - L(0x1.921fb54442d18469898cc51701b8p+0), - -/* pi/2 - PI_2_1 */ -#define PI_2_1t c[1] - L(0x3.9a252049c1114cf98e804177d4c8p-116), -}; - -int32_t __ieee754_rem_pio2l(_Float128 x, _Float128 *y) -{ - _Float128 z, w, t; - double tx[8]; - int64_t exp, n, ix, hx; - u_int64_t lx; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - ix = hx & 0x7fffffffffffffffLL; - if (ix <= 0x3ffe921fb54442d1LL) /* x in <-pi/4, pi/4> */ - { - y[0] = x; - y[1] = 0; - return 0; - } - - if (ix < 0x40002d97c7f3321dLL) /* |x| in <pi/4, 3pi/4) */ - { - if (hx > 0) - { - /* 113 + 113 bit PI is ok */ - z = x - PI_2_1; - y[0] = z - PI_2_1t; - y[1] = (z - y[0]) - PI_2_1t; - return 1; - } - else - { - /* 113 + 113 bit PI is ok */ - z = x + PI_2_1; - y[0] = z + PI_2_1t; - y[1] = (z - y[0]) + PI_2_1t; - return -1; - } - } - - if (ix >= 0x7fff000000000000LL) /* x is +=oo or NaN */ - { - y[0] = x - x; - y[1] = y[0]; - return 0; - } - - /* Handle large arguments. - We split the 113 bits of the mantissa into 5 24bit integers - stored in a double array. */ - exp = (ix >> 48) - 16383 - 23; - - /* This is faster than doing this in floating point, because we - have to convert it to integers anyway and like this we can keep - both integer and floating point units busy. */ - tx [0] = (double)(((ix >> 25) & 0x7fffff) | 0x800000); - tx [1] = (double)((ix >> 1) & 0xffffff); - tx [2] = (double)(((ix << 23) | (lx >> 41)) & 0xffffff); - tx [3] = (double)((lx >> 17) & 0xffffff); - tx [4] = (double)((lx << 7) & 0xffffff); - - n = __kernel_rem_pio2 (tx, tx + 5, exp, ((lx << 7) & 0xffffff) ? 5 : 4, - 3, two_over_pi); - - /* The result is now stored in 3 double values, we need to convert it into - two long double values. */ - t = (_Float128) tx [6] + (_Float128) tx [7]; - w = (_Float128) tx [5]; - - if (hx >= 0) - { - y[0] = w + t; - y[1] = t - (y[0] - w); - return n; - } - else - { - y[0] = -(w + t); - y[1] = -t - (y[0] + w); - return -n; - } -} diff --git a/sysdeps/ieee754/ldbl-128/e_remainderl.c b/sysdeps/ieee754/ldbl-128/e_remainderl.c deleted file mode 100644 index c1c196ca9a..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_remainderl.c +++ /dev/null @@ -1,71 +0,0 @@ -/* e_fmodl.c -- long double version of e_fmod.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_remainderl(x,p) - * Return : - * returns x REM p = x - [x/p]*p as if in infinite - * precise arithmetic, where [x/p] is the (infinite bit) - * integer nearest x/p (in half way case choose the even one). - * Method : - * Based on fmodl() return x-[x/p]chopped*p exactlp. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 zero = 0; - - -_Float128 -__ieee754_remainderl(_Float128 x, _Float128 p) -{ - int64_t hx,hp; - u_int64_t sx,lx,lp; - _Float128 p_half; - - GET_LDOUBLE_WORDS64(hx,lx,x); - GET_LDOUBLE_WORDS64(hp,lp,p); - sx = hx&0x8000000000000000ULL; - hp &= 0x7fffffffffffffffLL; - hx &= 0x7fffffffffffffffLL; - - /* purge off exception values */ - if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7fff000000000000LL)|| /* x not finite */ - ((hp>=0x7fff000000000000LL)&& /* p is NaN */ - (((hp-0x7fff000000000000LL)|lp)!=0))) - return (x*p)/(x*p); - - - if (hp<=0x7ffdffffffffffffLL) x = __ieee754_fmodl(x,p+p); /* now x < 2p */ - if (((hx-hp)|(lx-lp))==0) return zero*x; - x = fabsl(x); - p = fabsl(p); - if (hp<0x0002000000000000LL) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = L(0.5)*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_LDOUBLE_MSW64(hx,x); - SET_LDOUBLE_MSW64(x,hx^sx); - return x; -} -strong_alias (__ieee754_remainderl, __remainderl_finite) diff --git a/sysdeps/ieee754/ldbl-128/e_sinhl.c b/sysdeps/ieee754/ldbl-128/e_sinhl.c deleted file mode 100644 index a2b30c2190..0000000000 --- a/sysdeps/ieee754/ldbl-128/e_sinhl.c +++ /dev/null @@ -1,117 +0,0 @@ -/* e_sinhl.c -- long double version of e_sinh.c. - * Conversion to long double by Ulrich Drepper, - * Cygnus Support, drepper@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Changes for 128-bit long double are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __ieee754_sinhl(x) - * Method : - * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 - * 1. Replace x by |x| (sinhl(-x) = -sinhl(x)). - * 2. - * E + E/(E+1) - * 0 <= x <= 25 : sinhl(x) := --------------, E=expm1l(x) - * 2 - * - * 25 <= x <= lnovft : sinhl(x) := expl(x)/2 - * lnovft <= x <= ln2ovft: sinhl(x) := expl(x/2)/2 * expl(x/2) - * ln2ovft < x : sinhl(x) := x*shuge (overflow) - * - * Special cases: - * sinhl(x) is |x| if x is +INF, -INF, or NaN. - * only sinhl(0)=0 is exact for finite x. - */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1.0, shuge = L(1.0e4931), -ovf_thresh = L(1.1357216553474703894801348310092223067821E4); - -_Float128 -__ieee754_sinhl (_Float128 x) -{ - _Float128 t, w, h; - u_int32_t jx, ix; - ieee854_long_double_shape_type u; - - /* Words of |x|. */ - u.value = x; - jx = u.parts32.w0; - ix = jx & 0x7fffffff; - - /* x is INF or NaN */ - if (ix >= 0x7fff0000) - return x + x; - - h = 0.5; - if (jx & 0x80000000) - h = -h; - - /* Absolute value of x. */ - u.parts32.w0 = ix; - - /* |x| in [0,40], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix <= 0x40044000) - { - if (ix < 0x3fc60000) /* |x| < 2^-57 */ - { - math_check_force_underflow (x); - if (shuge + x > one) - return x; /* sinh(tiny) = tiny with inexact */ - } - t = __expm1l (u.value); - if (ix < 0x3fff0000) - return h * (2.0 * t - t * t / (t + one)); - return h * (t + t / (t + one)); - } - - /* |x| in [40, log(maxdouble)] return 0.5*exp(|x|) */ - if (ix <= 0x400c62e3) /* 11356.375 */ - return h * __ieee754_expl (u.value); - - /* |x| in [log(maxdouble), overflowthreshold] - Overflow threshold is log(2 * maxdouble). */ - if (u.value <= ovf_thresh) - { - w = __ieee754_expl (0.5 * u.value); - t = h * w; - return t * w; - } - - /* |x| > overflowthreshold, sinhl(x) overflow */ - return x * shuge; -} -strong_alias (__ieee754_sinhl, __sinhl_finite) diff --git a/sysdeps/ieee754/ldbl-128/gamma_productl.c b/sysdeps/ieee754/ldbl-128/gamma_productl.c deleted file mode 100644 index 319a45119e..0000000000 --- a/sysdeps/ieee754/ldbl-128/gamma_productl.c +++ /dev/null @@ -1,45 +0,0 @@ -/* Compute a product of X, X+1, ..., with an error estimate. - Copyright (C) 2013-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <mul_splitl.h> - -/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N - - 1, in the form R * (1 + *EPS) where the return value R is an - approximation to the product and *EPS is set to indicate the - approximate error in the return value. X is such that all the - values X + 1, ..., X + N - 1 are exactly representable, and X_EPS / - X is small enough that factors quadratic in it can be - neglected. */ - -_Float128 -__gamma_productl (_Float128 x, _Float128 x_eps, int n, _Float128 *eps) -{ - SET_RESTORE_ROUNDL (FE_TONEAREST); - _Float128 ret = x; - *eps = x_eps / x; - for (int i = 1; i < n; i++) - { - *eps += x_eps / (x + i); - _Float128 lo; - mul_splitl (&ret, &lo, ret, x + i); - *eps += lo / ret; - } - return ret; -} diff --git a/sysdeps/ieee754/ldbl-128/ieee754.h b/sysdeps/ieee754/ldbl-128/ieee754.h deleted file mode 100644 index 94662a350f..0000000000 --- a/sysdeps/ieee754/ldbl-128/ieee754.h +++ /dev/null @@ -1,170 +0,0 @@ -/* Copyright (C) 1992-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#ifndef _IEEE754_H - -#define _IEEE754_H 1 -#include <features.h> - -#include <endian.h> - -__BEGIN_DECLS - -union ieee754_float - { - float f; - - /* This is the IEEE 754 single-precision format. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:8; - unsigned int mantissa:23; -#endif /* Big endian. */ -#if __BYTE_ORDER == __LITTLE_ENDIAN - unsigned int mantissa:23; - unsigned int exponent:8; - unsigned int negative:1; -#endif /* Little endian. */ - } ieee; - - /* This format makes it easier to see if a NaN is a signalling NaN. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:8; - unsigned int quiet_nan:1; - unsigned int mantissa:22; -#endif /* Big endian. */ -#if __BYTE_ORDER == __LITTLE_ENDIAN - unsigned int mantissa:22; - unsigned int quiet_nan:1; - unsigned int exponent:8; - unsigned int negative:1; -#endif /* Little endian. */ - } ieee_nan; - }; - -#define IEEE754_FLOAT_BIAS 0x7f /* Added to exponent. */ - - -union ieee754_double - { - double d; - - /* This is the IEEE 754 double-precision format. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:11; - /* Together these comprise the mantissa. */ - unsigned int mantissa0:20; - unsigned int mantissa1:32; -#endif /* Big endian. */ -#if __BYTE_ORDER == __LITTLE_ENDIAN - /* Together these comprise the mantissa. */ - unsigned int mantissa1:32; - unsigned int mantissa0:20; - unsigned int exponent:11; - unsigned int negative:1; -#endif /* Little endian. */ - } ieee; - - /* This format makes it easier to see if a NaN is a signalling NaN. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:11; - unsigned int quiet_nan:1; - /* Together these comprise the mantissa. */ - unsigned int mantissa0:19; - unsigned int mantissa1:32; -#else - /* Together these comprise the mantissa. */ - unsigned int mantissa1:32; - unsigned int mantissa0:19; - unsigned int quiet_nan:1; - unsigned int exponent:11; - unsigned int negative:1; -#endif - } ieee_nan; - }; - -#define IEEE754_DOUBLE_BIAS 0x3ff /* Added to exponent. */ - - -union ieee854_long_double - { - long double d; - - /* This is the IEEE 854 quad-precision format. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:15; - /* Together these comprise the mantissa. */ - unsigned int mantissa0:16; - unsigned int mantissa1:32; - unsigned int mantissa2:32; - unsigned int mantissa3:32; -#endif /* Big endian. */ -#if __BYTE_ORDER == __LITTLE_ENDIAN - /* Together these comprise the mantissa. */ - unsigned int mantissa3:32; - unsigned int mantissa2:32; - unsigned int mantissa1:32; - unsigned int mantissa0:16; - unsigned int exponent:15; - unsigned int negative:1; -#endif /* Little endian. */ - } ieee; - - /* This format makes it easier to see if a NaN is a signalling NaN. */ - struct - { -#if __BYTE_ORDER == __BIG_ENDIAN - unsigned int negative:1; - unsigned int exponent:15; - unsigned int quiet_nan:1; - /* Together these comprise the mantissa. */ - unsigned int mantissa0:15; - unsigned int mantissa1:32; - unsigned int mantissa2:32; - unsigned int mantissa3:32; -#else - /* Together these comprise the mantissa. */ - unsigned int mantissa3:32; - unsigned int mantissa2:32; - unsigned int mantissa1:32; - unsigned int mantissa0:15; - unsigned int quiet_nan:1; - unsigned int exponent:15; - unsigned int negative:1; -#endif - } ieee_nan; - }; - -#define IEEE854_LONG_DOUBLE_BIAS 0x3fff /* Added to exponent. */ - -__END_DECLS - -#endif /* ieee754.h */ diff --git a/sysdeps/ieee754/ldbl-128/k_cosl.c b/sysdeps/ieee754/ldbl-128/k_cosl.c deleted file mode 100644 index b7c606379e..0000000000 --- a/sysdeps/ieee754/ldbl-128/k_cosl.c +++ /dev/null @@ -1,131 +0,0 @@ -/* Quad-precision floating point cosine on <-pi/4,pi/4>. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 c[] = { -#define ONE c[0] - L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ - -/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) - x in <0,1/256> */ -#define SCOS1 c[1] -#define SCOS2 c[2] -#define SCOS3 c[3] -#define SCOS4 c[4] -#define SCOS5 c[5] -L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */ - L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */ -L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */ - L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */ -L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */ - -/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) - x in <0,0.1484375> */ -#define COS1 c[6] -#define COS2 c[7] -#define COS3 c[8] -#define COS4 c[9] -#define COS5 c[10] -#define COS6 c[11] -#define COS7 c[12] -#define COS8 c[13] -L(-4.99999999999999999999999999999999759E-01), /* bffdfffffffffffffffffffffffffffb */ - L(4.16666666666666666666666666651287795E-02), /* 3ffa5555555555555555555555516f30 */ -L(-1.38888888888888888888888742314300284E-03), /* bff56c16c16c16c16c16c16a463dfd0d */ - L(2.48015873015873015867694002851118210E-05), /* 3fefa01a01a01a01a0195cebe6f3d3a5 */ -L(-2.75573192239858811636614709689300351E-07), /* bfe927e4fb7789f5aa8142a22044b51f */ - L(2.08767569877762248667431926878073669E-09), /* 3fe21eed8eff881d1e9262d7adff4373 */ -L(-1.14707451049343817400420280514614892E-11), /* bfda9397496922a9601ed3d4ca48944b */ - L(4.77810092804389587579843296923533297E-14), /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */ - -/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) - x in <0,1/256> */ -#define SSIN1 c[14] -#define SSIN2 c[15] -#define SSIN3 c[16] -#define SSIN4 c[17] -#define SSIN5 c[18] -L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */ - L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */ -L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */ - L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */ -L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */ -}; - -#define SINCOSL_COS_HI 0 -#define SINCOSL_COS_LO 1 -#define SINCOSL_SIN_HI 2 -#define SINCOSL_SIN_LO 3 -extern const _Float128 __sincosl_table[]; - -_Float128 -__kernel_cosl(_Float128 x, _Float128 y) -{ - _Float128 h, l, z, sin_l, cos_l_m1; - int64_t ix; - u_int32_t tix, hix, index; - GET_LDOUBLE_MSW64 (ix, x); - tix = ((u_int64_t)ix) >> 32; - tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ - if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ - { - /* Argument is small enough to approximate it by a Chebyshev - polynomial of degree 16. */ - if (tix < 0x3fc60000) /* |x| < 2^-57 */ - if (!((int)x)) return ONE; /* generate inexact */ - z = x * x; - return ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ - z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); - } - else - { - /* So that we don't have to use too large polynomial, we find - l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 - possible values for h. We look up cosl(h) and sinl(h) in - pre-computed tables, compute cosl(l) and sinl(l) using a - Chebyshev polynomial of degree 10(11) and compute - cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ - index = 0x3ffe - (tix >> 16); - hix = (tix + (0x200 << index)) & (0xfffffc00 << index); - if (signbit (x)) - { - x = -x; - y = -y; - } - switch (index) - { - case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; - case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; - default: - case 2: index = (hix - 0x3ffc3000) >> 10; break; - } - - SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0); - l = y - (h - x); - z = l * l; - sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); - cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); - return __sincosl_table [index + SINCOSL_COS_HI] - + (__sincosl_table [index + SINCOSL_COS_LO] - - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l - - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1)); - } -} diff --git a/sysdeps/ieee754/ldbl-128/k_sincosl.c b/sysdeps/ieee754/ldbl-128/k_sincosl.c deleted file mode 100644 index 03710f9e3a..0000000000 --- a/sysdeps/ieee754/ldbl-128/k_sincosl.c +++ /dev/null @@ -1,170 +0,0 @@ -/* Quad-precision floating point sine and cosine on <-pi/4,pi/4>. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 c[] = { -#define ONE c[0] - L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ - -/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) - x in <0,1/256> */ -#define SCOS1 c[1] -#define SCOS2 c[2] -#define SCOS3 c[3] -#define SCOS4 c[4] -#define SCOS5 c[5] -L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */ - L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */ -L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */ - L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */ -L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */ - -/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 ) - x in <0,0.1484375> */ -#define COS1 c[6] -#define COS2 c[7] -#define COS3 c[8] -#define COS4 c[9] -#define COS5 c[10] -#define COS6 c[11] -#define COS7 c[12] -#define COS8 c[13] -L(-4.99999999999999999999999999999999759E-01), /* bffdfffffffffffffffffffffffffffb */ - L(4.16666666666666666666666666651287795E-02), /* 3ffa5555555555555555555555516f30 */ -L(-1.38888888888888888888888742314300284E-03), /* bff56c16c16c16c16c16c16a463dfd0d */ - L(2.48015873015873015867694002851118210E-05), /* 3fefa01a01a01a01a0195cebe6f3d3a5 */ -L(-2.75573192239858811636614709689300351E-07), /* bfe927e4fb7789f5aa8142a22044b51f */ - L(2.08767569877762248667431926878073669E-09), /* 3fe21eed8eff881d1e9262d7adff4373 */ -L(-1.14707451049343817400420280514614892E-11), /* bfda9397496922a9601ed3d4ca48944b */ - L(4.77810092804389587579843296923533297E-14), /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */ - -/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) - x in <0,1/256> */ -#define SSIN1 c[14] -#define SSIN2 c[15] -#define SSIN3 c[16] -#define SSIN4 c[17] -#define SSIN5 c[18] -L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */ - L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */ -L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */ - L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */ -L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */ - -/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) - x in <0,0.1484375> */ -#define SIN1 c[19] -#define SIN2 c[20] -#define SIN3 c[21] -#define SIN4 c[22] -#define SIN5 c[23] -#define SIN6 c[24] -#define SIN7 c[25] -#define SIN8 c[26] -L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */ - L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */ -L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */ - L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */ -L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */ - L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */ -L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */ - L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */ -}; - -#define SINCOSL_COS_HI 0 -#define SINCOSL_COS_LO 1 -#define SINCOSL_SIN_HI 2 -#define SINCOSL_SIN_LO 3 -extern const _Float128 __sincosl_table[]; - -void -__kernel_sincosl(_Float128 x, _Float128 y, _Float128 *sinx, _Float128 *cosx, int iy) -{ - _Float128 h, l, z, sin_l, cos_l_m1; - int64_t ix; - u_int32_t tix, hix, index; - GET_LDOUBLE_MSW64 (ix, x); - tix = ((u_int64_t)ix) >> 32; - tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ - if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ - { - /* Argument is small enough to approximate it by a Chebyshev - polynomial of degree 16(17). */ - if (tix < 0x3fc60000) /* |x| < 2^-57 */ - { - math_check_force_underflow (x); - if (!((int)x)) /* generate inexact */ - { - *sinx = x; - *cosx = ONE; - return; - } - } - z = x * x; - *sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ - z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); - *cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+ - z*(COS5+z*(COS6+z*(COS7+z*COS8)))))))); - } - else - { - /* So that we don't have to use too large polynomial, we find - l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 - possible values for h. We look up cosl(h) and sinl(h) in - pre-computed tables, compute cosl(l) and sinl(l) using a - Chebyshev polynomial of degree 10(11) and compute - sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l) and - cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */ - index = 0x3ffe - (tix >> 16); - hix = (tix + (0x200 << index)) & (0xfffffc00 << index); - if (signbit (x)) - { - x = -x; - y = -y; - } - switch (index) - { - case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; - case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; - default: - case 2: index = (hix - 0x3ffc3000) >> 10; break; - } - - SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0); - if (iy) - l = y - (h - x); - else - l = x - h; - z = l * l; - sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); - cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); - z = __sincosl_table [index + SINCOSL_SIN_HI] - + (__sincosl_table [index + SINCOSL_SIN_LO] - + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) - + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); - *sinx = (ix < 0) ? -z : z; - *cosx = __sincosl_table [index + SINCOSL_COS_HI] - + (__sincosl_table [index + SINCOSL_COS_LO] - - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l - - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1)); - } -} diff --git a/sysdeps/ieee754/ldbl-128/k_sinl.c b/sysdeps/ieee754/ldbl-128/k_sinl.c deleted file mode 100644 index 4107eeb9f9..0000000000 --- a/sysdeps/ieee754/ldbl-128/k_sinl.c +++ /dev/null @@ -1,135 +0,0 @@ -/* Quad-precision floating point sine on <-pi/4,pi/4>. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 c[] = { -#define ONE c[0] - L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ - -/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 ) - x in <0,1/256> */ -#define SCOS1 c[1] -#define SCOS2 c[2] -#define SCOS3 c[3] -#define SCOS4 c[4] -#define SCOS5 c[5] -L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */ - L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */ -L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */ - L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */ -L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */ - -/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 ) - x in <0,0.1484375> */ -#define SIN1 c[6] -#define SIN2 c[7] -#define SIN3 c[8] -#define SIN4 c[9] -#define SIN5 c[10] -#define SIN6 c[11] -#define SIN7 c[12] -#define SIN8 c[13] -L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */ - L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */ -L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */ - L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */ -L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */ - L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */ -L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */ - L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */ - -/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 ) - x in <0,1/256> */ -#define SSIN1 c[14] -#define SSIN2 c[15] -#define SSIN3 c[16] -#define SSIN4 c[17] -#define SSIN5 c[18] -L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */ - L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */ -L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */ - L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */ -L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */ -}; - -#define SINCOSL_COS_HI 0 -#define SINCOSL_COS_LO 1 -#define SINCOSL_SIN_HI 2 -#define SINCOSL_SIN_LO 3 -extern const _Float128 __sincosl_table[]; - -_Float128 -__kernel_sinl(_Float128 x, _Float128 y, int iy) -{ - _Float128 h, l, z, sin_l, cos_l_m1; - int64_t ix; - u_int32_t tix, hix, index; - GET_LDOUBLE_MSW64 (ix, x); - tix = ((u_int64_t)ix) >> 32; - tix &= ~0x80000000; /* tix = |x|'s high 32 bits */ - if (tix < 0x3ffc3000) /* |x| < 0.1484375 */ - { - /* Argument is small enough to approximate it by a Chebyshev - polynomial of degree 17. */ - if (tix < 0x3fc60000) /* |x| < 2^-57 */ - { - math_check_force_underflow (x); - if (!((int)x)) return x; /* generate inexact */ - } - z = x * x; - return x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+ - z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8))))))))); - } - else - { - /* So that we don't have to use too large polynomial, we find - l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83 - possible values for h. We look up cosl(h) and sinl(h) in - pre-computed tables, compute cosl(l) and sinl(l) using a - Chebyshev polynomial of degree 10(11) and compute - sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l). */ - index = 0x3ffe - (tix >> 16); - hix = (tix + (0x200 << index)) & (0xfffffc00 << index); - x = fabsl (x); - switch (index) - { - case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break; - case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break; - default: - case 2: index = (hix - 0x3ffc3000) >> 10; break; - } - - SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0); - if (iy) - l = (ix < 0 ? -y : y) - (h - x); - else - l = x - h; - z = l * l; - sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5))))); - cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5)))); - z = __sincosl_table [index + SINCOSL_SIN_HI] - + (__sincosl_table [index + SINCOSL_SIN_LO] - + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1) - + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l)); - return (ix < 0) ? -z : z; - } -} diff --git a/sysdeps/ieee754/ldbl-128/k_tanl.c b/sysdeps/ieee754/ldbl-128/k_tanl.c deleted file mode 100644 index e79023c69a..0000000000 --- a/sysdeps/ieee754/ldbl-128/k_tanl.c +++ /dev/null @@ -1,168 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - Long double expansions are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __kernel_tanl( x, y, k ) - * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * Input k indicates whether tan (if k=1) or - * -1/tan (if k= -1) is returned. - * - * Algorithm - * 1. Since tan(-x) = -tan(x), we need only to consider positive x. - * 2. if x < 2^-57, return x with inexact if x!=0. - * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) - * on [0,0.67433]. - * - * Note: tan(x+y) = tan(x) + tan'(x)*y - * ~ tan(x) + (1+x*x)*y - * Therefore, for better accuracy in computing tan(x+y), let - * r = x^3 * R(x^2) - * then - * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) - * - * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then - * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) - * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) - */ - -#include <float.h> -#include <math.h> -#include <math_private.h> -#include <libc-diag.h> - -static const _Float128 - one = 1, - pio4hi = L(7.8539816339744830961566084581987569936977E-1), - pio4lo = L(2.1679525325309452561992610065108379921906E-35), - - /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) - 0 <= x <= 0.6743316650390625 - Peak relative error 8.0e-36 */ - TH = L(3.333333333333333333333333333333333333333E-1), - T0 = L(-1.813014711743583437742363284336855889393E7), - T1 = L(1.320767960008972224312740075083259247618E6), - T2 = L(-2.626775478255838182468651821863299023956E4), - T3 = L(1.764573356488504935415411383687150199315E2), - T4 = L(-3.333267763822178690794678978979803526092E-1), - - U0 = L(-1.359761033807687578306772463253710042010E8), - U1 = L(6.494370630656893175666729313065113194784E7), - U2 = L(-4.180787672237927475505536849168729386782E6), - U3 = L(8.031643765106170040139966622980914621521E4), - U4 = L(-5.323131271912475695157127875560667378597E2); - /* 1.000000000000000000000000000000000000000E0 */ - - -_Float128 -__kernel_tanl (_Float128 x, _Float128 y, int iy) -{ - _Float128 z, r, v, w, s; - int32_t ix, sign; - ieee854_long_double_shape_type u, u1; - - u.value = x; - ix = u.parts32.w0 & 0x7fffffff; - if (ix < 0x3fc60000) /* x < 2**-57 */ - { - if ((int) x == 0) - { /* generate inexact */ - if ((ix | u.parts32.w1 | u.parts32.w2 | u.parts32.w3 - | (iy + 1)) == 0) - return one / fabsl (x); - else if (iy == 1) - { - math_check_force_underflow (x); - return x; - } - else - return -one / x; - } - } - if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ - { - if ((u.parts32.w0 & 0x80000000) != 0) - { - x = -x; - y = -y; - sign = -1; - } - else - sign = 1; - z = pio4hi - x; - w = pio4lo - y; - x = z + w; - y = 0.0; - } - z = x * x; - r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); - v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); - r = r / v; - - s = z * x; - r = y + z * (s * r + y); - r += TH * s; - w = x + r; - if (ix >= 0x3ffe5942) - { - v = (_Float128) iy; - w = (v - 2.0 * (x - (w * w / (w + v) - r))); - /* SIGN is set for arguments that reach this code, but not - otherwise, resulting in warnings that it may be used - uninitialized although in the cases where it is used it has - always been set. */ - DIAG_PUSH_NEEDS_COMMENT; - DIAG_IGNORE_NEEDS_COMMENT (5, "-Wmaybe-uninitialized"); - if (sign < 0) - w = -w; - DIAG_POP_NEEDS_COMMENT; - return w; - } - if (iy == 1) - return w; - else - { /* if allow error up to 2 ulp, - simply return -1.0/(x+r) here */ - /* compute -1.0/(x+r) accurately */ - u1.value = w; - u1.parts32.w2 = 0; - u1.parts32.w3 = 0; - v = r - (u1.value - x); /* u1+v = r+x */ - z = -1.0 / w; - u.value = z; - u.parts32.w2 = 0; - u.parts32.w3 = 0; - s = 1.0 + u.value * u1.value; - return u.value + z * (s + u.value * v); - } -} diff --git a/sysdeps/ieee754/ldbl-128/ldbl2mpn.c b/sysdeps/ieee754/ldbl-128/ldbl2mpn.c deleted file mode 100644 index 1c79a5dbe5..0000000000 --- a/sysdeps/ieee754/ldbl-128/ldbl2mpn.c +++ /dev/null @@ -1,140 +0,0 @@ -/* Copyright (C) 1995-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include "gmp.h" -#include "gmp-impl.h" -#include "longlong.h" -#include <ieee754.h> -#include <float.h> -#include <math.h> -#include <math_private.h> -#include <stdlib.h> - -/* Convert a `long double' in IEEE854 quad-precision format to a - multi-precision integer representing the significand scaled up by its - number of bits (113 for long double) and an integral power of two - (MPN frexpl). */ - -mp_size_t -__mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size, - int *expt, int *is_neg, - _Float128 value) -{ - union ieee854_long_double u; - u.d = value; - - *is_neg = u.ieee.negative; - *expt = (int) u.ieee.exponent - IEEE854_LONG_DOUBLE_BIAS; - -#if BITS_PER_MP_LIMB == 32 - res_ptr[0] = u.ieee.mantissa3; /* Low-order 32 bits of fraction. */ - res_ptr[1] = u.ieee.mantissa2; - res_ptr[2] = u.ieee.mantissa1; - res_ptr[3] = u.ieee.mantissa0; /* High-order 32 bits. */ - #define N 4 -#elif BITS_PER_MP_LIMB == 64 - /* Hopefully the compiler will combine the two bitfield extracts - and this composition into just the original quadword extract. */ - res_ptr[0] = ((mp_limb_t) u.ieee.mantissa2 << 32) | u.ieee.mantissa3; - res_ptr[1] = ((mp_limb_t) u.ieee.mantissa0 << 32) | u.ieee.mantissa1; - #define N 2 -#else - #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for" -#endif -/* The format does not fill the last limb. There are some zeros. */ -#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \ - - (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB))) - - if (u.ieee.exponent == 0) - { - /* A biased exponent of zero is a special case. - Either it is a zero or it is a denormal number. */ - if (res_ptr[0] == 0 && res_ptr[1] == 0 - && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */ - /* It's zero. */ - *expt = 0; - else - { - /* It is a denormal number, meaning it has no implicit leading - one bit, and its exponent is in fact the format minimum. */ - int cnt; - -#if N == 2 - if (res_ptr[N - 1] != 0) - { - count_leading_zeros (cnt, res_ptr[N - 1]); - cnt -= NUM_LEADING_ZEROS; - res_ptr[N - 1] = res_ptr[N - 1] << cnt - | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt)); - res_ptr[0] <<= cnt; - *expt = LDBL_MIN_EXP - 1 - cnt; - } - else - { - count_leading_zeros (cnt, res_ptr[0]); - if (cnt >= NUM_LEADING_ZEROS) - { - res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS); - res_ptr[0] = 0; - } - else - { - res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt); - res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt); - } - *expt = LDBL_MIN_EXP - 1 - - (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt; - } -#else - int j, k, l; - - for (j = N - 1; j > 0; j--) - if (res_ptr[j] != 0) - break; - - count_leading_zeros (cnt, res_ptr[j]); - cnt -= NUM_LEADING_ZEROS; - l = N - 1 - j; - if (cnt < 0) - { - cnt += BITS_PER_MP_LIMB; - l--; - } - if (!cnt) - for (k = N - 1; k >= l; k--) - res_ptr[k] = res_ptr[k-l]; - else - { - for (k = N - 1; k > l; k--) - res_ptr[k] = res_ptr[k-l] << cnt - | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt); - res_ptr[k--] = res_ptr[0] << cnt; - } - - for (; k >= 0; k--) - res_ptr[k] = 0; - *expt = LDBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt; -#endif - } - } - else - /* Add the implicit leading one bit for a normalized number. */ - res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1 - - ((N - 1) * BITS_PER_MP_LIMB)); - - return N; -} diff --git a/sysdeps/ieee754/ldbl-128/lgamma_negl.c b/sysdeps/ieee754/ldbl-128/lgamma_negl.c deleted file mode 100644 index 17dc4f5bfe..0000000000 --- a/sysdeps/ieee754/ldbl-128/lgamma_negl.c +++ /dev/null @@ -1,551 +0,0 @@ -/* lgammal expanding around zeros. - Copyright (C) 2015-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 lgamma_zeros[][2] = - { - { L(-0x2.74ff92c01f0d82abec9f315f1a08p+0), L(0xe.d3ccb7fb2658634a2b9f6b2ba81p-116) }, - { L(-0x2.bf6821437b20197995a4b4641eaep+0), L(-0xb.f4b00b4829f961e428533e6ad048p-116) }, - { L(-0x3.24c1b793cb35efb8be699ad3d9bap+0), L(-0x6.5454cb7fac60e3f16d9d7840c2ep-116) }, - { L(-0x3.f48e2a8f85fca170d4561291236cp+0), L(-0xc.320a4887d1cb4c711828a75d5758p-116) }, - { L(-0x4.0a139e16656030c39f0b0de18114p+0), L(0x1.53e84029416e1242006b2b3d1cfp-112) }, - { L(-0x4.fdd5de9bbabf3510d0aa40769884p+0), L(-0x1.01d7d78125286f78d1e501f14966p-112) }, - { L(-0x5.021a95fc2db6432a4c56e595394cp+0), L(-0x1.ecc6af0430d4fe5746fa7233356fp-112) }, - { L(-0x5.ffa4bd647d0357dd4ed62cbd31ecp+0), L(-0x1.f8e3f8e5deba2d67dbd70dd96ce1p-112) }, - { L(-0x6.005ac9625f233b607c2d96d16384p+0), L(-0x1.cb86ac569340cf1e5f24df7aab7bp-112) }, - { L(-0x6.fff2fddae1bbff3d626b65c23fd4p+0), L(0x1.e0bfcff5c457ebcf4d3ad9674167p-112) }, - { L(-0x7.000cff7b7f87adf4482dcdb98784p+0), L(0x1.54d99e35a74d6407b80292df199fp-112) }, - { L(-0x7.fffe5fe05673c3ca9e82b522b0ccp+0), L(0x1.62d177c832e0eb42c2faffd1b145p-112) }, - { L(-0x8.0001a01459fc9f60cb3cec1cec88p+0), L(0x2.8998835ac7277f7bcef67c47f188p-112) }, - { L(-0x8.ffffd1c425e80ffc864e95749258p+0), L(-0x1.e7e20210e7f81cf781b44e9d2b02p-112) }, - { L(-0x9.00002e3bb47d86d6d843fedc352p+0), L(0x2.14852f613a16291751d2ab751f7ep-112) }, - { L(-0x9.fffffb606bdfdcd062ae77a50548p+0), L(0x3.962d1490cc2e8f031c7007eaa1ap-116) }, - { L(-0xa.0000049f93bb9927b45d95e1544p+0), L(-0x1.e03086db9146a9287bd4f2172d5ap-112) }, - { L(-0xa.ffffff9466e9f1b36dacd2adbd18p+0), L(-0xd.05a4e458062f3f95345a4d9c9b6p-116) }, - { L(-0xb.0000006b9915315d965a6ffea41p+0), L(0x1.b415c6fff233e7b7fdc3a094246fp-112) }, - { L(-0xb.fffffff7089387387de41acc3d4p+0), L(0x3.687427c6373bd74a10306e10a28ep-112) }, - { L(-0xc.00000008f76c7731567c0f0250fp+0), L(-0x3.87920df5675833859190eb128ef6p-112) }, - { L(-0xc.ffffffff4f6dcf617f97a5ffc758p+0), L(0x2.ab72d76f32eaee2d1a42ed515d3ap-116) }, - { L(-0xd.00000000b092309c06683dd1b9p+0), L(-0x3.e3700857a15c19ac5a611de9688ap-112) }, - { L(-0xd.fffffffff36345ab9e184a3e09dp+0), L(-0x1.176dc48e47f62d917973dd44e553p-112) }, - { L(-0xe.000000000c9cba545e94e75ec57p+0), L(-0x1.8f753e2501e757a17cf2ecbeeb89p-112) }, - { L(-0xe.ffffffffff28c060c6604ef3037p+0), L(-0x1.f89d37357c9e3dc17c6c6e63becap-112) }, - { L(-0xf.0000000000d73f9f399bd0e420f8p+0), L(-0x5.e9ee31b0b890744fc0e3fbc01048p-116) }, - { L(-0xf.fffffffffff28c060c6621f512e8p+0), L(0xd.1b2eec9d960bd9adc5be5f5fa5p-116) }, - { L(-0x1.000000000000d73f9f399da1424cp+4), L(0x6.c46e0e88305d2800f0e414c506a8p-116) }, - { L(-0x1.0ffffffffffff3569c47e7a93e1cp+4), L(-0x4.6a08a2e008a998ebabb8087efa2cp-112) }, - { L(-0x1.1000000000000ca963b818568887p+4), L(-0x6.ca5a3a64ec15db0a95caf2c9ffb4p-112) }, - { L(-0x1.1fffffffffffff4bec3ce234132dp+4), L(-0x8.b2b726187c841cb92cd5221e444p-116) }, - { L(-0x1.20000000000000b413c31dcbeca5p+4), L(0x3.c4d005344b6cd0e7231120294abcp-112) }, - { L(-0x1.2ffffffffffffff685b25cbf5f54p+4), L(-0x5.ced932e38485f7dd296b8fa41448p-112) }, - { L(-0x1.30000000000000097a4da340a0acp+4), L(0x7.e484e0e0ffe38d406ebebe112f88p-112) }, - { L(-0x1.3fffffffffffffff86af516ff7f7p+4), L(-0x6.bd67e720d57854502b7db75e1718p-112) }, - { L(-0x1.40000000000000007950ae900809p+4), L(0x6.bec33375cac025d9c073168c5d9p-112) }, - { L(-0x1.4ffffffffffffffffa391c4248c3p+4), L(0x5.c63022b62b5484ba346524db607p-112) }, - { L(-0x1.500000000000000005c6e3bdb73dp+4), L(-0x5.c62f55ed5322b2685c5e9a51e6a8p-112) }, - { L(-0x1.5fffffffffffffffffbcc71a492p+4), L(-0x1.eb5aeb96c74d7ad25e060528fb5p-112) }, - { L(-0x1.6000000000000000004338e5b6ep+4), L(0x1.eb5aec04b2f2eb663e4e3d8a018cp-112) }, - { L(-0x1.6ffffffffffffffffffd13c97d9dp+4), L(-0x3.8fcc4d08d6fe5aa56ab04307ce7ep-112) }, - { L(-0x1.70000000000000000002ec368263p+4), L(0x3.8fcc4d090cee2f5d0b69a99c353cp-112) }, - { L(-0x1.7fffffffffffffffffffe0d30fe7p+4), L(0x7.2f577cca4b4c8cb1dc14001ac5ecp-112) }, - { L(-0x1.800000000000000000001f2cf019p+4), L(-0x7.2f577cca4b3442e35f0040b3b9e8p-112) }, - { L(-0x1.8ffffffffffffffffffffec0c332p+4), L(-0x2.e9a0572b1bb5b95f346a92d67a6p-112) }, - { L(-0x1.90000000000000000000013f3ccep+4), L(0x2.e9a0572b1bb5c371ddb3561705ap-112) }, - { L(-0x1.9ffffffffffffffffffffff3b8bdp+4), L(-0x1.cad8d32e386fd783e97296d63dcbp-116) }, - { L(-0x1.a0000000000000000000000c4743p+4), L(0x1.cad8d32e386fd7c1ab8c1fe34c0ep-116) }, - { L(-0x1.afffffffffffffffffffffff8b95p+4), L(-0x3.8f48cc5737d5979c39db806c5406p-112) }, - { L(-0x1.b00000000000000000000000746bp+4), L(0x3.8f48cc5737d5979c3b3a6bda06f6p-112) }, - { L(-0x1.bffffffffffffffffffffffffbd8p+4), L(0x6.2898d42174dcf171470d8c8c6028p-112) }, - { L(-0x1.c000000000000000000000000428p+4), L(-0x6.2898d42174dcf171470d18ba412cp-112) }, - { L(-0x1.cfffffffffffffffffffffffffdbp+4), L(-0x4.c0ce9794ea50a839e311320bde94p-112) }, - { L(-0x1.d000000000000000000000000025p+4), L(0x4.c0ce9794ea50a839e311322f7cf8p-112) }, - { L(-0x1.dfffffffffffffffffffffffffffp+4), L(0x3.932c5047d60e60caded4c298a174p-112) }, - { L(-0x1.e000000000000000000000000001p+4), L(-0x3.932c5047d60e60caded4c298973ap-112) }, - { L(-0x1.fp+4), L(0xa.1a6973c1fade2170f7237d35fe3p-116) }, - { L(-0x1.fp+4), L(-0xa.1a6973c1fade2170f7237d35fe08p-116) }, - { L(-0x2p+4), L(0x5.0d34b9e0fd6f10b87b91be9aff1p-120) }, - { L(-0x2p+4), L(-0x5.0d34b9e0fd6f10b87b91be9aff0cp-120) }, - { L(-0x2.1p+4), L(0x2.73024a9ba1aa36a7059bff52e844p-124) }, - { L(-0x2.1p+4), L(-0x2.73024a9ba1aa36a7059bff52e844p-124) }, - { L(-0x2.2p+4), L(0x1.2710231c0fd7a13f8a2b4af9d6b7p-128) }, - { L(-0x2.2p+4), L(-0x1.2710231c0fd7a13f8a2b4af9d6b7p-128) }, - { L(-0x2.3p+4), L(0x8.6e2ce38b6c8f9419e3fad3f0312p-136) }, - { L(-0x2.3p+4), L(-0x8.6e2ce38b6c8f9419e3fad3f0312p-136) }, - { L(-0x2.4p+4), L(0x3.bf30652185952560d71a254e4eb8p-140) }, - { L(-0x2.4p+4), L(-0x3.bf30652185952560d71a254e4eb8p-140) }, - { L(-0x2.5p+4), L(0x1.9ec8d1c94e85af4c78b15c3d89d3p-144) }, - { L(-0x2.5p+4), L(-0x1.9ec8d1c94e85af4c78b15c3d89d3p-144) }, - { L(-0x2.6p+4), L(0xa.ea565ce061d57489e9b85276274p-152) }, - { L(-0x2.6p+4), L(-0xa.ea565ce061d57489e9b85276274p-152) }, - { L(-0x2.7p+4), L(0x4.7a6512692eb37804111dabad30ecp-156) }, - { L(-0x2.7p+4), L(-0x4.7a6512692eb37804111dabad30ecp-156) }, - { L(-0x2.8p+4), L(0x1.ca8ed42a12ae3001a07244abad2bp-160) }, - { L(-0x2.8p+4), L(-0x1.ca8ed42a12ae3001a07244abad2bp-160) }, - { L(-0x2.9p+4), L(0xb.2f30e1ce812063f12e7e8d8d96e8p-168) }, - { L(-0x2.9p+4), L(-0xb.2f30e1ce812063f12e7e8d8d96e8p-168) }, - { L(-0x2.ap+4), L(0x4.42bd49d4c37a0db136489772e428p-172) }, - { L(-0x2.ap+4), L(-0x4.42bd49d4c37a0db136489772e428p-172) }, - { L(-0x2.bp+4), L(0x1.95db45257e5122dcbae56def372p-176) }, - { L(-0x2.bp+4), L(-0x1.95db45257e5122dcbae56def372p-176) }, - { L(-0x2.cp+4), L(0x9.3958d81ff63527ecf993f3fb6f48p-184) }, - { L(-0x2.cp+4), L(-0x9.3958d81ff63527ecf993f3fb6f48p-184) }, - { L(-0x2.dp+4), L(0x3.47970e4440c8f1c058bd238c9958p-188) }, - { L(-0x2.dp+4), L(-0x3.47970e4440c8f1c058bd238c9958p-188) }, - { L(-0x2.ep+4), L(0x1.240804f65951062ca46e4f25c608p-192) }, - { L(-0x2.ep+4), L(-0x1.240804f65951062ca46e4f25c608p-192) }, - { L(-0x2.fp+4), L(0x6.36a382849fae6de2d15362d8a394p-200) }, - { L(-0x2.fp+4), L(-0x6.36a382849fae6de2d15362d8a394p-200) }, - { L(-0x3p+4), L(0x2.123680d6dfe4cf4b9b1bcb9d8bdcp-204) }, - { L(-0x3p+4), L(-0x2.123680d6dfe4cf4b9b1bcb9d8bdcp-204) }, - { L(-0x3.1p+4), L(0xa.d21786ff5842eca51fea0870919p-212) }, - { L(-0x3.1p+4), L(-0xa.d21786ff5842eca51fea0870919p-212) }, - { L(-0x3.2p+4), L(0x3.766dedc259af040be140a68a6c04p-216) }, - }; - -static const _Float128 e_hi = L(0x2.b7e151628aed2a6abf7158809cf4p+0); -static const _Float128 e_lo = L(0xf.3c762e7160f38b4da56a784d9048p-116); - - -/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's - approximation to lgamma function. */ - -static const _Float128 lgamma_coeff[] = - { - L(0x1.5555555555555555555555555555p-4), - L(-0xb.60b60b60b60b60b60b60b60b60b8p-12), - L(0x3.4034034034034034034034034034p-12), - L(-0x2.7027027027027027027027027028p-12), - L(0x3.72a3c5631fe46ae1d4e700dca8f2p-12), - L(-0x7.daac36664f1f207daac36664f1f4p-12), - L(0x1.a41a41a41a41a41a41a41a41a41ap-8), - L(-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8), - L(0x2.dfd2c703c0cfff430edfd2c703cp-4), - L(-0x1.6476701181f39edbdb9ce625987dp+0), - L(0xd.672219167002d3a7a9c886459cp+0), - L(-0x9.cd9292e6660d55b3f712eb9e07c8p+4), - L(0x8.911a740da740da740da740da741p+8), - L(-0x8.d0cc570e255bf59ff6eec24b49p+12), - L(0xa.8d1044d3708d1c219ee4fdc446ap+16), - L(-0xe.8844d8a169abbc406169abbc406p+20), - L(0x1.6d29a0f6433b79890cede62433b8p+28), - L(-0x2.88a233b3c8cddaba9809357125d8p+32), - L(0x5.0dde6f27500939a85c40939a85c4p+36), - L(-0xb.4005bde03d4642a243581714af68p+40), - L(0x1.bc8cd6f8f1f755c78753cdb5d5c9p+48), - L(-0x4.bbebb143bb94de5a0284fa7ec424p+52), - L(0xe.2e1337f5af0bed90b6b0a352d4fp+56), - L(-0x2.e78250162b62405ad3e4bfe61b38p+64), - L(0xa.5f7eef9e71ac7c80326ab4cc8bfp+68), - L(-0x2.83be0395e550213369924971b21ap+76), - L(0xa.8ebfe48da17dd999790760b0cep+80), - }; - -#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) - -/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is - the integer end-point of the half-integer interval containing x and - x0 is the zero of lgamma in that half-integer interval. Each - polynomial is expressed in terms of x-xm, where xm is the midpoint - of the interval for which the polynomial applies. */ - -static const _Float128 poly_coeff[] = - { - /* Interval [-2.125, -2] (polynomial degree 23). */ - L(-0x1.0b71c5c54d42eb6c17f30b7aa8f5p+0), - L(-0xc.73a1dc05f34951602554c6d7506p-4), - L(-0x1.ec841408528b51473e6c425ee5ffp-4), - L(-0xe.37c9da26fc3c9a3c1844c8c7f1cp-4), - L(-0x1.03cd87c519305703b021fa33f827p-4), - L(-0xe.ae9ada65e09aa7f1c75216128f58p-4), - L(0x9.b11855a4864b5731cf85736015a8p-8), - L(-0xe.f28c133e697a95c28607c9701dep-4), - L(0x2.6ec14a1c586a72a7cc33ee569d6ap-4), - L(-0xf.57cab973e14464a262fc24723c38p-4), - L(0x4.5b0fc25f16e52997b2886bbae808p-4), - L(-0xf.f50e59f1a9b56e76e988dac9ccf8p-4), - L(0x6.5f5eae15e9a93369e1d85146c6fcp-4), - L(-0x1.0d2422daac459e33e0994325ed23p+0), - L(0x8.82000a0e7401fb1117a0e6606928p-4), - L(-0x1.1f492f178a3f1b19f58a2ca68e55p+0), - L(0xa.cb545f949899a04c160b19389abp-4), - L(-0x1.36165a1b155ba3db3d1b77caf498p+0), - L(0xd.44c5d5576f74302e5cf79e183eep-4), - L(-0x1.51f22e0cdd33d3d481e326c02f3ep+0), - L(0xf.f73a349c08244ac389c007779bfp-4), - L(-0x1.73317bf626156ba716747c4ca866p+0), - L(0x1.379c3c97b9bc71e1c1c4802dd657p+0), - L(-0x1.a72a351c54f902d483052000f5dfp+0), - /* Interval [-2.25, -2.125] (polynomial degree 24). */ - L(-0xf.2930890d7d675a80c36afb0fd5e8p-4), - L(-0xc.a5cfde054eab5c6770daeca577f8p-4), - L(0x3.9c9e0fdebb07cdf89c61d41c9238p-4), - L(-0x1.02a5ad35605fcf4af65a6dbacb84p+0), - L(0x9.6e9b1185bb48be9de1918e00a2e8p-4), - L(-0x1.4d8332f3cfbfa116fd611e9ce90dp+0), - L(0x1.1c0c8cb4d9f4b1d490e1a41fae4dp+0), - L(-0x1.c9a6f5ae9130cd0299e293a42714p+0), - L(0x1.d7e9307fd58a2ea997f29573a112p+0), - L(-0x2.921cb3473d96178ca2a11d2a8d46p+0), - L(0x2.e8d59113b6f3409ff8db226e9988p+0), - L(-0x3.cbab931625a1ae2b26756817f264p+0), - L(0x4.7d9f0f05d5296d18663ca003912p+0), - L(-0x5.ade9cba12a14ea485667b7135bbp+0), - L(0x6.dc983a5da74fb48e767b7fec0a3p+0), - L(-0x8.8d9ed454ae31d9e138dd8ee0d1a8p+0), - L(0xa.6fa099d4e7c202e0c0fd6ed8492p+0), - L(-0xc.ebc552a8090a0f0115e92d4ebbc8p+0), - L(0xf.d695e4772c0d829b53fba9ca5568p+0), - L(-0x1.38c32ae38e5e9eb79b2a4c5570a9p+4), - L(0x1.8035145646cfab49306d0999a51bp+4), - L(-0x1.d930adbb03dd342a4c2a8c4e1af6p+4), - L(0x2.45c2edb1b4943ddb3686cd9c6524p+4), - L(-0x2.e818ebbfafe2f916fa21abf7756p+4), - L(0x3.9804ce51d0fb9a430a711fd7307p+4), - /* Interval [-2.375, -2.25] (polynomial degree 25). */ - L(-0xd.7d28d505d6181218a25f31d5e45p-4), - L(-0xe.69649a3040985140cdf946829fap-4), - L(0xb.0d74a2827d053a8d44595012484p-4), - L(-0x1.924b0922853617cac181afbc08ddp+0), - L(0x1.d49b12bccf0a568582e2d3c410f3p+0), - L(-0x3.0898bb7d8c4093e636279c791244p+0), - L(0x4.207a6cac711cb53868e8a5057eep+0), - L(-0x6.39ee63ea4fb1dcab0c9144bf3ddcp+0), - L(0x8.e2e2556a797b649bf3f53bd26718p+0), - L(-0xd.0e83ac82552ef12af508589e7a8p+0), - L(0x1.2e4525e0ce6670563c6484a82b05p+4), - L(-0x1.b8e350d6a8f2b222fa390a57c23dp+4), - L(0x2.805cd69b919087d8a80295892c2cp+4), - L(-0x3.a42585424a1b7e64c71743ab014p+4), - L(0x5.4b4f409f98de49f7bfb03c05f984p+4), - L(-0x7.b3c5827fbe934bc820d6832fb9fcp+4), - L(0xb.33b7b90cc96c425526e0d0866e7p+4), - L(-0x1.04b77047ac4f59ee3775ca10df0dp+8), - L(0x1.7b366f5e94a34f41386eac086313p+8), - L(-0x2.2797338429385c9849ca6355bfc2p+8), - L(0x3.225273cf92a27c9aac1b35511256p+8), - L(-0x4.8f078aa48afe6cb3a4e89690f898p+8), - L(0x6.9f311d7b6654fc1d0b5195141d04p+8), - L(-0x9.a0c297b6b4621619ca9bacc48ed8p+8), - L(0xe.ce1f06b6f90d92138232a76e4cap+8), - L(-0x1.5b0e6806fa064daf011613e43b17p+12), - /* Interval [-2.5, -2.375] (polynomial degree 27). */ - L(-0xb.74ea1bcfff94b2c01afba9daa7d8p-4), - L(-0x1.2a82bd590c37538cab143308de4dp+0), - L(0x1.88020f828b966fec66b8649fd6fcp+0), - L(-0x3.32279f040eb694970e9db24863dcp+0), - L(0x5.57ac82517767e68a721005853864p+0), - L(-0x9.c2aedcfe22833de43834a0a6cc4p+0), - L(0x1.12c132f1f5577f99e1a0ed3538e1p+4), - L(-0x1.ea94e26628a3de3597f7bb55a948p+4), - L(0x3.66b4ac4fa582f58b59f96b2f7c7p+4), - L(-0x6.0cf746a9cf4cba8c39afcc73fc84p+4), - L(0xa.c102ef2c20d75a342197df7fedf8p+4), - L(-0x1.31ebff06e8f14626782df58db3b6p+8), - L(0x2.1fd6f0c0e710994e059b9dbdb1fep+8), - L(-0x3.c6d76040407f447f8b5074f07706p+8), - L(0x6.b6d18e0d8feb4c2ef5af6a40ed18p+8), - L(-0xb.efaf542c529f91e34217f24ae6a8p+8), - L(0x1.53852d873210e7070f5d9eb2296p+12), - L(-0x2.5b977c0ddc6d540717173ac29fc8p+12), - L(0x4.310d452ae05100eff1e02343a724p+12), - L(-0x7.73a5d8f20c4f986a7dd1912b2968p+12), - L(0xd.3f5ea2484f3fca15eab1f4d1a218p+12), - L(-0x1.78d18aac156d1d93a2ffe7e08d3fp+16), - L(0x2.9df49ca75e5b567f5ea3e47106cp+16), - L(-0x4.a7149af8961a08aa7c3233b5bb94p+16), - L(0x8.3db10ffa742c707c25197d989798p+16), - L(-0xe.a26d6dd023cadd02041a049ec368p+16), - L(0x1.c825d90514e7c57c7fa5316f947cp+20), - L(-0x3.34bb81e5a0952df8ca1abdc6684cp+20), - /* Interval [-2.625, -2.5] (polynomial degree 28). */ - L(-0x3.d10108c27ebafad533c20eac32bp-4), - L(0x1.cd557caff7d2b2085f41dbec5106p+0), - L(0x3.819b4856d399520dad9776ea2cacp+0), - L(0x6.8505cbad03dc34c5e42e8b12eb78p+0), - L(0xb.c1b2e653a9e38f82b399c94e7f08p+0), - L(0x1.50a53a38f148138105124df65419p+4), - L(0x2.57ae00cbe5232cbeeed34d89727ap+4), - L(0x4.2b156301b8604db85a601544bfp+4), - L(0x7.6989ed23ca3ca7579b3462592b5cp+4), - L(0xd.2dd2976557939517f831f5552cc8p+4), - L(0x1.76e1c3430eb860969bce40cd494p+8), - L(0x2.9a77bf5488742466db3a2c7c1ec6p+8), - L(0x4.a0d62ed7266e8eb36f725a8ebcep+8), - L(0x8.3a6184dd3021067df2f8b91e99c8p+8), - L(0xe.a0ade1538245bf55d39d7e436b1p+8), - L(0x1.a01359fae8617b5826dd74428e9p+12), - L(0x2.e3b0a32caae77251169acaca1ad4p+12), - L(0x5.2301257c81589f62b38fb5993ee8p+12), - L(0x9.21c9275db253d4e719b73b18cb9p+12), - L(0x1.03c104bc96141cda3f3fa4b112bcp+16), - L(0x1.cdc8ed65119196a08b0c78f1445p+16), - L(0x3.34f31d2eaacf34382cdb0073572ap+16), - L(0x5.b37628cadf12bf0000907d0ef294p+16), - L(0xa.22d8b332c0b1e6a616f425dfe5ap+16), - L(0x1.205b01444804c3ff922cd78b4c42p+20), - L(0x1.fe8f0cea9d1e0ff25be2470b4318p+20), - L(0x3.8872aebeb368399aee02b39340aep+20), - L(0x6.ebd560d351e84e26a4381f5b293cp+20), - L(0xc.c3644d094b0dae2fbcbf682cd428p+20), - /* Interval [-2.75, -2.625] (polynomial degree 26). */ - L(-0x6.b5d252a56e8a75458a27ed1c2dd4p-4), - L(0x1.28d60383da3ac721aed3c5794da9p+0), - L(0x1.db6513ada8a66ea77d87d9a8827bp+0), - L(0x2.e217118f9d348a27f7506a707e6ep+0), - L(0x4.450112c5cbf725a0fb9802396c9p+0), - L(0x6.4af99151eae7810a75df2a0303c4p+0), - L(0x9.2db598b4a97a7f69aeef32aec758p+0), - L(0xd.62bef9c22471f5ee47ea1b9c0b5p+0), - L(0x1.379f294e412bd62328326d4222f9p+4), - L(0x1.c5827349d8865f1e8825c37c31c6p+4), - L(0x2.93a7e7a75b7568cc8cbe8c016c12p+4), - L(0x3.bf9bb882afe57edb383d41879d3ap+4), - L(0x5.73c737828cee095c43a5566731c8p+4), - L(0x7.ee4653493a7f81e0442062b3823cp+4), - L(0xb.891c6b83fc8b55bd973b5d962d6p+4), - L(0x1.0c775d7de3bf9b246c0208e0207ep+8), - L(0x1.867ee43ec4bd4f4fd56abc05110ap+8), - L(0x2.37fe9ba6695821e9822d8c8af0a6p+8), - L(0x3.3a2c667e37c942f182cd3223a936p+8), - L(0x4.b1b500eb59f3f782c7ccec88754p+8), - L(0x6.d3efd3b65b3d0d8488d30b79fa4cp+8), - L(0x9.ee8224e65bed5ced8b75eaec609p+8), - L(0xe.72416e510cca77d53fc615c1f3dp+8), - L(0x1.4fb538b0a2dfe567a8904b7e0445p+12), - L(0x1.e7f56a9266cf525a5b8cf4cb76cep+12), - L(0x2.f0365c983f68c597ee49d099cce8p+12), - L(0x4.53aa229e1b9f5b5e59625265951p+12), - /* Interval [-2.875, -2.75] (polynomial degree 24). */ - L(-0x8.a41b1e4f36ff88dc820815607d68p-4), - L(0xc.da87d3b69dc0f2f9c6f368b8ca1p-4), - L(0x1.1474ad5c36158a7bea04fd2f98c6p+0), - L(0x1.761ecb90c555df6555b7dba955b6p+0), - L(0x1.d279bff9ae291caf6c4b4bcb3202p+0), - L(0x2.4e5d00559a6e2b9b5d7fe1f6689cp+0), - L(0x2.d57545a75cee8743ae2b17bc8d24p+0), - L(0x3.8514eee3aac88b89bec2307021bap+0), - L(0x4.5235e3b6e1891ffeb87fed9f8a24p+0), - L(0x5.562acdb10eef3c9a773b3e27a864p+0), - L(0x6.8ec8965c76efe03c26bff60b1194p+0), - L(0x8.15251aca144877af32658399f9b8p+0), - L(0x9.f08d56aba174d844138af782c0f8p+0), - L(0xc.3dbbeda2679e8a1346ccc3f6da88p+0), - L(0xf.0f5bfd5eacc26db308ffa0556fa8p+0), - L(0x1.28a6ccd84476fbc713d6bab49ac9p+4), - L(0x1.6d0a3ae2a3b1c8ff400641a3a21fp+4), - L(0x1.c15701b28637f87acfb6a91d33b5p+4), - L(0x2.28fbe0eccf472089b017651ca55ep+4), - L(0x2.a8a453004f6e8ffaacd1603bc3dp+4), - L(0x3.45ae4d9e1e7cd1a5dba0e4ec7f6cp+4), - L(0x4.065fbfacb7fad3e473cb577a61e8p+4), - L(0x4.f3d1473020927acac1944734a39p+4), - L(0x6.54bb091245815a36fb74e314dd18p+4), - L(0x7.d7f445129f7fb6c055e582d3f6ep+4), - /* Interval [-3, -2.875] (polynomial degree 23). */ - L(-0xa.046d667e468f3e44dcae1afcc648p-4), - L(0x9.70b88dcc006c214d8d996fdf5ccp-4), - L(0xa.a8a39421c86d3ff24931a0929fp-4), - L(0xd.2f4d1363f324da2b357c8b6ec94p-4), - L(0xd.ca9aa1a3a5c00de11bf60499a97p-4), - L(0xf.cf09c31eeb52a45dfa7ebe3778dp-4), - L(0x1.04b133a39ed8a09691205660468bp+0), - L(0x1.22b547a06edda944fcb12fd9b5ecp+0), - L(0x1.2c57fce7db86a91df09602d344b3p+0), - L(0x1.4aade4894708f84795212fe257eep+0), - L(0x1.579c8b7b67ec4afed5b28c8bf787p+0), - L(0x1.776820e7fc80ae5284239733078ap+0), - L(0x1.883ab28c7301fde4ca6b8ec26ec8p+0), - L(0x1.aa2ef6e1ae52eb42c9ee83b206e3p+0), - L(0x1.bf4ad50f0a9a9311300cf0c51ee7p+0), - L(0x1.e40206e0e96b1da463814dde0d09p+0), - L(0x1.fdcbcffef3a21b29719c2bd9feb1p+0), - L(0x2.25e2e8948939c4d42cf108fae4bep+0), - L(0x2.44ce14d2b59c1c0e6bf2cfa81018p+0), - L(0x2.70ee80bbd0387162be4861c43622p+0), - L(0x2.954b64d2c2ebf3489b949c74476p+0), - L(0x2.c616e133a811c1c9446105208656p+0), - L(0x3.05a69dfe1a9ba1079f90fcf26bd4p+0), - L(0x3.410d2ad16a0506de29736e6aafdap+0), - }; - -static const size_t poly_deg[] = - { - 23, - 24, - 25, - 27, - 28, - 26, - 24, - 23, - }; - -static const size_t poly_end[] = - { - 23, - 48, - 74, - 102, - 131, - 158, - 183, - 207, - }; - -/* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ - -static _Float128 -lg_sinpi (_Float128 x) -{ - if (x <= L(0.25)) - return __sinl (M_PIl * x); - else - return __cosl (M_PIl * (L(0.5) - x)); -} - -/* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ - -static _Float128 -lg_cospi (_Float128 x) -{ - if (x <= L(0.25)) - return __cosl (M_PIl * x); - else - return __sinl (M_PIl * (L(0.5) - x)); -} - -/* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ - -static _Float128 -lg_cotpi (_Float128 x) -{ - return lg_cospi (x) / lg_sinpi (x); -} - -/* Compute lgamma of a negative argument -50 < X < -2, setting - *SIGNGAMP accordingly. */ - -_Float128 -__lgamma_negl (_Float128 x, int *signgamp) -{ - /* Determine the half-integer region X lies in, handle exact - integers and determine the sign of the result. */ - int i = __floorl (-2 * x); - if ((i & 1) == 0 && i == -2 * x) - return L(1.0) / L(0.0); - _Float128 xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); - i -= 4; - *signgamp = ((i & 2) == 0 ? -1 : 1); - - SET_RESTORE_ROUNDL (FE_TONEAREST); - - /* Expand around the zero X0 = X0_HI + X0_LO. */ - _Float128 x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; - _Float128 xdiff = x - x0_hi - x0_lo; - - /* For arguments in the range -3 to -2, use polynomial - approximations to an adjusted version of the gamma function. */ - if (i < 2) - { - int j = __floorl (-8 * x) - 16; - _Float128 xm = (-33 - 2 * j) * L(0.0625); - _Float128 x_adj = x - xm; - size_t deg = poly_deg[j]; - size_t end = poly_end[j]; - _Float128 g = poly_coeff[end]; - for (size_t j = 1; j <= deg; j++) - g = g * x_adj + poly_coeff[end - j]; - return __log1pl (g * xdiff / (x - xn)); - } - - /* The result we want is log (sinpi (X0) / sinpi (X)) - + log (gamma (1 - X0) / gamma (1 - X)). */ - _Float128 x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo); - _Float128 log_sinpi_ratio; - if (x0_idiff < x_idiff * L(0.5)) - /* Use log not log1p to avoid inaccuracy from log1p of arguments - close to -1. */ - log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff) - / lg_sinpi (x_idiff)); - else - { - /* Use log1p not log to avoid inaccuracy from log of arguments - close to 1. X0DIFF2 has positive sign if X0 is further from - XN than X is from XN, negative sign otherwise. */ - _Float128 x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * L(0.5); - _Float128 sx0d2 = lg_sinpi (x0diff2); - _Float128 cx0d2 = lg_cospi (x0diff2); - log_sinpi_ratio = __log1pl (2 * sx0d2 - * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); - } - - _Float128 log_gamma_ratio; - _Float128 y0 = 1 - x0_hi; - _Float128 y0_eps = -x0_hi + (1 - y0) - x0_lo; - _Float128 y = 1 - x; - _Float128 y_eps = -x + (1 - y); - /* We now wish to compute LOG_GAMMA_RATIO - = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF - accurately approximates the difference Y0 + Y0_EPS - Y - - Y_EPS. Use Stirling's approximation. First, we may need to - adjust into the range where Stirling's approximation is - sufficiently accurate. */ - _Float128 log_gamma_adj = 0; - if (i < 20) - { - int n_up = (21 - i) / 2; - _Float128 ny0, ny0_eps, ny, ny_eps; - ny0 = y0 + n_up; - ny0_eps = y0 - (ny0 - n_up) + y0_eps; - y0 = ny0; - y0_eps = ny0_eps; - ny = y + n_up; - ny_eps = y - (ny - n_up) + y_eps; - y = ny; - y_eps = ny_eps; - _Float128 prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up); - log_gamma_adj = -__log1pl (prodm1); - } - _Float128 log_gamma_high - = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi) - + (y - L(0.5) + y_eps) * __log1pl (xdiff / y) + log_gamma_adj); - /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ - _Float128 y0r = 1 / y0, yr = 1 / y; - _Float128 y0r2 = y0r * y0r, yr2 = yr * yr; - _Float128 rdiff = -xdiff / (y * y0); - _Float128 bterm[NCOEFF]; - _Float128 dlast = rdiff, elast = rdiff * yr * (yr + y0r); - bterm[0] = dlast * lgamma_coeff[0]; - for (size_t j = 1; j < NCOEFF; j++) - { - _Float128 dnext = dlast * y0r2 + elast; - _Float128 enext = elast * yr2; - bterm[j] = dnext * lgamma_coeff[j]; - dlast = dnext; - elast = enext; - } - _Float128 log_gamma_low = 0; - for (size_t j = 0; j < NCOEFF; j++) - log_gamma_low += bterm[NCOEFF - 1 - j]; - log_gamma_ratio = log_gamma_high + log_gamma_low; - - return log_sinpi_ratio + log_gamma_ratio; -} diff --git a/sysdeps/ieee754/ldbl-128/lgamma_productl.c b/sysdeps/ieee754/ldbl-128/lgamma_productl.c deleted file mode 100644 index 212c26a960..0000000000 --- a/sysdeps/ieee754/ldbl-128/lgamma_productl.c +++ /dev/null @@ -1,52 +0,0 @@ -/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), .... - Copyright (C) 2015-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <mul_splitl.h> - -/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS + - 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that - all the values X + 1, ..., X + N - 1 are exactly representable, and - X_EPS / X is small enough that factors quadratic in it can be - neglected. */ - -_Float128 -__lgamma_productl (_Float128 t, _Float128 x, _Float128 x_eps, int n) -{ - _Float128 ret = 0, ret_eps = 0; - for (int i = 0; i < n; i++) - { - _Float128 xi = x + i; - _Float128 quot = t / xi; - _Float128 mhi, mlo; - mul_splitl (&mhi, &mlo, quot, xi); - _Float128 quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi); - /* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */ - _Float128 rhi, rlo; - mul_splitl (&rhi, &rlo, ret, quot); - _Float128 rpq = ret + quot; - _Float128 rpq_eps = (ret - rpq) + quot; - _Float128 nret = rpq + rhi; - _Float128 nret_eps = (rpq - nret) + rhi; - ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot - + quot_lo + quot_lo * (ret + ret_eps)); - ret = nret; - } - return ret + ret_eps; -} diff --git a/sysdeps/ieee754/ldbl-128/math_ldbl.h b/sysdeps/ieee754/ldbl-128/math_ldbl.h deleted file mode 100644 index bb5cce2a36..0000000000 --- a/sysdeps/ieee754/ldbl-128/math_ldbl.h +++ /dev/null @@ -1,120 +0,0 @@ -/* Manipulation of the bit representation of 'long double' quantities. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#ifndef _MATH_LDBL_H_ -#define _MATH_LDBL_H_ 1 - -#include <stdint.h> -#include <endian.h> - -/* A union which permits us to convert between a long double and - four 32 bit ints or two 64 bit ints. */ - -#if __FLOAT_WORD_ORDER == __BIG_ENDIAN - -typedef union -{ - long double value; - struct - { - uint64_t msw; - uint64_t lsw; - } parts64; - struct - { - uint32_t w0, w1, w2, w3; - } parts32; -} ieee854_long_double_shape_type; - -#endif - -#if __FLOAT_WORD_ORDER == __LITTLE_ENDIAN - -typedef union -{ - long double value; - struct - { - uint64_t lsw; - uint64_t msw; - } parts64; - struct - { - uint32_t w3, w2, w1, w0; - } parts32; -} ieee854_long_double_shape_type; - -#endif - -/* Get two 64 bit ints from a long double. */ - -#define GET_LDOUBLE_WORDS64(ix0,ix1,d) \ -do { \ - ieee854_long_double_shape_type qw_u; \ - qw_u.value = (d); \ - (ix0) = qw_u.parts64.msw; \ - (ix1) = qw_u.parts64.lsw; \ -} while (0) - -/* Set a long double from two 64 bit ints. */ - -#define SET_LDOUBLE_WORDS64(d,ix0,ix1) \ -do { \ - ieee854_long_double_shape_type qw_u; \ - qw_u.parts64.msw = (ix0); \ - qw_u.parts64.lsw = (ix1); \ - (d) = qw_u.value; \ -} while (0) - -/* Get the more significant 64 bits of a long double mantissa. */ - -#define GET_LDOUBLE_MSW64(v,d) \ -do { \ - ieee854_long_double_shape_type sh_u; \ - sh_u.value = (d); \ - (v) = sh_u.parts64.msw; \ -} while (0) - -/* Set the more significant 64 bits of a long double mantissa from an int. */ - -#define SET_LDOUBLE_MSW64(d,v) \ -do { \ - ieee854_long_double_shape_type sh_u; \ - sh_u.value = (d); \ - sh_u.parts64.msw = (v); \ - (d) = sh_u.value; \ -} while (0) - -/* Get the least significant 64 bits of a long double mantissa. */ - -#define GET_LDOUBLE_LSW64(v,d) \ -do { \ - ieee854_long_double_shape_type sh_u; \ - sh_u.value = (d); \ - (v) = sh_u.parts64.lsw; \ -} while (0) - -/* - On a platform already supporting a binary128 long double, - _Float128 will alias to long double. This transformation - makes aliasing *l functions to *f128 trivial. -*/ -#define _Float128 long double -#define L(x) x##L - -#endif /* math_ldbl.h */ diff --git a/sysdeps/ieee754/ldbl-128/mpn2ldbl.c b/sysdeps/ieee754/ldbl-128/mpn2ldbl.c deleted file mode 100644 index 625186fdc2..0000000000 --- a/sysdeps/ieee754/ldbl-128/mpn2ldbl.c +++ /dev/null @@ -1,52 +0,0 @@ -/* Copyright (C) 1995-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include "gmp.h" -#include "gmp-impl.h" -#include <ieee754.h> -#include <float.h> -#include <math.h> - -/* Convert a multi-precision integer of the needed number of bits (113 for - long double) and an integral power of two to a `long double' in IEEE854 - quad-precision format. */ - -long double -__mpn_construct_long_double (mp_srcptr frac_ptr, int expt, int sign) -{ - union ieee854_long_double u; - - u.ieee.negative = sign; - u.ieee.exponent = expt + IEEE854_LONG_DOUBLE_BIAS; -#if BITS_PER_MP_LIMB == 32 - u.ieee.mantissa3 = frac_ptr[0]; - u.ieee.mantissa2 = frac_ptr[1]; - u.ieee.mantissa1 = frac_ptr[2]; - u.ieee.mantissa0 = frac_ptr[3] & (((mp_limb_t) 1 - << (LDBL_MANT_DIG - 96)) - 1); -#elif BITS_PER_MP_LIMB == 64 - u.ieee.mantissa3 = frac_ptr[0] & (((mp_limb_t) 1 << 32) - 1); - u.ieee.mantissa2 = frac_ptr[0] >> 32; - u.ieee.mantissa1 = frac_ptr[1] & (((mp_limb_t) 1 << 32) - 1); - u.ieee.mantissa0 = (frac_ptr[1] >> 32) & (((mp_limb_t) 1 - << (LDBL_MANT_DIG - 96)) - 1); -#else - #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for" -#endif - - return u.d; -} diff --git a/sysdeps/ieee754/ldbl-128/printf_fphex.c b/sysdeps/ieee754/ldbl-128/printf_fphex.c deleted file mode 100644 index 294464ecff..0000000000 --- a/sysdeps/ieee754/ldbl-128/printf_fphex.c +++ /dev/null @@ -1,25 +0,0 @@ -/* Print floating point number in hexadecimal notation according to - ISO C99. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <ldbl-128/printf_fphex_macros.h> -#define PRINT_FPHEX_LONG_DOUBLE \ - PRINT_FPHEX (long double, fpnum.ldbl, ieee854_long_double, \ - IEEE854_LONG_DOUBLE_BIAS) - -#include <stdio-common/printf_fphex.c> diff --git a/sysdeps/ieee754/ldbl-128/printf_fphex_macros.h b/sysdeps/ieee754/ldbl-128/printf_fphex_macros.h deleted file mode 100644 index 86681c4c1e..0000000000 --- a/sysdeps/ieee754/ldbl-128/printf_fphex_macros.h +++ /dev/null @@ -1,104 +0,0 @@ -/* Macro to print floating point numbers in hexadecimal notation. - Copyright (C) 2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#define PRINT_FPHEX(FLOAT, VAR, IEEE854_UNION, IEEE854_BIAS) \ -do { \ - /* We have 112 bits of mantissa plus one implicit digit. Since \ - 112 bits are representable without rest using hexadecimal \ - digits we use only the implicit digits for the number before \ - the decimal point. */ \ - unsigned long long int num0, num1; \ - union IEEE854_UNION u; \ - u.d = VAR; \ - \ - assert (sizeof (FLOAT) == 16); \ - \ - num0 = (((unsigned long long int) u.ieee.mantissa0) << 32 \ - | u.ieee.mantissa1); \ - num1 = (((unsigned long long int) u.ieee.mantissa2) << 32 \ - | u.ieee.mantissa3); \ - \ - zero_mantissa = (num0|num1) == 0; \ - \ - if (sizeof (unsigned long int) > 6) \ - { \ - numstr = _itoa_word (num1, numbuf + sizeof numbuf, 16, \ - info->spec == 'A'); \ - wnumstr = _itowa_word (num1, \ - wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t),\ - 16, info->spec == 'A'); \ - } \ - else \ - { \ - numstr = _itoa (num1, numbuf + sizeof numbuf, 16, \ - info->spec == 'A'); \ - wnumstr = _itowa (num1, \ - wnumbuf + sizeof (wnumbuf) / sizeof (wchar_t), \ - 16, info->spec == 'A'); \ - } \ - \ - while (numstr > numbuf + (sizeof numbuf - 64 / 4)) \ - { \ - *--numstr = '0'; \ - *--wnumstr = L'0'; \ - } \ - \ - if (sizeof (unsigned long int) > 6) \ - { \ - numstr = _itoa_word (num0, numstr, 16, info->spec == 'A'); \ - wnumstr = _itowa_word (num0, wnumstr, 16, info->spec == 'A'); \ - } \ - else \ - { \ - numstr = _itoa (num0, numstr, 16, info->spec == 'A'); \ - wnumstr = _itowa (num0, wnumstr, 16, info->spec == 'A'); \ - } \ - \ - /* Fill with zeroes. */ \ - while (numstr > numbuf + (sizeof numbuf - 112 / 4)) \ - { \ - *--numstr = '0'; \ - *--wnumstr = L'0'; \ - } \ - \ - leading = u.ieee.exponent == 0 ? '0' : '1'; \ - \ - exponent = u.ieee.exponent; \ - \ - if (exponent == 0) \ - { \ - if (zero_mantissa) \ - expnegative = 0; \ - else \ - { \ - /* This is a denormalized number. */ \ - expnegative = 1; \ - exponent = IEEE854_BIAS - 1; \ - } \ - } \ - else if (exponent >= IEEE854_BIAS) \ - { \ - expnegative = 0; \ - exponent -= IEEE854_BIAS; \ - } \ - else \ - { \ - expnegative = 1; \ - exponent = -(exponent - IEEE854_BIAS); \ - } \ -} while (0) diff --git a/sysdeps/ieee754/ldbl-128/s_asinhl.c b/sysdeps/ieee754/ldbl-128/s_asinhl.c deleted file mode 100644 index 83efb34447..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_asinhl.c +++ /dev/null @@ -1,79 +0,0 @@ -/* s_asinhl.c -- long double version of s_asinh.c. - * Conversion to long double by Ulrich Drepper, - * Cygnus Support, drepper@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* asinhl(x) - * Method : - * Based on - * asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ] - * we have - * asinhl(x) := x if 1+x*x=1, - * := signl(x)*(logl(x)+ln2)) for large |x|, else - * := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else - * := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2))) - */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 - one = 1, - ln2 = L(6.931471805599453094172321214581765681e-1), - huge = L(1.0e+4900); - -_Float128 -__asinhl (_Float128 x) -{ - _Float128 t, w; - int32_t ix, sign; - ieee854_long_double_shape_type u; - - u.value = x; - sign = u.parts32.w0; - ix = sign & 0x7fffffff; - if (ix == 0x7fff0000) - return x + x; /* x is inf or NaN */ - if (ix < 0x3fc70000) - { /* |x| < 2^ -56 */ - math_check_force_underflow (x); - if (huge + x > one) - return x; /* return x inexact except 0 */ - } - u.parts32.w0 = ix; - if (ix > 0x40350000) - { /* |x| > 2 ^ 54 */ - w = __ieee754_logl (u.value) + ln2; - } - else if (ix >0x40000000) - { /* 2^ 54 > |x| > 2.0 */ - t = u.value; - w = __ieee754_logl (2.0 * t + one / (__ieee754_sqrtl (x * x + one) + t)); - } - else - { /* 2.0 > |x| > 2 ^ -56 */ - t = x * x; - w = __log1pl (u.value + t / (one + __ieee754_sqrtl (one + t))); - } - if (sign & 0x80000000) - return -w; - else - return w; -} -weak_alias (__asinhl, asinhl) diff --git a/sysdeps/ieee754/ldbl-128/s_atanl.c b/sysdeps/ieee754/ldbl-128/s_atanl.c deleted file mode 100644 index 6f2cd549ec..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_atanl.c +++ /dev/null @@ -1,253 +0,0 @@ -/* s_atanl.c - * - * Inverse circular tangent for 128-bit long double precision - * (arctangent) - * - * - * - * SYNOPSIS: - * - * long double x, y, atanl(); - * - * y = atanl( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between -pi/2 and +pi/2 whose tangent is x. - * - * The function uses a rational approximation of the form - * t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375. - * - * The argument is reduced using the identity - * arctan x - arctan u = arctan ((x-u)/(1 + ux)) - * and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25. - * Use of the table improves the execution speed of the routine. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -19, 19 4e5 1.7e-34 5.4e-35 - * - * - * WARNING: - * - * This program uses integer operations on bit fields of floating-point - * numbers. It does not work with data structures other than the - * structure assumed. - * - */ - -/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov> - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - - -#include <float.h> -#include <math.h> -#include <math_private.h> - -/* arctan(k/8), k = 0, ..., 82 */ -static const _Float128 atantbl[84] = { - L(0.0000000000000000000000000000000000000000E0), - L(1.2435499454676143503135484916387102557317E-1), /* arctan(0.125) */ - L(2.4497866312686415417208248121127581091414E-1), - L(3.5877067027057222039592006392646049977698E-1), - L(4.6364760900080611621425623146121440202854E-1), - L(5.5859931534356243597150821640166127034645E-1), - L(6.4350110879328438680280922871732263804151E-1), - L(7.1882999962162450541701415152590465395142E-1), - L(7.8539816339744830961566084581987572104929E-1), - L(8.4415398611317100251784414827164750652594E-1), - L(8.9605538457134395617480071802993782702458E-1), - L(9.4200004037946366473793717053459358607166E-1), - L(9.8279372324732906798571061101466601449688E-1), - L(1.0191413442663497346383429170230636487744E0), - L(1.0516502125483736674598673120862998296302E0), - L(1.0808390005411683108871567292171998202703E0), - L(1.1071487177940905030170654601785370400700E0), - L(1.1309537439791604464709335155363278047493E0), - L(1.1525719972156675180401498626127513797495E0), - L(1.1722738811284763866005949441337046149712E0), - L(1.1902899496825317329277337748293183376012E0), - L(1.2068173702852525303955115800565576303133E0), - L(1.2220253232109896370417417439225704908830E0), - L(1.2360594894780819419094519711090786987027E0), - L(1.2490457723982544258299170772810901230778E0), - L(1.2610933822524404193139408812473357720101E0), - L(1.2722973952087173412961937498224804940684E0), - L(1.2827408797442707473628852511364955306249E0), - L(1.2924966677897852679030914214070816845853E0), - L(1.3016288340091961438047858503666855921414E0), - L(1.3101939350475556342564376891719053122733E0), - L(1.3182420510168370498593302023271362531155E0), - L(1.3258176636680324650592392104284756311844E0), - L(1.3329603993374458675538498697331558093700E0), - L(1.3397056595989995393283037525895557411039E0), - L(1.3460851583802539310489409282517796256512E0), - L(1.3521273809209546571891479413898128509842E0), - L(1.3578579772154994751124898859640585287459E0), - L(1.3633001003596939542892985278250991189943E0), - L(1.3684746984165928776366381936948529556191E0), - L(1.3734007669450158608612719264449611486510E0), - L(1.3780955681325110444536609641291551522494E0), - L(1.3825748214901258580599674177685685125566E0), - L(1.3868528702577214543289381097042486034883E0), - L(1.3909428270024183486427686943836432060856E0), - L(1.3948567013423687823948122092044222644895E0), - L(1.3986055122719575950126700816114282335732E0), - L(1.4021993871854670105330304794336492676944E0), - L(1.4056476493802697809521934019958079881002E0), - L(1.4089588955564736949699075250792569287156E0), - L(1.4121410646084952153676136718584891599630E0), - L(1.4152014988178669079462550975833894394929E0), - L(1.4181469983996314594038603039700989523716E0), - L(1.4209838702219992566633046424614466661176E0), - L(1.4237179714064941189018190466107297503086E0), - L(1.4263547484202526397918060597281265695725E0), - L(1.4288992721907326964184700745371983590908E0), - L(1.4313562697035588982240194668401779312122E0), - L(1.4337301524847089866404719096698873648610E0), - L(1.4360250423171655234964275337155008780675E0), - L(1.4382447944982225979614042479354815855386E0), - L(1.4403930189057632173997301031392126865694E0), - L(1.4424730991091018200252920599377292525125E0), - L(1.4444882097316563655148453598508037025938E0), - L(1.4464413322481351841999668424758804165254E0), - L(1.4483352693775551917970437843145232637695E0), - L(1.4501726582147939000905940595923466567576E0), - L(1.4519559822271314199339700039142990228105E0), - L(1.4536875822280323362423034480994649820285E0), - L(1.4553696664279718992423082296859928222270E0), - L(1.4570043196511885530074841089245667532358E0), - L(1.4585935117976422128825857356750737658039E0), - L(1.4601391056210009726721818194296893361233E0), - L(1.4616428638860188872060496086383008594310E0), - L(1.4631064559620759326975975316301202111560E0), - L(1.4645314639038178118428450961503371619177E0), - L(1.4659193880646627234129855241049975398470E0), - L(1.4672716522843522691530527207287398276197E0), - L(1.4685896086876430842559640450619880951144E0), - L(1.4698745421276027686510391411132998919794E0), - L(1.4711276743037345918528755717617308518553E0), - L(1.4723501675822635384916444186631899205983E0), - L(1.4735431285433308455179928682541563973416E0), /* arctan(10.25) */ - L(1.5707963267948966192313216916397514420986E0) /* pi/2 */ -}; - - -/* arctan t = t + t^3 p(t^2) / q(t^2) - |t| <= 0.09375 - peak relative error 5.3e-37 */ - -static const _Float128 - p0 = L(-4.283708356338736809269381409828726405572E1), - p1 = L(-8.636132499244548540964557273544599863825E1), - p2 = L(-5.713554848244551350855604111031839613216E1), - p3 = L(-1.371405711877433266573835355036413750118E1), - p4 = L(-8.638214309119210906997318946650189640184E-1), - q0 = L(1.285112506901621042780814422948906537959E2), - q1 = L(3.361907253914337187957855834229672347089E2), - q2 = L(3.180448303864130128268191635189365331680E2), - q3 = L(1.307244136980865800160844625025280344686E2), - q4 = L(2.173623741810414221251136181221172551416E1); - /* q5 = 1.000000000000000000000000000000000000000E0 */ - -static const _Float128 huge = L(1.0e4930); - -_Float128 -__atanl (_Float128 x) -{ - int k, sign; - _Float128 t, u, p, q; - ieee854_long_double_shape_type s; - - s.value = x; - k = s.parts32.w0; - if (k & 0x80000000) - sign = 1; - else - sign = 0; - - /* Check for IEEE special cases. */ - k &= 0x7fffffff; - if (k >= 0x7fff0000) - { - /* NaN. */ - if ((k & 0xffff) | s.parts32.w1 | s.parts32.w2 | s.parts32.w3) - return (x + x); - - /* Infinity. */ - if (sign) - return -atantbl[83]; - else - return atantbl[83]; - } - - if (k <= 0x3fc50000) /* |x| < 2**-58 */ - { - math_check_force_underflow (x); - /* Raise inexact. */ - if (huge + x > 0.0) - return x; - } - - if (k >= 0x40720000) /* |x| > 2**115 */ - { - /* Saturate result to {-,+}pi/2 */ - if (sign) - return -atantbl[83]; - else - return atantbl[83]; - } - - if (sign) - x = -x; - - if (k >= 0x40024800) /* 10.25 */ - { - k = 83; - t = -1.0/x; - } - else - { - /* Index of nearest table element. - Roundoff to integer is asymmetrical to avoid cancellation when t < 0 - (cf. fdlibm). */ - k = 8.0 * x + 0.25; - u = L(0.125) * k; - /* Small arctan argument. */ - t = (x - u) / (1.0 + x * u); - } - - /* Arctan of small argument t. */ - u = t * t; - p = ((((p4 * u) + p3) * u + p2) * u + p1) * u + p0; - q = ((((u + q4) * u + q3) * u + q2) * u + q1) * u + q0; - u = t * u * p / q + t; - - /* arctan x = arctan u + arctan t */ - u = atantbl[k] + u; - if (sign) - return (-u); - else - return u; -} - -weak_alias (__atanl, atanl) diff --git a/sysdeps/ieee754/ldbl-128/s_cbrtl.c b/sysdeps/ieee754/ldbl-128/s_cbrtl.c deleted file mode 100644 index eb88d29fc9..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_cbrtl.c +++ /dev/null @@ -1,135 +0,0 @@ -/* cbrtl.c - * - * Cube root, long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, cbrtl(); - * - * y = cbrtl( x ); - * - * - * - * DESCRIPTION: - * - * Returns the cube root of the argument, which may be negative. - * - * Range reduction involves determining the power of 2 of - * the argument. A polynomial of degree 2 applied to the - * mantissa, and multiplication by the cube root of 1, 2, or 4 - * approximates the root to within about 0.1%. Then Newton's - * iteration is used three times to converge to an accurate - * result. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -8,8 100000 1.3e-34 3.9e-35 - * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 - * - */ - -/* -Cephes Math Library Release 2.2: January, 1991 -Copyright 1984, 1991 by Stephen L. Moshier -Adapted for glibc October, 2001. - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - - -#include <math.h> -#include <math_private.h> - -static const _Float128 CBRT2 = L(1.259921049894873164767210607278228350570251); -static const _Float128 CBRT4 = L(1.587401051968199474751705639272308260391493); -static const _Float128 CBRT2I = L(0.7937005259840997373758528196361541301957467); -static const _Float128 CBRT4I = L(0.6299605249474365823836053036391141752851257); - - -_Float128 -__cbrtl (_Float128 x) -{ - int e, rem, sign; - _Float128 z; - - if (!isfinite (x)) - return x + x; - - if (x == 0) - return (x); - - if (x > 0) - sign = 1; - else - { - sign = -1; - x = -x; - } - - z = x; - /* extract power of 2, leaving mantissa between 0.5 and 1 */ - x = __frexpl (x, &e); - - /* Approximate cube root of number between .5 and 1, - peak relative error = 1.2e-6 */ - x = ((((L(1.3584464340920900529734e-1) * x - - L(6.3986917220457538402318e-1)) * x - + L(1.2875551670318751538055e0)) * x - - L(1.4897083391357284957891e0)) * x - + L(1.3304961236013647092521e0)) * x + L(3.7568280825958912391243e-1); - - /* exponent divided by 3 */ - if (e >= 0) - { - rem = e; - e /= 3; - rem -= 3 * e; - if (rem == 1) - x *= CBRT2; - else if (rem == 2) - x *= CBRT4; - } - else - { /* argument less than 1 */ - e = -e; - rem = e; - e /= 3; - rem -= 3 * e; - if (rem == 1) - x *= CBRT2I; - else if (rem == 2) - x *= CBRT4I; - e = -e; - } - - /* multiply by power of 2 */ - x = __ldexpl (x, e); - - /* Newton iteration */ - x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); - x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); - x -= (x - (z / (x * x))) * L(0.3333333333333333333333333333333333333333); - - if (sign < 0) - x = -x; - return (x); -} - -weak_alias (__cbrtl, cbrtl) diff --git a/sysdeps/ieee754/ldbl-128/s_ceill.c b/sysdeps/ieee754/ldbl-128/s_ceill.c deleted file mode 100644 index 8034795072..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_ceill.c +++ /dev/null @@ -1,66 +0,0 @@ -/* s_ceill.c -- long double version of s_ceil.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * ceill(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - */ - -#include <math.h> -#include <math_private.h> - -_Float128 __ceill(_Float128 x) -{ - int64_t i0,i1,j0; - u_int64_t i,j; - GET_LDOUBLE_WORDS64(i0,i1,x); - j0 = ((i0>>48)&0x7fff)-0x3fff; - if(j0<48) { - if(j0<0) { - /* return 0*sign(x) if |x|<1 */ - if(i0<0) {i0=0x8000000000000000ULL;i1=0;} - else if((i0|i1)!=0) { i0=0x3fff000000000000ULL;i1=0;} - } else { - i = (0x0000ffffffffffffULL)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(i0>0) i0 += (0x0001000000000000LL)>>j0; - i0 &= (~i); i1=0; - } - } else if (j0>111) { - if(j0==0x4000) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = -1ULL>>(j0-48); - if((i1&i)==0) return x; /* x is integral */ - if(i0>0) { - if(j0==48) i0+=1; - else { - j = i1+(1LL<<(112-j0)); - if(j<i1) i0 +=1 ; /* got a carry */ - i1=j; - } - } - i1 &= (~i); - } - SET_LDOUBLE_WORDS64(x,i0,i1); - return x; -} -weak_alias (__ceill, ceill) diff --git a/sysdeps/ieee754/ldbl-128/s_copysignl.c b/sysdeps/ieee754/ldbl-128/s_copysignl.c deleted file mode 100644 index 8ee85ea8f7..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_copysignl.c +++ /dev/null @@ -1,38 +0,0 @@ -/* s_copysignl.c -- long double version of s_copysign.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * copysignl(long double x, long double y) - * copysignl(x,y) returns a value with the magnitude of x and - * with the sign bit of y. - */ - -#include <math.h> -#include <math_private.h> - -_Float128 __copysignl(_Float128 x, _Float128 y) -{ - u_int64_t hx,hy; - GET_LDOUBLE_MSW64(hx,x); - GET_LDOUBLE_MSW64(hy,y); - SET_LDOUBLE_MSW64(x,(hx&0x7fffffffffffffffULL) - |(hy&0x8000000000000000ULL)); - return x; -} -weak_alias (__copysignl, copysignl) diff --git a/sysdeps/ieee754/ldbl-128/s_cosl.c b/sysdeps/ieee754/ldbl-128/s_cosl.c deleted file mode 100644 index ed3e77d0db..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_cosl.c +++ /dev/null @@ -1,86 +0,0 @@ -/* s_cosl.c -- long double version of s_cos.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* cosl(x) - * Return cosine function of x. - * - * kernel function: - * __kernel_sinl ... sine function on [-pi/4,pi/4] - * __kernel_cosl ... cosine function on [-pi/4,pi/4] - * __ieee754_rem_pio2l ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> - -_Float128 __cosl(_Float128 x) -{ - _Float128 y[2],z=0; - int64_t n, ix; - - /* High word of x. */ - GET_LDOUBLE_MSW64(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffffffffffffLL; - if(ix <= 0x3ffe921fb54442d1LL) - return __kernel_cosl(x,z); - - /* cos(Inf or NaN) is NaN */ - else if (ix>=0x7fff000000000000LL) { - if (ix == 0x7fff000000000000LL) { - GET_LDOUBLE_LSW64(n,x); - if (n == 0) - __set_errno (EDOM); - } - return x-x; - } - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2l(x,y); - switch(n&3) { - case 0: return __kernel_cosl(y[0],y[1]); - case 1: return -__kernel_sinl(y[0],y[1],1); - case 2: return -__kernel_cosl(y[0],y[1]); - default: - return __kernel_sinl(y[0],y[1],1); - } - } -} -weak_alias (__cosl, cosl) diff --git a/sysdeps/ieee754/ldbl-128/s_erfl.c b/sysdeps/ieee754/ldbl-128/s_erfl.c deleted file mode 100644 index e5dfae9636..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_erfl.c +++ /dev/null @@ -1,948 +0,0 @@ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Modifications and expansions for 128-bit long double are - Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> - and are incorporated herein by permission of the author. The author - reserves the right to distribute this material elsewhere under different - copying permissions. These modifications are distributed here under - the following terms: - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* double erf(double x) - * double erfc(double x) - * x - * 2 |\ - * erf(x) = --------- | exp(-t*t)dt - * sqrt(pi) \| - * 0 - * - * erfc(x) = 1-erf(x) - * Note that - * erf(-x) = -erf(x) - * erfc(-x) = 2 - erfc(x) - * - * Method: - * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8] - * Remark. The formula is derived by noting - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) - * and that - * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 - * is close to one. - * - * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0 - * erfc(x) = 1 - erf(x) if |x| < 1/4 - * - * 2. For |x| in [7/8, 1], let s = |x| - 1, and - * c = 0.84506291151 rounded to single (24 bits) - * erf(s + c) = sign(x) * (c + P1(s)/Q1(s)) - * Remark: here we use the taylor series expansion at x=1. - * erf(1+s) = erf(1) + s*Poly(s) - * = 0.845.. + P1(s)/Q1(s) - * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] - * - * 3. For x in [1/4, 5/4], - * erfc(s + const) = erfc(const) + s P1(s)/Q1(s) - * for const = 1/4, 3/8, ..., 9/8 - * and 0 <= s <= 1/8 . - * - * 4. For x in [5/4, 107], - * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z)) - * z=1/x^2 - * The interval is partitioned into several segments - * of width 1/8 in 1/x. - * - * Note1: - * To compute exp(-x*x-0.5625+R/S), let s be a single - * precision number and s := x; then - * -x*x = -s*s + (s-x)*(s+x) - * exp(-x*x-0.5626+R/S) = - * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); - * Note2: - * Here 4 and 5 make use of the asymptotic series - * exp(-x*x) - * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) - * x*sqrt(pi) - * - * 5. For inf > x >= 107 - * erf(x) = sign(x) *(1 - tiny) (raise inexact) - * erfc(x) = tiny*tiny (raise underflow) if x > 0 - * = 2 - tiny if x<0 - * - * 7. Special case: - * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, - * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, - * erfc/erf(NaN) is NaN - */ - -#include <errno.h> -#include <float.h> -#include <math.h> -#include <math_private.h> - -/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -neval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - -/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */ - -static _Float128 -deval (_Float128 x, const _Float128 *p, int n) -{ - _Float128 y; - - p += n; - y = x + *p--; - do - { - y = y * x + *p--; - } - while (--n > 0); - return y; -} - - - -static const _Float128 -tiny = L(1e-4931), - one = 1, - two = 2, - /* 2/sqrt(pi) - 1 */ - efx = L(1.2837916709551257389615890312154517168810E-1); - - -/* erf(x) = x + x R(x^2) - 0 <= x <= 7/8 - Peak relative error 1.8e-35 */ -#define NTN1 8 -static const _Float128 TN1[NTN1 + 1] = -{ - L(-3.858252324254637124543172907442106422373E10), - L(9.580319248590464682316366876952214879858E10), - L(1.302170519734879977595901236693040544854E10), - L(2.922956950426397417800321486727032845006E9), - L(1.764317520783319397868923218385468729799E8), - L(1.573436014601118630105796794840834145120E7), - L(4.028077380105721388745632295157816229289E5), - L(1.644056806467289066852135096352853491530E4), - L(3.390868480059991640235675479463287886081E1) -}; -#define NTD1 8 -static const _Float128 TD1[NTD1 + 1] = -{ - L(-3.005357030696532927149885530689529032152E11), - L(-1.342602283126282827411658673839982164042E11), - L(-2.777153893355340961288511024443668743399E10), - L(-3.483826391033531996955620074072768276974E9), - L(-2.906321047071299585682722511260895227921E8), - L(-1.653347985722154162439387878512427542691E7), - L(-6.245520581562848778466500301865173123136E5), - L(-1.402124304177498828590239373389110545142E4), - L(-1.209368072473510674493129989468348633579E2) -/* 1.0E0 */ -}; - - -/* erf(z+1) = erf_const + P(z)/Q(z) - -.125 <= z <= 0 - Peak relative error 7.3e-36 */ -static const _Float128 erf_const = L(0.845062911510467529296875); -#define NTN2 8 -static const _Float128 TN2[NTN2 + 1] = -{ - L(-4.088889697077485301010486931817357000235E1), - L(7.157046430681808553842307502826960051036E3), - L(-2.191561912574409865550015485451373731780E3), - L(2.180174916555316874988981177654057337219E3), - L(2.848578658049670668231333682379720943455E2), - L(1.630362490952512836762810462174798925274E2), - L(6.317712353961866974143739396865293596895E0), - L(2.450441034183492434655586496522857578066E1), - L(5.127662277706787664956025545897050896203E-1) -}; -#define NTD2 8 -static const _Float128 TD2[NTD2 + 1] = -{ - L(1.731026445926834008273768924015161048885E4), - L(1.209682239007990370796112604286048173750E4), - L(1.160950290217993641320602282462976163857E4), - L(5.394294645127126577825507169061355698157E3), - L(2.791239340533632669442158497532521776093E3), - L(8.989365571337319032943005387378993827684E2), - L(2.974016493766349409725385710897298069677E2), - L(6.148192754590376378740261072533527271947E1), - L(1.178502892490738445655468927408440847480E1) - /* 1.0E0 */ -}; - - -/* erfc(x + 0.25) = erfc(0.25) + x R(x) - 0 <= x < 0.125 - Peak relative error 1.4e-35 */ -#define NRNr13 8 -static const _Float128 RNr13[NRNr13 + 1] = -{ - L(-2.353707097641280550282633036456457014829E3), - L(3.871159656228743599994116143079870279866E2), - L(-3.888105134258266192210485617504098426679E2), - L(-2.129998539120061668038806696199343094971E1), - L(-8.125462263594034672468446317145384108734E1), - L(8.151549093983505810118308635926270319660E0), - L(-5.033362032729207310462422357772568553670E0), - L(-4.253956621135136090295893547735851168471E-2), - L(-8.098602878463854789780108161581050357814E-2) -}; -#define NRDr13 7 -static const _Float128 RDr13[NRDr13 + 1] = -{ - L(2.220448796306693503549505450626652881752E3), - L(1.899133258779578688791041599040951431383E2), - L(1.061906712284961110196427571557149268454E3), - L(7.497086072306967965180978101974566760042E1), - L(2.146796115662672795876463568170441327274E2), - L(1.120156008362573736664338015952284925592E1), - L(2.211014952075052616409845051695042741074E1), - L(6.469655675326150785692908453094054988938E-1) - /* 1.0E0 */ -}; -/* erfc(0.25) = C13a + C13b to extra precision. */ -static const _Float128 C13a = L(0.723663330078125); -static const _Float128 C13b = L(1.0279753638067014931732235184287934646022E-5); - - -/* erfc(x + 0.375) = erfc(0.375) + x R(x) - 0 <= x < 0.125 - Peak relative error 1.2e-35 */ -#define NRNr14 8 -static const _Float128 RNr14[NRNr14 + 1] = -{ - L(-2.446164016404426277577283038988918202456E3), - L(6.718753324496563913392217011618096698140E2), - L(-4.581631138049836157425391886957389240794E2), - L(-2.382844088987092233033215402335026078208E1), - L(-7.119237852400600507927038680970936336458E1), - L(1.313609646108420136332418282286454287146E1), - L(-6.188608702082264389155862490056401365834E0), - L(-2.787116601106678287277373011101132659279E-2), - L(-2.230395570574153963203348263549700967918E-2) -}; -#define NRDr14 7 -static const _Float128 RDr14[NRDr14 + 1] = -{ - L(2.495187439241869732696223349840963702875E3), - L(2.503549449872925580011284635695738412162E2), - L(1.159033560988895481698051531263861842461E3), - L(9.493751466542304491261487998684383688622E1), - L(2.276214929562354328261422263078480321204E2), - L(1.367697521219069280358984081407807931847E1), - L(2.276988395995528495055594829206582732682E1), - L(7.647745753648996559837591812375456641163E-1) - /* 1.0E0 */ -}; -/* erfc(0.375) = C14a + C14b to extra precision. */ -static const _Float128 C14a = L(0.5958709716796875); -static const _Float128 C14b = L(1.2118885490201676174914080878232469565953E-5); - -/* erfc(x + 0.5) = erfc(0.5) + x R(x) - 0 <= x < 0.125 - Peak relative error 4.7e-36 */ -#define NRNr15 8 -static const _Float128 RNr15[NRNr15 + 1] = -{ - L(-2.624212418011181487924855581955853461925E3), - L(8.473828904647825181073831556439301342756E2), - L(-5.286207458628380765099405359607331669027E2), - L(-3.895781234155315729088407259045269652318E1), - L(-6.200857908065163618041240848728398496256E1), - L(1.469324610346924001393137895116129204737E1), - L(-6.961356525370658572800674953305625578903E0), - L(5.145724386641163809595512876629030548495E-3), - L(1.990253655948179713415957791776180406812E-2) -}; -#define NRDr15 7 -static const _Float128 RDr15[NRDr15 + 1] = -{ - L(2.986190760847974943034021764693341524962E3), - L(5.288262758961073066335410218650047725985E2), - L(1.363649178071006978355113026427856008978E3), - L(1.921707975649915894241864988942255320833E2), - L(2.588651100651029023069013885900085533226E2), - L(2.628752920321455606558942309396855629459E1), - L(2.455649035885114308978333741080991380610E1), - L(1.378826653595128464383127836412100939126E0) - /* 1.0E0 */ -}; -/* erfc(0.5) = C15a + C15b to extra precision. */ -static const _Float128 C15a = L(0.4794921875); -static const _Float128 C15b = L(7.9346869534623172533461080354712635484242E-6); - -/* erfc(x + 0.625) = erfc(0.625) + x R(x) - 0 <= x < 0.125 - Peak relative error 5.1e-36 */ -#define NRNr16 8 -static const _Float128 RNr16[NRNr16 + 1] = -{ - L(-2.347887943200680563784690094002722906820E3), - L(8.008590660692105004780722726421020136482E2), - L(-5.257363310384119728760181252132311447963E2), - L(-4.471737717857801230450290232600243795637E1), - L(-4.849540386452573306708795324759300320304E1), - L(1.140885264677134679275986782978655952843E1), - L(-6.731591085460269447926746876983786152300E0), - L(1.370831653033047440345050025876085121231E-1), - L(2.022958279982138755020825717073966576670E-2), -}; -#define NRDr16 7 -static const _Float128 RDr16[NRDr16 + 1] = -{ - L(3.075166170024837215399323264868308087281E3), - L(8.730468942160798031608053127270430036627E2), - L(1.458472799166340479742581949088453244767E3), - L(3.230423687568019709453130785873540386217E2), - L(2.804009872719893612081109617983169474655E2), - L(4.465334221323222943418085830026979293091E1), - L(2.612723259683205928103787842214809134746E1), - L(2.341526751185244109722204018543276124997E0), - /* 1.0E0 */ -}; -/* erfc(0.625) = C16a + C16b to extra precision. */ -static const _Float128 C16a = L(0.3767547607421875); -static const _Float128 C16b = L(4.3570693945275513594941232097252997287766E-6); - -/* erfc(x + 0.75) = erfc(0.75) + x R(x) - 0 <= x < 0.125 - Peak relative error 1.7e-35 */ -#define NRNr17 8 -static const _Float128 RNr17[NRNr17 + 1] = -{ - L(-1.767068734220277728233364375724380366826E3), - L(6.693746645665242832426891888805363898707E2), - L(-4.746224241837275958126060307406616817753E2), - L(-2.274160637728782675145666064841883803196E1), - L(-3.541232266140939050094370552538987982637E1), - L(6.988950514747052676394491563585179503865E0), - L(-5.807687216836540830881352383529281215100E0), - L(3.631915988567346438830283503729569443642E-1), - L(-1.488945487149634820537348176770282391202E-2) -}; -#define NRDr17 7 -static const _Float128 RDr17[NRDr17 + 1] = -{ - L(2.748457523498150741964464942246913394647E3), - L(1.020213390713477686776037331757871252652E3), - L(1.388857635935432621972601695296561952738E3), - L(3.903363681143817750895999579637315491087E2), - L(2.784568344378139499217928969529219886578E2), - L(5.555800830216764702779238020065345401144E1), - L(2.646215470959050279430447295801291168941E1), - L(2.984905282103517497081766758550112011265E0), - /* 1.0E0 */ -}; -/* erfc(0.75) = C17a + C17b to extra precision. */ -static const _Float128 C17a = L(0.2888336181640625); -static const _Float128 C17b = L(1.0748182422368401062165408589222625794046E-5); - - -/* erfc(x + 0.875) = erfc(0.875) + x R(x) - 0 <= x < 0.125 - Peak relative error 2.2e-35 */ -#define NRNr18 8 -static const _Float128 RNr18[NRNr18 + 1] = -{ - L(-1.342044899087593397419622771847219619588E3), - L(6.127221294229172997509252330961641850598E2), - L(-4.519821356522291185621206350470820610727E2), - L(1.223275177825128732497510264197915160235E1), - L(-2.730789571382971355625020710543532867692E1), - L(4.045181204921538886880171727755445395862E0), - L(-4.925146477876592723401384464691452700539E0), - L(5.933878036611279244654299924101068088582E-1), - L(-5.557645435858916025452563379795159124753E-2) -}; -#define NRDr18 7 -static const _Float128 RDr18[NRDr18 + 1] = -{ - L(2.557518000661700588758505116291983092951E3), - L(1.070171433382888994954602511991940418588E3), - L(1.344842834423493081054489613250688918709E3), - L(4.161144478449381901208660598266288188426E2), - L(2.763670252219855198052378138756906980422E2), - L(5.998153487868943708236273854747564557632E1), - L(2.657695108438628847733050476209037025318E1), - L(3.252140524394421868923289114410336976512E0), - /* 1.0E0 */ -}; -/* erfc(0.875) = C18a + C18b to extra precision. */ -static const _Float128 C18a = L(0.215911865234375); -static const _Float128 C18b = L(1.3073705765341685464282101150637224028267E-5); - -/* erfc(x + 1.0) = erfc(1.0) + x R(x) - 0 <= x < 0.125 - Peak relative error 1.6e-35 */ -#define NRNr19 8 -static const _Float128 RNr19[NRNr19 + 1] = -{ - L(-1.139180936454157193495882956565663294826E3), - L(6.134903129086899737514712477207945973616E2), - L(-4.628909024715329562325555164720732868263E2), - L(4.165702387210732352564932347500364010833E1), - L(-2.286979913515229747204101330405771801610E1), - L(1.870695256449872743066783202326943667722E0), - L(-4.177486601273105752879868187237000032364E0), - L(7.533980372789646140112424811291782526263E-1), - L(-8.629945436917752003058064731308767664446E-2) -}; -#define NRDr19 7 -static const _Float128 RDr19[NRDr19 + 1] = -{ - L(2.744303447981132701432716278363418643778E3), - L(1.266396359526187065222528050591302171471E3), - L(1.466739461422073351497972255511919814273E3), - L(4.868710570759693955597496520298058147162E2), - L(2.993694301559756046478189634131722579643E2), - L(6.868976819510254139741559102693828237440E1), - L(2.801505816247677193480190483913753613630E1), - L(3.604439909194350263552750347742663954481E0), - /* 1.0E0 */ -}; -/* erfc(1.0) = C19a + C19b to extra precision. */ -static const _Float128 C19a = L(0.15728759765625); -static const _Float128 C19b = L(1.1609394035130658779364917390740703933002E-5); - -/* erfc(x + 1.125) = erfc(1.125) + x R(x) - 0 <= x < 0.125 - Peak relative error 3.6e-36 */ -#define NRNr20 8 -static const _Float128 RNr20[NRNr20 + 1] = -{ - L(-9.652706916457973956366721379612508047640E2), - L(5.577066396050932776683469951773643880634E2), - L(-4.406335508848496713572223098693575485978E2), - L(5.202893466490242733570232680736966655434E1), - L(-1.931311847665757913322495948705563937159E1), - L(-9.364318268748287664267341457164918090611E-2), - L(-3.306390351286352764891355375882586201069E0), - L(7.573806045289044647727613003096916516475E-1), - L(-9.611744011489092894027478899545635991213E-2) -}; -#define NRDr20 7 -static const _Float128 RDr20[NRDr20 + 1] = -{ - L(3.032829629520142564106649167182428189014E3), - L(1.659648470721967719961167083684972196891E3), - L(1.703545128657284619402511356932569292535E3), - L(6.393465677731598872500200253155257708763E2), - L(3.489131397281030947405287112726059221934E2), - L(8.848641738570783406484348434387611713070E1), - L(3.132269062552392974833215844236160958502E1), - L(4.430131663290563523933419966185230513168E0) - /* 1.0E0 */ -}; -/* erfc(1.125) = C20a + C20b to extra precision. */ -static const _Float128 C20a = L(0.111602783203125); -static const _Float128 C20b = L(8.9850951672359304215530728365232161564636E-6); - -/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) - 7/8 <= 1/x < 1 - Peak relative error 1.4e-35 */ -#define NRNr8 9 -static const _Float128 RNr8[NRNr8 + 1] = -{ - L(3.587451489255356250759834295199296936784E1), - L(5.406249749087340431871378009874875889602E2), - L(2.931301290625250886238822286506381194157E3), - L(7.359254185241795584113047248898753470923E3), - L(9.201031849810636104112101947312492532314E3), - L(5.749697096193191467751650366613289284777E3), - L(1.710415234419860825710780802678697889231E3), - L(2.150753982543378580859546706243022719599E2), - L(8.740953582272147335100537849981160931197E0), - L(4.876422978828717219629814794707963640913E-2) -}; -#define NRDr8 8 -static const _Float128 RDr8[NRDr8 + 1] = -{ - L(6.358593134096908350929496535931630140282E1), - L(9.900253816552450073757174323424051765523E2), - L(5.642928777856801020545245437089490805186E3), - L(1.524195375199570868195152698617273739609E4), - L(2.113829644500006749947332935305800887345E4), - L(1.526438562626465706267943737310282977138E4), - L(5.561370922149241457131421914140039411782E3), - L(9.394035530179705051609070428036834496942E2), - L(6.147019596150394577984175188032707343615E1) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2)) - 0.75 <= 1/x <= 0.875 - Peak relative error 2.0e-36 */ -#define NRNr7 9 -static const _Float128 RNr7[NRNr7 + 1] = -{ - L(1.686222193385987690785945787708644476545E1), - L(1.178224543567604215602418571310612066594E3), - L(1.764550584290149466653899886088166091093E4), - L(1.073758321890334822002849369898232811561E5), - L(3.132840749205943137619839114451290324371E5), - L(4.607864939974100224615527007793867585915E5), - L(3.389781820105852303125270837910972384510E5), - L(1.174042187110565202875011358512564753399E5), - L(1.660013606011167144046604892622504338313E4), - L(6.700393957480661937695573729183733234400E2) -}; -#define NRDr7 9 -static const _Float128 RDr7[NRDr7 + 1] = -{ -L(-1.709305024718358874701575813642933561169E3), -L(-3.280033887481333199580464617020514788369E4), -L(-2.345284228022521885093072363418750835214E5), -L(-8.086758123097763971926711729242327554917E5), -L(-1.456900414510108718402423999575992450138E6), -L(-1.391654264881255068392389037292702041855E6), -L(-6.842360801869939983674527468509852583855E5), -L(-1.597430214446573566179675395199807533371E5), -L(-1.488876130609876681421645314851760773480E4), -L(-3.511762950935060301403599443436465645703E2) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 5/8 <= 1/x < 3/4 - Peak relative error 1.9e-35 */ -#define NRNr6 9 -static const _Float128 RNr6[NRNr6 + 1] = -{ - L(1.642076876176834390623842732352935761108E0), - L(1.207150003611117689000664385596211076662E2), - L(2.119260779316389904742873816462800103939E3), - L(1.562942227734663441801452930916044224174E4), - L(5.656779189549710079988084081145693580479E4), - L(1.052166241021481691922831746350942786299E5), - L(9.949798524786000595621602790068349165758E4), - L(4.491790734080265043407035220188849562856E4), - L(8.377074098301530326270432059434791287601E3), - L(4.506934806567986810091824791963991057083E2) -}; -#define NRDr6 9 -static const _Float128 RDr6[NRDr6 + 1] = -{ -L(-1.664557643928263091879301304019826629067E2), -L(-3.800035902507656624590531122291160668452E3), -L(-3.277028191591734928360050685359277076056E4), -L(-1.381359471502885446400589109566587443987E5), -L(-3.082204287382581873532528989283748656546E5), -L(-3.691071488256738343008271448234631037095E5), -L(-2.300482443038349815750714219117566715043E5), -L(-6.873955300927636236692803579555752171530E4), -L(-8.262158817978334142081581542749986845399E3), -L(-2.517122254384430859629423488157361983661E2) - /* 1.00 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 1/2 <= 1/x < 5/8 - Peak relative error 4.6e-36 */ -#define NRNr5 10 -static const _Float128 RNr5[NRNr5 + 1] = -{ -L(-3.332258927455285458355550878136506961608E-3), -L(-2.697100758900280402659586595884478660721E-1), -L(-6.083328551139621521416618424949137195536E0), -L(-6.119863528983308012970821226810162441263E1), -L(-3.176535282475593173248810678636522589861E2), -L(-8.933395175080560925809992467187963260693E2), -L(-1.360019508488475978060917477620199499560E3), -L(-1.075075579828188621541398761300910213280E3), -L(-4.017346561586014822824459436695197089916E2), -L(-5.857581368145266249509589726077645791341E1), -L(-2.077715925587834606379119585995758954399E0) -}; -#define NRDr5 9 -static const _Float128 RDr5[NRDr5 + 1] = -{ - L(3.377879570417399341550710467744693125385E-1), - L(1.021963322742390735430008860602594456187E1), - L(1.200847646592942095192766255154827011939E2), - L(7.118915528142927104078182863387116942836E2), - L(2.318159380062066469386544552429625026238E3), - L(4.238729853534009221025582008928765281620E3), - L(4.279114907284825886266493994833515580782E3), - L(2.257277186663261531053293222591851737504E3), - L(5.570475501285054293371908382916063822957E2), - L(5.142189243856288981145786492585432443560E1) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 3/8 <= 1/x < 1/2 - Peak relative error 2.0e-36 */ -#define NRNr4 10 -static const _Float128 RNr4[NRNr4 + 1] = -{ - L(3.258530712024527835089319075288494524465E-3), - L(2.987056016877277929720231688689431056567E-1), - L(8.738729089340199750734409156830371528862E0), - L(1.207211160148647782396337792426311125923E2), - L(8.997558632489032902250523945248208224445E2), - L(3.798025197699757225978410230530640879762E3), - L(9.113203668683080975637043118209210146846E3), - L(1.203285891339933238608683715194034900149E4), - L(8.100647057919140328536743641735339740855E3), - L(2.383888249907144945837976899822927411769E3), - L(2.127493573166454249221983582495245662319E2) -}; -#define NRDr4 10 -static const _Float128 RDr4[NRDr4 + 1] = -{ -L(-3.303141981514540274165450687270180479586E-1), -L(-1.353768629363605300707949368917687066724E1), -L(-2.206127630303621521950193783894598987033E2), -L(-1.861800338758066696514480386180875607204E3), -L(-8.889048775872605708249140016201753255599E3), -L(-2.465888106627948210478692168261494857089E4), -L(-3.934642211710774494879042116768390014289E4), -L(-3.455077258242252974937480623730228841003E4), -L(-1.524083977439690284820586063729912653196E4), -L(-2.810541887397984804237552337349093953857E3), -L(-1.343929553541159933824901621702567066156E2) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 1/4 <= 1/x < 3/8 - Peak relative error 8.4e-37 */ -#define NRNr3 11 -static const _Float128 RNr3[NRNr3 + 1] = -{ -L(-1.952401126551202208698629992497306292987E-6), -L(-2.130881743066372952515162564941682716125E-4), -L(-8.376493958090190943737529486107282224387E-3), -L(-1.650592646560987700661598877522831234791E-1), -L(-1.839290818933317338111364667708678163199E0), -L(-1.216278715570882422410442318517814388470E1), -L(-4.818759344462360427612133632533779091386E1), -L(-1.120994661297476876804405329172164436784E2), -L(-1.452850765662319264191141091859300126931E2), -L(-9.485207851128957108648038238656777241333E1), -L(-2.563663855025796641216191848818620020073E1), -L(-1.787995944187565676837847610706317833247E0) -}; -#define NRDr3 10 -static const _Float128 RDr3[NRDr3 + 1] = -{ - L(1.979130686770349481460559711878399476903E-4), - L(1.156941716128488266238105813374635099057E-2), - L(2.752657634309886336431266395637285974292E-1), - L(3.482245457248318787349778336603569327521E0), - L(2.569347069372696358578399521203959253162E1), - L(1.142279000180457419740314694631879921561E2), - L(3.056503977190564294341422623108332700840E2), - L(4.780844020923794821656358157128719184422E2), - L(4.105972727212554277496256802312730410518E2), - L(1.724072188063746970865027817017067646246E2), - L(2.815939183464818198705278118326590370435E1) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 1/8 <= 1/x < 1/4 - Peak relative error 1.5e-36 */ -#define NRNr2 11 -static const _Float128 RNr2[NRNr2 + 1] = -{ -L(-2.638914383420287212401687401284326363787E-8), -L(-3.479198370260633977258201271399116766619E-6), -L(-1.783985295335697686382487087502222519983E-4), -L(-4.777876933122576014266349277217559356276E-3), -L(-7.450634738987325004070761301045014986520E-2), -L(-7.068318854874733315971973707247467326619E-1), -L(-4.113919921935944795764071670806867038732E0), -L(-1.440447573226906222417767283691888875082E1), -L(-2.883484031530718428417168042141288943905E1), -L(-2.990886974328476387277797361464279931446E1), -L(-1.325283914915104866248279787536128997331E1), -L(-1.572436106228070195510230310658206154374E0) -}; -#define NRDr2 10 -static const _Float128 RDr2[NRDr2 + 1] = -{ - L(2.675042728136731923554119302571867799673E-6), - L(2.170997868451812708585443282998329996268E-4), - L(7.249969752687540289422684951196241427445E-3), - L(1.302040375859768674620410563307838448508E-1), - L(1.380202483082910888897654537144485285549E0), - L(8.926594113174165352623847870299170069350E0), - L(3.521089584782616472372909095331572607185E1), - L(8.233547427533181375185259050330809105570E1), - L(1.072971579885803033079469639073292840135E2), - L(6.943803113337964469736022094105143158033E1), - L(1.775695341031607738233608307835017282662E1) - /* 1.0E0 */ -}; - -/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2)) - 1/128 <= 1/x < 1/8 - Peak relative error 2.2e-36 */ -#define NRNr1 9 -static const _Float128 RNr1[NRNr1 + 1] = -{ -L(-4.250780883202361946697751475473042685782E-8), -L(-5.375777053288612282487696975623206383019E-6), -L(-2.573645949220896816208565944117382460452E-4), -L(-6.199032928113542080263152610799113086319E-3), -L(-8.262721198693404060380104048479916247786E-2), -L(-6.242615227257324746371284637695778043982E-1), -L(-2.609874739199595400225113299437099626386E0), -L(-5.581967563336676737146358534602770006970E0), -L(-5.124398923356022609707490956634280573882E0), -L(-1.290865243944292370661544030414667556649E0) -}; -#define NRDr1 8 -static const _Float128 RDr1[NRDr1 + 1] = -{ - L(4.308976661749509034845251315983612976224E-6), - L(3.265390126432780184125233455960049294580E-4), - L(9.811328839187040701901866531796570418691E-3), - L(1.511222515036021033410078631914783519649E-1), - L(1.289264341917429958858379585970225092274E0), - L(6.147640356182230769548007536914983522270E0), - L(1.573966871337739784518246317003956180750E1), - L(1.955534123435095067199574045529218238263E1), - L(9.472613121363135472247929109615785855865E0) - /* 1.0E0 */ -}; - - -_Float128 -__erfl (_Float128 x) -{ - _Float128 a, y, z; - int32_t i, ix, sign; - ieee854_long_double_shape_type u; - - u.value = x; - sign = u.parts32.w0; - ix = sign & 0x7fffffff; - - if (ix >= 0x7fff0000) - { /* erf(nan)=nan */ - i = ((sign & 0xffff0000) >> 31) << 1; - return (_Float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */ - } - - if (ix >= 0x3fff0000) /* |x| >= 1.0 */ - { - if (ix >= 0x40030000 && sign > 0) - return one; /* x >= 16, avoid spurious underflow from erfc. */ - y = __erfcl (x); - return (one - y); - /* return (one - __erfcl (x)); */ - } - u.parts32.w0 = ix; - a = u.value; - z = x * x; - if (ix < 0x3ffec000) /* a < 0.875 */ - { - if (ix < 0x3fc60000) /* |x|<2**-57 */ - { - if (ix < 0x00080000) - { - /* Avoid spurious underflow. */ - _Float128 ret = 0.0625 * (16.0 * x + (16.0 * efx) * x); - math_check_force_underflow (ret); - return ret; - } - return x + efx * x; - } - y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1); - } - else - { - a = a - one; - y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2); - } - - if (sign & 0x80000000) /* x < 0 */ - y = -y; - return( y ); -} - -weak_alias (__erfl, erfl) -_Float128 -__erfcl (_Float128 x) -{ - _Float128 y, z, p, r; - int32_t i, ix, sign; - ieee854_long_double_shape_type u; - - u.value = x; - sign = u.parts32.w0; - ix = sign & 0x7fffffff; - u.parts32.w0 = ix; - - if (ix >= 0x7fff0000) - { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - return (_Float128) (((u_int32_t) sign >> 31) << 1) + one / x; - } - - if (ix < 0x3ffd0000) /* |x| <1/4 */ - { - if (ix < 0x3f8d0000) /* |x|<2**-114 */ - return one - x; - return one - __erfl (x); - } - if (ix < 0x3fff4000) /* 1.25 */ - { - x = u.value; - i = 8.0 * x; - switch (i) - { - case 2: - z = x - L(0.25); - y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13); - y += C13a; - break; - case 3: - z = x - L(0.375); - y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14); - y += C14a; - break; - case 4: - z = x - L(0.5); - y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15); - y += C15a; - break; - case 5: - z = x - L(0.625); - y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16); - y += C16a; - break; - case 6: - z = x - L(0.75); - y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17); - y += C17a; - break; - case 7: - z = x - L(0.875); - y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18); - y += C18a; - break; - case 8: - z = x - 1; - y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19); - y += C19a; - break; - default: /* i == 9. */ - z = x - L(1.125); - y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20); - y += C20a; - break; - } - if (sign & 0x80000000) - y = 2 - y; - return y; - } - /* 1.25 < |x| < 107 */ - if (ix < 0x4005ac00) - { - /* x < -9 */ - if ((ix >= 0x40022000) && (sign & 0x80000000)) - return two - tiny; - - x = fabsl (x); - z = one / (x * x); - i = 8.0 / x; - switch (i) - { - default: - case 0: - p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1); - break; - case 1: - p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2); - break; - case 2: - p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3); - break; - case 3: - p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4); - break; - case 4: - p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5); - break; - case 5: - p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6); - break; - case 6: - p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7); - break; - case 7: - p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8); - break; - } - u.value = x; - u.parts32.w3 = 0; - u.parts32.w2 &= 0xfe000000; - z = u.value; - r = __ieee754_expl (-z * z - 0.5625) * - __ieee754_expl ((z - x) * (z + x) + p); - if ((sign & 0x80000000) == 0) - { - _Float128 ret = r / x; - if (ret == 0) - __set_errno (ERANGE); - return ret; - } - else - return two - r / x; - } - else - { - if ((sign & 0x80000000) == 0) - { - __set_errno (ERANGE); - return tiny * tiny; - } - else - return two - tiny; - } -} - -weak_alias (__erfcl, erfcl) diff --git a/sysdeps/ieee754/ldbl-128/s_expm1l.c b/sysdeps/ieee754/ldbl-128/s_expm1l.c deleted file mode 100644 index 46d078b77b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_expm1l.c +++ /dev/null @@ -1,166 +0,0 @@ -/* expm1l.c - * - * Exponential function, minus 1 - * 128-bit long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, expm1l(); - * - * y = expm1l( x ); - * - * - * - * DESCRIPTION: - * - * Returns e (2.71828...) raised to the x power, minus one. - * - * Range reduction is accomplished by separating the argument - * into an integer k and fraction f such that - * - * x k f - * e = 2 e. - * - * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 - * in the basic range [-0.5 ln 2, 0.5 ln 2]. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35 - * - */ - -/* Copyright 2001 by Stephen L. Moshier - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - - - -#include <errno.h> -#include <float.h> -#include <math.h> -#include <math_private.h> - -/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) - -.5 ln 2 < x < .5 ln 2 - Theoretical peak relative error = 8.1e-36 */ - -static const _Float128 - P0 = L(2.943520915569954073888921213330863757240E8), - P1 = L(-5.722847283900608941516165725053359168840E7), - P2 = L(8.944630806357575461578107295909719817253E6), - P3 = L(-7.212432713558031519943281748462837065308E5), - P4 = L(4.578962475841642634225390068461943438441E4), - P5 = L(-1.716772506388927649032068540558788106762E3), - P6 = L(4.401308817383362136048032038528753151144E1), - P7 = L(-4.888737542888633647784737721812546636240E-1), - Q0 = L(1.766112549341972444333352727998584753865E9), - Q1 = L(-7.848989743695296475743081255027098295771E8), - Q2 = L(1.615869009634292424463780387327037251069E8), - Q3 = L(-2.019684072836541751428967854947019415698E7), - Q4 = L(1.682912729190313538934190635536631941751E6), - Q5 = L(-9.615511549171441430850103489315371768998E4), - Q6 = L(3.697714952261803935521187272204485251835E3), - Q7 = L(-8.802340681794263968892934703309274564037E1), - /* Q8 = 1.000000000000000000000000000000000000000E0 */ -/* C1 + C2 = ln 2 */ - - C1 = L(6.93145751953125E-1), - C2 = L(1.428606820309417232121458176568075500134E-6), -/* ln 2^-114 */ - minarg = L(-7.9018778583833765273564461846232128760607E1), big = L(1e4932); - - -_Float128 -__expm1l (_Float128 x) -{ - _Float128 px, qx, xx; - int32_t ix, sign; - ieee854_long_double_shape_type u; - int k; - - /* Detect infinity and NaN. */ - u.value = x; - ix = u.parts32.w0; - sign = ix & 0x80000000; - ix &= 0x7fffffff; - if (!sign && ix >= 0x40060000) - { - /* If num is positive and exp >= 6 use plain exp. */ - return __expl (x); - } - if (ix >= 0x7fff0000) - { - /* Infinity (which must be negative infinity). */ - if (((ix & 0xffff) | u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - return -1; - /* NaN. Invalid exception if signaling. */ - return x + x; - } - - /* expm1(+- 0) = +- 0. */ - if ((ix == 0) && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - return x; - - /* Minimum value. */ - if (x < minarg) - return (4.0/big - 1); - - /* Avoid internal underflow when result does not underflow, while - ensuring underflow (without returning a zero of the wrong sign) - when the result does underflow. */ - if (fabsl (x) < L(0x1p-113)) - { - math_check_force_underflow (x); - return x; - } - - /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ - xx = C1 + C2; /* ln 2. */ - px = __floorl (0.5 + x / xx); - k = px; - /* remainder times ln 2 */ - x -= px * C1; - x -= px * C2; - - /* Approximate exp(remainder ln 2). */ - px = (((((((P7 * x - + P6) * x - + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x; - - qx = (((((((x - + Q7) * x - + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; - - xx = x * x; - qx = x + (0.5 * xx + xx * px / qx); - - /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). - - We have qx = exp(remainder ln 2) - 1, so - exp(x) - 1 = 2^k (qx + 1) - 1 - = 2^k qx + 2^k - 1. */ - - px = __ldexpl (1, k); - x = px * qx + (px - 1.0); - return x; -} -libm_hidden_def (__expm1l) -weak_alias (__expm1l, expm1l) diff --git a/sysdeps/ieee754/ldbl-128/s_fabsl.c b/sysdeps/ieee754/ldbl-128/s_fabsl.c deleted file mode 100644 index 0ce6f734cf..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fabsl.c +++ /dev/null @@ -1,34 +0,0 @@ -/* s_fabsl.c -- long double version of s_fabs.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * fabsl(x) returns the absolute value of x. - */ - -#include <math.h> -#include <math_private.h> - -_Float128 __fabsl(_Float128 x) -{ - u_int64_t hx; - GET_LDOUBLE_MSW64(hx,x); - SET_LDOUBLE_MSW64(x,hx&0x7fffffffffffffffLL); - return x; -} -weak_alias (__fabsl, fabsl) diff --git a/sysdeps/ieee754/ldbl-128/s_finitel.c b/sysdeps/ieee754/ldbl-128/s_finitel.c deleted file mode 100644 index 7c699688fe..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_finitel.c +++ /dev/null @@ -1,36 +0,0 @@ -/* s_finitel.c -- long double version of s_finite.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * finitel(x) returns 1 is x is finite, else 0; - * no branching! - */ - -#include <math.h> -#include <math_private.h> - -int __finitel(_Float128 x) -{ - int64_t hx; - GET_LDOUBLE_MSW64(hx,x); - return (int)((u_int64_t)((hx&0x7fff000000000000LL) - -0x7fff000000000000LL)>>63); -} -mathx_hidden_def (__finitel) -weak_alias (__finitel, finitel) diff --git a/sysdeps/ieee754/ldbl-128/s_floorl.c b/sysdeps/ieee754/ldbl-128/s_floorl.c deleted file mode 100644 index 13ad0848a4..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_floorl.c +++ /dev/null @@ -1,67 +0,0 @@ -/* s_floorl.c -- long double version of s_floor.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * floorl(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - */ - -#include <math.h> -#include <math_private.h> - -_Float128 __floorl(_Float128 x) -{ - int64_t i0,i1,j0; - u_int64_t i,j; - GET_LDOUBLE_WORDS64(i0,i1,x); - j0 = ((i0>>48)&0x7fff)-0x3fff; - if(j0<48) { - if(j0<0) { - /* return 0*sign(x) if |x|<1 */ - if(i0>=0) {i0=i1=0;} - else if(((i0&0x7fffffffffffffffLL)|i1)!=0) - { i0=0xbfff000000000000ULL;i1=0;} - } else { - i = (0x0000ffffffffffffULL)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(i0<0) i0 += (0x0001000000000000LL)>>j0; - i0 &= (~i); i1=0; - } - } else if (j0>111) { - if(j0==0x4000) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = -1ULL>>(j0-48); - if((i1&i)==0) return x; /* x is integral */ - if(i0<0) { - if(j0==48) i0+=1; - else { - j = i1+(1LL<<(112-j0)); - if(j<i1) i0 +=1 ; /* got a carry */ - i1=j; - } - } - i1 &= (~i); - } - SET_LDOUBLE_WORDS64(x,i0,i1); - return x; -} -weak_alias (__floorl, floorl) diff --git a/sysdeps/ieee754/ldbl-128/s_fma.c b/sysdeps/ieee754/ldbl-128/s_fma.c deleted file mode 100644 index 13da2904f4..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fma.c +++ /dev/null @@ -1,55 +0,0 @@ -/* Compute x * y + z as ternary operation. - Copyright (C) 2010-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <fenv.h> -#include <ieee754.h> - -/* This implementation relies on long double being more than twice as - precise as double and uses rounding to odd in order to avoid problems - with double rounding. - See a paper by Boldo and Melquiond: - http://www.lri.fr/~melquion/doc/08-tc.pdf */ - -double -__fma (double x, double y, double z) -{ - fenv_t env; - /* Multiplication is always exact. */ - long double temp = (long double) x * (long double) y; - - /* Ensure correct sign of an exact zero result by performing the - addition in the original rounding mode in that case. */ - if (temp == -z) - return (double) temp + z; - - union ieee854_long_double u; - feholdexcept (&env); - fesetround (FE_TOWARDZERO); - /* Perform addition with round to odd. */ - u.d = temp + (long double) z; - if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) - u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; - feupdateenv (&env); - /* And finally truncation with round to nearest. */ - return (double) u.d; -} -#ifndef __fma -weak_alias (__fma, fma) -#endif diff --git a/sysdeps/ieee754/ldbl-128/s_fmal.c b/sysdeps/ieee754/ldbl-128/s_fmal.c deleted file mode 100644 index 40c4e73d2b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fmal.c +++ /dev/null @@ -1,298 +0,0 @@ -/* Compute x * y + z as ternary operation. - Copyright (C) 2010-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jakub@redhat.com>, 2010. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <float.h> -#include <math.h> -#include <fenv.h> -#include <ieee754.h> -#include <math_private.h> -#include <tininess.h> - -/* This implementation uses rounding to odd to avoid problems with - double rounding. See a paper by Boldo and Melquiond: - http://www.lri.fr/~melquion/doc/08-tc.pdf */ - -_Float128 -__fmal (_Float128 x, _Float128 y, _Float128 z) -{ - union ieee854_long_double u, v, w; - int adjust = 0; - u.d = x; - v.d = y; - w.d = z; - if (__builtin_expect (u.ieee.exponent + v.ieee.exponent - >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - - LDBL_MANT_DIG, 0) - || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) - || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) - || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0) - || __builtin_expect (u.ieee.exponent + v.ieee.exponent - <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0)) - { - /* If z is Inf, but x and y are finite, the result should be - z rather than NaN. */ - if (w.ieee.exponent == 0x7fff - && u.ieee.exponent != 0x7fff - && v.ieee.exponent != 0x7fff) - return (z + x) + y; - /* If z is zero and x are y are nonzero, compute the result - as x * y to avoid the wrong sign of a zero result if x * y - underflows to 0. */ - if (z == 0 && x != 0 && y != 0) - return x * y; - /* If x or y or z is Inf/NaN, or if x * y is zero, compute as - x * y + z. */ - if (u.ieee.exponent == 0x7fff - || v.ieee.exponent == 0x7fff - || w.ieee.exponent == 0x7fff - || x == 0 - || y == 0) - return x * y + z; - /* If fma will certainly overflow, compute as x * y. */ - if (u.ieee.exponent + v.ieee.exponent - > 0x7fff + IEEE854_LONG_DOUBLE_BIAS) - return x * y; - /* If x * y is less than 1/4 of LDBL_TRUE_MIN, neither the - result nor whether there is underflow depends on its exact - value, only on its sign. */ - if (u.ieee.exponent + v.ieee.exponent - < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2) - { - int neg = u.ieee.negative ^ v.ieee.negative; - _Float128 tiny = neg ? L(-0x1p-16494) : L(0x1p-16494); - if (w.ieee.exponent >= 3) - return tiny + z; - /* Scaling up, adding TINY and scaling down produces the - correct result, because in round-to-nearest mode adding - TINY has no effect and in other modes double rounding is - harmless. But it may not produce required underflow - exceptions. */ - v.d = z * L(0x1p114) + tiny; - if (TININESS_AFTER_ROUNDING - ? v.ieee.exponent < 115 - : (w.ieee.exponent == 0 - || (w.ieee.exponent == 1 - && w.ieee.negative != neg - && w.ieee.mantissa3 == 0 - && w.ieee.mantissa2 == 0 - && w.ieee.mantissa1 == 0 - && w.ieee.mantissa0 == 0))) - { - _Float128 force_underflow = x * y; - math_force_eval (force_underflow); - } - return v.d * L(0x1p-114); - } - if (u.ieee.exponent + v.ieee.exponent - >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG) - { - /* Compute 1p-113 times smaller result and multiply - at the end. */ - if (u.ieee.exponent > v.ieee.exponent) - u.ieee.exponent -= LDBL_MANT_DIG; - else - v.ieee.exponent -= LDBL_MANT_DIG; - /* If x + y exponent is very large and z exponent is very small, - it doesn't matter if we don't adjust it. */ - if (w.ieee.exponent > LDBL_MANT_DIG) - w.ieee.exponent -= LDBL_MANT_DIG; - adjust = 1; - } - else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) - { - /* Similarly. - If z exponent is very large and x and y exponents are - very small, adjust them up to avoid spurious underflows, - rather than down. */ - if (u.ieee.exponent + v.ieee.exponent - <= IEEE854_LONG_DOUBLE_BIAS + 2 * LDBL_MANT_DIG) - { - if (u.ieee.exponent > v.ieee.exponent) - u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; - else - v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; - } - else if (u.ieee.exponent > v.ieee.exponent) - { - if (u.ieee.exponent > LDBL_MANT_DIG) - u.ieee.exponent -= LDBL_MANT_DIG; - } - else if (v.ieee.exponent > LDBL_MANT_DIG) - v.ieee.exponent -= LDBL_MANT_DIG; - w.ieee.exponent -= LDBL_MANT_DIG; - adjust = 1; - } - else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) - { - u.ieee.exponent -= LDBL_MANT_DIG; - if (v.ieee.exponent) - v.ieee.exponent += LDBL_MANT_DIG; - else - v.d *= L(0x1p113); - } - else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG) - { - v.ieee.exponent -= LDBL_MANT_DIG; - if (u.ieee.exponent) - u.ieee.exponent += LDBL_MANT_DIG; - else - u.d *= L(0x1p113); - } - else /* if (u.ieee.exponent + v.ieee.exponent - <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */ - { - if (u.ieee.exponent > v.ieee.exponent) - u.ieee.exponent += 2 * LDBL_MANT_DIG + 2; - else - v.ieee.exponent += 2 * LDBL_MANT_DIG + 2; - if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 6) - { - if (w.ieee.exponent) - w.ieee.exponent += 2 * LDBL_MANT_DIG + 2; - else - w.d *= L(0x1p228); - adjust = -1; - } - /* Otherwise x * y should just affect inexact - and nothing else. */ - } - x = u.d; - y = v.d; - z = w.d; - } - - /* Ensure correct sign of exact 0 + 0. */ - if (__glibc_unlikely ((x == 0 || y == 0) && z == 0)) - { - x = math_opt_barrier (x); - return x * y + z; - } - - fenv_t env; - feholdexcept (&env); - fesetround (FE_TONEAREST); - - /* Multiplication m1 + m2 = x * y using Dekker's algorithm. */ -#define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1) - _Float128 x1 = x * C; - _Float128 y1 = y * C; - _Float128 m1 = x * y; - x1 = (x - x1) + x1; - y1 = (y - y1) + y1; - _Float128 x2 = x - x1; - _Float128 y2 = y - y1; - _Float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2; - - /* Addition a1 + a2 = z + m1 using Knuth's algorithm. */ - _Float128 a1 = z + m1; - _Float128 t1 = a1 - z; - _Float128 t2 = a1 - t1; - t1 = m1 - t1; - t2 = z - t2; - _Float128 a2 = t1 + t2; - /* Ensure the arithmetic is not scheduled after feclearexcept call. */ - math_force_eval (m2); - math_force_eval (a2); - feclearexcept (FE_INEXACT); - - /* If the result is an exact zero, ensure it has the correct sign. */ - if (a1 == 0 && m2 == 0) - { - feupdateenv (&env); - /* Ensure that round-to-nearest value of z + m1 is not reused. */ - z = math_opt_barrier (z); - return z + m1; - } - - fesetround (FE_TOWARDZERO); - /* Perform m2 + a2 addition with round to odd. */ - u.d = a2 + m2; - - if (__glibc_likely (adjust == 0)) - { - if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) - u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; - feupdateenv (&env); - /* Result is a1 + u.d. */ - return a1 + u.d; - } - else if (__glibc_likely (adjust > 0)) - { - if ((u.ieee.mantissa3 & 1) == 0 && u.ieee.exponent != 0x7fff) - u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; - feupdateenv (&env); - /* Result is a1 + u.d, scaled up. */ - return (a1 + u.d) * L(0x1p113); - } - else - { - if ((u.ieee.mantissa3 & 1) == 0) - u.ieee.mantissa3 |= fetestexcept (FE_INEXACT) != 0; - v.d = a1 + u.d; - /* Ensure the addition is not scheduled after fetestexcept call. */ - math_force_eval (v.d); - int j = fetestexcept (FE_INEXACT) != 0; - feupdateenv (&env); - /* Ensure the following computations are performed in default rounding - mode instead of just reusing the round to zero computation. */ - asm volatile ("" : "=m" (u) : "m" (u)); - /* If a1 + u.d is exact, the only rounding happens during - scaling down. */ - if (j == 0) - return v.d * L(0x1p-228); - /* If result rounded to zero is not subnormal, no double - rounding will occur. */ - if (v.ieee.exponent > 228) - return (a1 + u.d) * L(0x1p-228); - /* If v.d * 0x1p-228L with round to zero is a subnormal above - or equal to LDBL_MIN / 2, then v.d * 0x1p-228L shifts mantissa - down just by 1 bit, which means v.ieee.mantissa3 |= j would - change the round bit, not sticky or guard bit. - v.d * 0x1p-228L never normalizes by shifting up, - so round bit plus sticky bit should be already enough - for proper rounding. */ - if (v.ieee.exponent == 228) - { - /* If the exponent would be in the normal range when - rounding to normal precision with unbounded exponent - range, the exact result is known and spurious underflows - must be avoided on systems detecting tininess after - rounding. */ - if (TININESS_AFTER_ROUNDING) - { - w.d = a1 + u.d; - if (w.ieee.exponent == 229) - return w.d * L(0x1p-228); - } - /* v.ieee.mantissa3 & 2 is LSB bit of the result before rounding, - v.ieee.mantissa3 & 1 is the round bit and j is our sticky - bit. */ - w.d = 0; - w.ieee.mantissa3 = ((v.ieee.mantissa3 & 3) << 1) | j; - w.ieee.negative = v.ieee.negative; - v.ieee.mantissa3 &= ~3U; - v.d *= L(0x1p-228); - w.d *= L(0x1p-2); - return v.d + w.d; - } - v.ieee.mantissa3 |= j; - return v.d * L(0x1p-228); - } -} -weak_alias (__fmal, fmal) diff --git a/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c b/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c deleted file mode 100644 index daa7d79ec2..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fpclassifyl.c +++ /dev/null @@ -1,44 +0,0 @@ -/* Return classification value corresponding to argument. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> - -#include <math_private.h> - - -int -__fpclassifyl (_Float128 x) -{ - u_int64_t hx, lx; - int retval = FP_NORMAL; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - lx |= (hx & 0x0000ffffffffffffLL); - hx &= 0x7fff000000000000LL; - if ((hx | lx) == 0) - retval = FP_ZERO; - else if (hx == 0) - retval = FP_SUBNORMAL; - else if (hx == 0x7fff000000000000LL) - retval = lx != 0 ? FP_NAN : FP_INFINITE; - - return retval; -} -libm_hidden_def (__fpclassifyl) diff --git a/sysdeps/ieee754/ldbl-128/s_frexpl.c b/sysdeps/ieee754/ldbl-128/s_frexpl.c deleted file mode 100644 index 47a171f551..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_frexpl.c +++ /dev/null @@ -1,54 +0,0 @@ -/* s_frexpl.c -- long double version of s_frexp.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * for non-zero x - * x = frexpl(arg,&exp); - * return a long double fp quantity x such that 0.5 <= |x| <1.0 - * and the corresponding binary exponent "exp". That is - * arg = x*2^exp. - * If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg - * with *exp=0. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -two114 = L(2.0769187434139310514121985316880384E+34); /* 0x4071000000000000, 0 */ - -_Float128 __frexpl(_Float128 x, int *eptr) -{ - u_int64_t hx, lx, ix; - GET_LDOUBLE_WORDS64(hx,lx,x); - ix = 0x7fffffffffffffffULL&hx; - *eptr = 0; - if(ix>=0x7fff000000000000ULL||((ix|lx)==0)) return x + x;/* 0,inf,nan */ - if (ix<0x0001000000000000ULL) { /* subnormal */ - x *= two114; - GET_LDOUBLE_MSW64(hx,x); - ix = hx&0x7fffffffffffffffULL; - *eptr = -114; - } - *eptr += (ix>>48)-16382; - hx = (hx&0x8000ffffffffffffULL) | 0x3ffe000000000000ULL; - SET_LDOUBLE_MSW64(x,hx); - return x; -} -weak_alias (__frexpl, frexpl) diff --git a/sysdeps/ieee754/ldbl-128/s_fromfpl.c b/sysdeps/ieee754/ldbl-128/s_fromfpl.c deleted file mode 100644 index e323b4c25b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fromfpl.c +++ /dev/null @@ -1,4 +0,0 @@ -#define UNSIGNED 0 -#define INEXACT 0 -#define FUNC fromfpl -#include <s_fromfpl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/s_fromfpl_main.c b/sysdeps/ieee754/ldbl-128/s_fromfpl_main.c deleted file mode 100644 index 7dc507111b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fromfpl_main.c +++ /dev/null @@ -1,90 +0,0 @@ -/* Round to integer type. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <errno.h> -#include <fenv.h> -#include <math.h> -#include <math_private.h> -#include <stdbool.h> -#include <stdint.h> - -#define BIAS 0x3fff -#define MANT_DIG 113 - -#if UNSIGNED -# define RET_TYPE uintmax_t -#else -# define RET_TYPE intmax_t -#endif - -#include <fromfp.h> - -RET_TYPE -FUNC (_Float128 x, int round, unsigned int width) -{ - if (width > INTMAX_WIDTH) - width = INTMAX_WIDTH; - uint64_t hx, lx; - GET_LDOUBLE_WORDS64 (hx, lx, x); - bool negative = (hx & 0x8000000000000000ULL) != 0; - if (width == 0) - return fromfp_domain_error (negative, width); - hx &= 0x7fffffffffffffffULL; - if ((hx | lx) == 0) - return 0; - int exponent = hx >> (MANT_DIG - 1 - 64); - exponent -= BIAS; - int max_exponent = fromfp_max_exponent (negative, width); - if (exponent > max_exponent) - return fromfp_domain_error (negative, width); - - hx &= ((1ULL << (MANT_DIG - 1 - 64)) - 1); - hx |= 1ULL << (MANT_DIG - 1 - 64); - uintmax_t uret; - bool half_bit, more_bits; - /* The exponent is at most 63, so we are shifting right by at least - 49 bits. */ - if (exponent >= -1) - { - int shift = MANT_DIG - 1 - exponent; - if (shift <= 64) - { - uint64_t h = 1ULL << (shift - 1); - half_bit = (lx & h) != 0; - more_bits = (lx & (h - 1)) != 0; - uret = hx << (64 - shift); - if (shift != 64) - uret |= lx >> shift; - } - else - { - uint64_t h = 1ULL << (shift - 1 - 64); - half_bit = (hx & h) != 0; - more_bits = ((hx & (h - 1)) | lx) != 0; - uret = hx >> (shift - 64); - } - } - else - { - uret = 0; - half_bit = false; - more_bits = true; - } - return fromfp_round_and_return (negative, uret, half_bit, more_bits, round, - exponent, max_exponent, width); -} diff --git a/sysdeps/ieee754/ldbl-128/s_fromfpxl.c b/sysdeps/ieee754/ldbl-128/s_fromfpxl.c deleted file mode 100644 index 2f3189d7de..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_fromfpxl.c +++ /dev/null @@ -1,4 +0,0 @@ -#define UNSIGNED 0 -#define INEXACT 1 -#define FUNC fromfpxl -#include <s_fromfpl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/s_getpayloadl.c b/sysdeps/ieee754/ldbl-128/s_getpayloadl.c deleted file mode 100644 index d384645532..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_getpayloadl.c +++ /dev/null @@ -1,57 +0,0 @@ -/* Get NaN payload. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <stdint.h> - -_Float128 -getpayloadl (const _Float128 *x) -{ - uint64_t hx, lx; - GET_LDOUBLE_WORDS64 (hx, lx, *x); - hx &= 0x7fffffffffffULL; - /* Construct the representation of the return value directly, since - 128-bit integers may not be available. */ - int lz; - if (hx == 0) - { - if (lx == 0) - return 0.0L; - else - lz = __builtin_clzll (lx) + 64; - } - else - lz = __builtin_clzll (hx); - int shift = lz - 15; - if (shift >= 64) - { - hx = lx << (shift - 64); - lx = 0; - } - else - { - /* 2 <= SHIFT <= 63. */ - hx = (hx << shift) | (lx >> (64 - shift)); - lx <<= shift; - } - hx = (hx & 0xffffffffffffULL) | ((0x3fffULL + 127 - lz) << 48); - _Float128 ret; - SET_LDOUBLE_WORDS64 (ret, hx, lx); - return ret; -} diff --git a/sysdeps/ieee754/ldbl-128/s_isinfl.c b/sysdeps/ieee754/ldbl-128/s_isinfl.c deleted file mode 100644 index a41e8cf44b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_isinfl.c +++ /dev/null @@ -1,29 +0,0 @@ -/* - * Written by J.T. Conklin <jtc@netbsd.org>. - * Change for long double by Jakub Jelinek <jj@ultra.linux.cz> - * Public domain. - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * isinfl(x) returns 1 if x is inf, -1 if x is -inf, else 0; - * no branching! - */ - -#include <math.h> -#include <math_private.h> - -int -__isinfl (_Float128 x) -{ - int64_t hx,lx; - GET_LDOUBLE_WORDS64(hx,lx,x); - lx |= (hx & 0x7fffffffffffffffLL) ^ 0x7fff000000000000LL; - lx |= -lx; - return ~(lx >> 63) & (hx >> 62); -} -mathx_hidden_def (__isinfl) -weak_alias (__isinfl, isinfl) diff --git a/sysdeps/ieee754/ldbl-128/s_isnanl.c b/sysdeps/ieee754/ldbl-128/s_isnanl.c deleted file mode 100644 index 80f97fea4c..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_isnanl.c +++ /dev/null @@ -1,38 +0,0 @@ -/* s_isnanl.c -- long double version of s_isnan.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * isnanl(x) returns 1 is x is nan, else 0; - * no branching! - */ - -#include <math.h> -#include <math_private.h> - -int __isnanl(_Float128 x) -{ - int64_t hx,lx; - GET_LDOUBLE_WORDS64(hx,lx,x); - hx &= 0x7fffffffffffffffLL; - hx |= (u_int64_t)(lx|(-lx))>>63; - hx = 0x7fff000000000000LL - hx; - return (int)((u_int64_t)hx>>63); -} -mathx_hidden_def (__isnanl) -weak_alias (__isnanl, isnanl) diff --git a/sysdeps/ieee754/ldbl-128/s_issignalingl.c b/sysdeps/ieee754/ldbl-128/s_issignalingl.c deleted file mode 100644 index 02d6a0ae07..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_issignalingl.c +++ /dev/null @@ -1,46 +0,0 @@ -/* Test for signaling NaN. - Copyright (C) 2013-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <nan-high-order-bit.h> - -int -__issignalingl (_Float128 x) -{ - u_int64_t hxi, lxi __attribute__ ((unused)); - GET_LDOUBLE_WORDS64 (hxi, lxi, x); -#if HIGH_ORDER_BIT_IS_SET_FOR_SNAN - /* We only have to care about the high-order bit of x's significand, because - having it set (sNaN) already makes the significand different from that - used to designate infinity. */ - return ((hxi & UINT64_C (0x7fff800000000000)) - == UINT64_C (0x7fff800000000000)); -#else - /* To keep the following comparison simple, toggle the quiet/signaling bit, - so that it is set for sNaNs. This is inverse to IEEE 754-2008 (as well as - common practice for IEEE 754-1985). */ - hxi ^= UINT64_C (0x0000800000000000); - /* If lxi != 0, then set any suitable bit of the significand in hxi. */ - hxi |= (lxi | -lxi) >> 63; - /* We have to compare for greater (instead of greater or equal), because x's - significand being all-zero designates infinity not NaN. */ - return (hxi & UINT64_C (0x7fffffffffffffff)) > UINT64_C (0x7fff800000000000); -#endif -} -libm_hidden_def (__issignalingl) diff --git a/sysdeps/ieee754/ldbl-128/s_llrintl.c b/sysdeps/ieee754/ldbl-128/s_llrintl.c deleted file mode 100644 index d08a90a1b3..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_llrintl.c +++ /dev/null @@ -1,108 +0,0 @@ -/* Round argument to nearest integral value according to current rounding - direction. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <fenv.h> -#include <limits.h> -#include <math.h> - -#include <math_private.h> -#include <fix-fp-int-convert-overflow.h> - -static const _Float128 two112[2] = -{ - L(5.19229685853482762853049632922009600E+33), /* 0x406F000000000000, 0 */ - L(-5.19229685853482762853049632922009600E+33) /* 0xC06F000000000000, 0 */ -}; - -long long int -__llrintl (_Float128 x) -{ - int32_t j0; - u_int64_t i0,i1; - _Float128 w; - _Float128 t; - long long int result; - int sx; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - sx = i0 >> 63; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 < (int32_t) (8 * sizeof (long long int)) - 1) - { -#if defined FE_INVALID || defined FE_INEXACT - /* X < LLONG_MAX + 1 implied by J0 < 63. */ - if (x > (_Float128) LLONG_MAX) - { - /* In the event of overflow we must raise the "invalid" - exception, but not "inexact". */ - t = __nearbyintl (x); - feraiseexcept (t == LLONG_MAX ? FE_INEXACT : FE_INVALID); - } - else -#endif - { - w = two112[sx] + x; - t = w - two112[sx]; - } - GET_LDOUBLE_WORDS64 (i0, i1, t); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 < 0) - result = 0; - else if (j0 <= 48) - result = i0 >> (48 - j0); - else - result = ((long long int) i0 << (j0 - 48)) | (i1 >> (112 - j0)); - } - else - { - /* The number is too large. Unless it rounds to LLONG_MIN, - FE_INVALID must be raised and the return value is - unspecified. */ -#if defined FE_INVALID || defined FE_INEXACT - if (x < (_Float128) LLONG_MIN - && x > (_Float128) LLONG_MIN - 1) - { - /* If truncation produces LLONG_MIN, the cast will not raise - the exception, but may raise "inexact". */ - t = __nearbyintl (x); - feraiseexcept (t == LLONG_MIN ? FE_INEXACT : FE_INVALID); - return LLONG_MIN; - } - else if (FIX_LDBL_LLONG_CONVERT_OVERFLOW && x != (_Float128) LLONG_MIN) - { - feraiseexcept (FE_INVALID); - return sx == 0 ? LLONG_MAX : LLONG_MIN; - } - -#endif - return (long long int) x; - } - - return sx ? -result : result; -} - -weak_alias (__llrintl, llrintl) diff --git a/sysdeps/ieee754/ldbl-128/s_llroundl.c b/sysdeps/ieee754/ldbl-128/s_llroundl.c deleted file mode 100644 index bb0b5bcf4b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_llroundl.c +++ /dev/null @@ -1,102 +0,0 @@ -/* Round long double value to long long int. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <fenv.h> -#include <limits.h> -#include <math.h> - -#include <math_private.h> -#include <fix-fp-int-convert-overflow.h> - -long long int -__llroundl (_Float128 x) -{ - int64_t j0; - u_int64_t i1, i0; - long long int result; - int sign; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - sign = (i0 & 0x8000000000000000ULL) != 0 ? -1 : 1; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 < 48) - { - if (j0 < 0) - return j0 < -1 ? 0 : sign; - else - { - i0 += 0x0000800000000000LL >> j0; - result = i0 >> (48 - j0); - } - } - else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1) - { - if (j0 >= 112) - result = ((long long int) i0 << (j0 - 48)) | (i1 << (j0 - 112)); - else - { - u_int64_t j = i1 + (0x8000000000000000ULL >> (j0 - 48)); - if (j < i1) - ++i0; - - if (j0 == 48) - result = (long long int) i0; - else - { - result = ((long long int) i0 << (j0 - 48)) | (j >> (112 - j0)); -#ifdef FE_INVALID - if (sign == 1 && result == LLONG_MIN) - /* Rounding brought the value out of range. */ - feraiseexcept (FE_INVALID); -#endif - } - } - } - else - { - /* The number is too large. Unless it rounds to LLONG_MIN, - FE_INVALID must be raised and the return value is - unspecified. */ -#ifdef FE_INVALID - if (FIX_LDBL_LLONG_CONVERT_OVERFLOW - && !(sign == -1 && x > (_Float128) LLONG_MIN - L(0.5))) - { - feraiseexcept (FE_INVALID); - return sign == 1 ? LLONG_MAX : LLONG_MIN; - } - else if (!FIX_LDBL_LLONG_CONVERT_OVERFLOW - && x <= (_Float128) LLONG_MIN - L(0.5)) - { - /* If truncation produces LLONG_MIN, the cast will not raise - the exception, but may raise "inexact". */ - feraiseexcept (FE_INVALID); - return LLONG_MIN; - } -#endif - return (long long int) x; - } - - return sign * result; -} - -weak_alias (__llroundl, llroundl) diff --git a/sysdeps/ieee754/ldbl-128/s_log1pl.c b/sysdeps/ieee754/ldbl-128/s_log1pl.c deleted file mode 100644 index b8b2ffeba1..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_log1pl.c +++ /dev/null @@ -1,256 +0,0 @@ -/* log1pl.c - * - * Relative error logarithm - * Natural logarithm of 1+x, 128-bit long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, log1pl(); - * - * y = log1pl( x ); - * - * - * - * DESCRIPTION: - * - * Returns the base e (2.718...) logarithm of 1+x. - * - * The argument 1+x is separated into its exponent and fractional - * parts. If the exponent is between -1 and +1, the logarithm - * of the fraction is approximated by - * - * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). - * - * Otherwise, setting z = 2(w-1)/(w+1), - * - * log(w) = z + z^3 P(z)/Q(z). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1, 8 100000 1.9e-34 4.3e-35 - */ - -/* Copyright 2001 by Stephen L. Moshier - - This library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - This library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with this library; if not, see - <http://www.gnu.org/licenses/>. */ - - -#include <float.h> -#include <math.h> -#include <math_private.h> - -/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) - * 1/sqrt(2) <= 1+x < sqrt(2) - * Theoretical peak relative error = 5.3e-37, - * relative peak error spread = 2.3e-14 - */ -static const _Float128 - P12 = L(1.538612243596254322971797716843006400388E-6), - P11 = L(4.998469661968096229986658302195402690910E-1), - P10 = L(2.321125933898420063925789532045674660756E1), - P9 = L(4.114517881637811823002128927449878962058E2), - P8 = L(3.824952356185897735160588078446136783779E3), - P7 = L(2.128857716871515081352991964243375186031E4), - P6 = L(7.594356839258970405033155585486712125861E4), - P5 = L(1.797628303815655343403735250238293741397E5), - P4 = L(2.854829159639697837788887080758954924001E5), - P3 = L(3.007007295140399532324943111654767187848E5), - P2 = L(2.014652742082537582487669938141683759923E5), - P1 = L(7.771154681358524243729929227226708890930E4), - P0 = L(1.313572404063446165910279910527789794488E4), - /* Q12 = 1.000000000000000000000000000000000000000E0L, */ - Q11 = L(4.839208193348159620282142911143429644326E1), - Q10 = L(9.104928120962988414618126155557301584078E2), - Q9 = L(9.147150349299596453976674231612674085381E3), - Q8 = L(5.605842085972455027590989944010492125825E4), - Q7 = L(2.248234257620569139969141618556349415120E5), - Q6 = L(6.132189329546557743179177159925690841200E5), - Q5 = L(1.158019977462989115839826904108208787040E6), - Q4 = L(1.514882452993549494932585972882995548426E6), - Q3 = L(1.347518538384329112529391120390701166528E6), - Q2 = L(7.777690340007566932935753241556479363645E5), - Q1 = L(2.626900195321832660448791748036714883242E5), - Q0 = L(3.940717212190338497730839731583397586124E4); - -/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), - * where z = 2(x-1)/(x+1) - * 1/sqrt(2) <= x < sqrt(2) - * Theoretical peak relative error = 1.1e-35, - * relative peak error spread 1.1e-9 - */ -static const _Float128 - R5 = L(-8.828896441624934385266096344596648080902E-1), - R4 = L(8.057002716646055371965756206836056074715E1), - R3 = L(-2.024301798136027039250415126250455056397E3), - R2 = L(2.048819892795278657810231591630928516206E4), - R1 = L(-8.977257995689735303686582344659576526998E4), - R0 = L(1.418134209872192732479751274970992665513E5), - /* S6 = 1.000000000000000000000000000000000000000E0L, */ - S5 = L(-1.186359407982897997337150403816839480438E2), - S4 = L(3.998526750980007367835804959888064681098E3), - S3 = L(-5.748542087379434595104154610899551484314E4), - S2 = L(4.001557694070773974936904547424676279307E5), - S1 = L(-1.332535117259762928288745111081235577029E6), - S0 = L(1.701761051846631278975701529965589676574E6); - -/* C1 + C2 = ln 2 */ -static const _Float128 C1 = L(6.93145751953125E-1); -static const _Float128 C2 = L(1.428606820309417232121458176568075500134E-6); - -static const _Float128 sqrth = L(0.7071067811865475244008443621048490392848); -/* ln (2^16384 * (1 - 2^-113)) */ -static const _Float128 zero = 0; - -_Float128 -__log1pl (_Float128 xm1) -{ - _Float128 x, y, z, r, s; - ieee854_long_double_shape_type u; - int32_t hx; - int e; - - /* Test for NaN or infinity input. */ - u.value = xm1; - hx = u.parts32.w0; - if ((hx & 0x7fffffff) >= 0x7fff0000) - return xm1 + fabsl (xm1); - - /* log1p(+- 0) = +- 0. */ - if (((hx & 0x7fffffff) == 0) - && (u.parts32.w1 | u.parts32.w2 | u.parts32.w3) == 0) - return xm1; - - if ((hx & 0x7fffffff) < 0x3f8e0000) - { - math_check_force_underflow (xm1); - if ((int) xm1 == 0) - return xm1; - } - - if (xm1 >= L(0x1p113)) - x = xm1; - else - x = xm1 + 1; - - /* log1p(-1) = -inf */ - if (x <= 0) - { - if (x == 0) - return (-1 / zero); /* log1p(-1) = -inf */ - else - return (zero / (x - x)); - } - - /* Separate mantissa from exponent. */ - - /* Use frexp used so that denormal numbers will be handled properly. */ - x = __frexpl (x, &e); - - /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2), - where z = 2(x-1)/x+1). */ - if ((e > 2) || (e < -2)) - { - if (x < sqrth) - { /* 2( 2x-1 )/( 2x+1 ) */ - e -= 1; - z = x - L(0.5); - y = L(0.5) * z + L(0.5); - } - else - { /* 2 (x-1)/(x+1) */ - z = x - L(0.5); - z -= L(0.5); - y = L(0.5) * x + L(0.5); - } - x = z / y; - z = x * x; - r = ((((R5 * z - + R4) * z - + R3) * z - + R2) * z - + R1) * z - + R0; - s = (((((z - + S5) * z - + S4) * z - + S3) * z - + S2) * z - + S1) * z - + S0; - z = x * (z * r / s); - z = z + e * C2; - z = z + x; - z = z + e * C1; - return (z); - } - - - /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */ - - if (x < sqrth) - { - e -= 1; - if (e != 0) - x = 2 * x - 1; /* 2x - 1 */ - else - x = xm1; - } - else - { - if (e != 0) - x = x - 1; - else - x = xm1; - } - z = x * x; - r = (((((((((((P12 * x - + P11) * x - + P10) * x - + P9) * x - + P8) * x - + P7) * x - + P6) * x - + P5) * x - + P4) * x - + P3) * x - + P2) * x - + P1) * x - + P0; - s = (((((((((((x - + Q11) * x - + Q10) * x - + Q9) * x - + Q8) * x - + Q7) * x - + Q6) * x - + Q5) * x - + Q4) * x - + Q3) * x - + Q2) * x - + Q1) * x - + Q0; - y = x * (z * r / s); - y = y + e * C2; - z = y - L(0.5) * z; - z = z + x; - z = z + e * C1; - return (z); -} diff --git a/sysdeps/ieee754/ldbl-128/s_logbl.c b/sysdeps/ieee754/ldbl-128/s_logbl.c deleted file mode 100644 index 24baae64fa..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_logbl.c +++ /dev/null @@ -1,54 +0,0 @@ -/* s_logbl.c -- long double version of s_logb.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * long double logbl(x) - * IEEE 754 logb. Included to pass IEEE test suite. Not recommend. - * Use ilogb instead. - */ - -#include <math.h> -#include <math_private.h> - -_Float128 -__logbl (_Float128 x) -{ - int64_t lx, hx, ex; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - hx &= 0x7fffffffffffffffLL; /* high |x| */ - if ((hx | lx) == 0) - return -1.0 / fabsl (x); - if (hx >= 0x7fff000000000000LL) - return x * x; - if ((ex = hx >> 48) == 0) /* IEEE 754 logb */ - { - /* POSIX specifies that denormal number is treated as - though it were normalized. */ - int ma; - if (hx == 0) - ma = __builtin_clzll (lx) + 64; - else - ma = __builtin_clzll (hx); - ex -= ma - 16; - } - return (_Float128) (ex - 16383); -} - -weak_alias (__logbl, logbl) diff --git a/sysdeps/ieee754/ldbl-128/s_lrintl.c b/sysdeps/ieee754/ldbl-128/s_lrintl.c deleted file mode 100644 index c690ddc8b8..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_lrintl.c +++ /dev/null @@ -1,137 +0,0 @@ -/* Round argument to nearest integral value according to current rounding - direction. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <fenv.h> -#include <limits.h> -#include <math.h> - -#include <math_private.h> -#include <fix-fp-int-convert-overflow.h> - -static const _Float128 two112[2] = -{ - L(5.19229685853482762853049632922009600E+33), /* 0x406F000000000000, 0 */ - L(-5.19229685853482762853049632922009600E+33) /* 0xC06F000000000000, 0 */ -}; - -long int -__lrintl (_Float128 x) -{ - int32_t j0; - u_int64_t i0,i1; - _Float128 w; - _Float128 t; - long int result; - int sx; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - sx = i0 >> 63; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 < (int32_t) (8 * sizeof (long int)) - 1) - { - if (j0 < 48) - { -#if defined FE_INVALID || defined FE_INEXACT - /* X < LONG_MAX + 1 implied by J0 < 31. */ - if (sizeof (long int) == 4 - && x > (_Float128) LONG_MAX) - { - /* In the event of overflow we must raise the "invalid" - exception, but not "inexact". */ - t = __nearbyintl (x); - feraiseexcept (t == LONG_MAX ? FE_INEXACT : FE_INVALID); - } - else -#endif - { - w = two112[sx] + x; - t = w - two112[sx]; - } - GET_LDOUBLE_WORDS64 (i0, i1, t); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - result = (j0 < 0 ? 0 : i0 >> (48 - j0)); - } - else if (j0 >= 112) - result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112)); - else - { -#if defined FE_INVALID || defined FE_INEXACT - /* X < LONG_MAX + 1 implied by J0 < 63. */ - if (sizeof (long int) == 8 - && x > (_Float128) LONG_MAX) - { - /* In the event of overflow we must raise the "invalid" - exception, but not "inexact". */ - t = __nearbyintl (x); - feraiseexcept (t == LONG_MAX ? FE_INEXACT : FE_INVALID); - } - else -#endif - { - w = two112[sx] + x; - t = w - two112[sx]; - } - GET_LDOUBLE_WORDS64 (i0, i1, t); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 == 48) - result = (long int) i0; - else - result = ((long int) i0 << (j0 - 48)) | (i1 >> (112 - j0)); - } - } - else - { - /* The number is too large. Unless it rounds to LONG_MIN, - FE_INVALID must be raised and the return value is - unspecified. */ -#if defined FE_INVALID || defined FE_INEXACT - if (x < (_Float128) LONG_MIN - && x > (_Float128) LONG_MIN - 1) - { - /* If truncation produces LONG_MIN, the cast will not raise - the exception, but may raise "inexact". */ - t = __nearbyintl (x); - feraiseexcept (t == LONG_MIN ? FE_INEXACT : FE_INVALID); - return LONG_MIN; - } - else if (FIX_LDBL_LONG_CONVERT_OVERFLOW && x != (_Float128) LONG_MIN) - { - feraiseexcept (FE_INVALID); - return sx == 0 ? LONG_MAX : LONG_MIN; - } - -#endif - return (long int) x; - } - - return sx ? -result : result; -} - -weak_alias (__lrintl, lrintl) diff --git a/sysdeps/ieee754/ldbl-128/s_lroundl.c b/sysdeps/ieee754/ldbl-128/s_lroundl.c deleted file mode 100644 index 419112519d..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_lroundl.c +++ /dev/null @@ -1,113 +0,0 @@ -/* Round long double value to long int. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <fenv.h> -#include <limits.h> -#include <math.h> - -#include <math_private.h> -#include <fix-fp-int-convert-overflow.h> - -long int -__lroundl (_Float128 x) -{ - int64_t j0; - u_int64_t i1, i0; - long int result; - int sign; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - sign = (i0 & 0x8000000000000000ULL) != 0 ? -1 : 1; - i0 &= 0x0000ffffffffffffLL; - i0 |= 0x0001000000000000LL; - - if (j0 < (int32_t) (8 * sizeof (long int)) - 1) - { - if (j0 < 48) - { - if (j0 < 0) - return j0 < -1 ? 0 : sign; - else - { - i0 += 0x0000800000000000LL >> j0; - result = i0 >> (48 - j0); -#ifdef FE_INVALID - if (sizeof (long int) == 4 - && sign == 1 - && result == LONG_MIN) - /* Rounding brought the value out of range. */ - feraiseexcept (FE_INVALID); -#endif - } - } - else if (j0 >= 112) - result = ((long int) i0 << (j0 - 48)) | (i1 << (j0 - 112)); - else - { - u_int64_t j = i1 + (0x8000000000000000ULL >> (j0 - 48)); - if (j < i1) - ++i0; - - if (j0 == 48) - result = (long int) i0; - else - { - result = ((long int) i0 << (j0 - 48)) | (j >> (112 - j0)); -#ifdef FE_INVALID - if (sizeof (long int) == 8 - && sign == 1 - && result == LONG_MIN) - /* Rounding brought the value out of range. */ - feraiseexcept (FE_INVALID); -#endif - } - } - } - else - { - /* The number is too large. Unless it rounds to LONG_MIN, - FE_INVALID must be raised and the return value is - unspecified. */ -#ifdef FE_INVALID - if (FIX_LDBL_LONG_CONVERT_OVERFLOW - && !(sign == -1 && x > (_Float128) LONG_MIN - L(0.5))) - { - feraiseexcept (FE_INVALID); - return sign == 1 ? LONG_MAX : LONG_MIN; - } - else if (!FIX_LDBL_LONG_CONVERT_OVERFLOW - && x <= (_Float128) LONG_MIN - L(0.5)) - { - /* If truncation produces LONG_MIN, the cast will not raise - the exception, but may raise "inexact". */ - feraiseexcept (FE_INVALID); - return LONG_MIN; - } -#endif - /* The number is too large. It is left implementation defined - what happens. */ - return (long int) x; - } - - return sign * result; -} - -weak_alias (__lroundl, lroundl) diff --git a/sysdeps/ieee754/ldbl-128/s_modfl.c b/sysdeps/ieee754/ldbl-128/s_modfl.c deleted file mode 100644 index 01e150b24f..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_modfl.c +++ /dev/null @@ -1,79 +0,0 @@ -/* s_modfl.c -- long double version of s_modf.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * modfl(long double x, long double *iptr) - * return fraction part of x, and return x's integral part in *iptr. - * Method: - * Bit twiddling. - * - * Exception: - * No exception. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1.0; - -_Float128 __modfl(_Float128 x, _Float128 *iptr) -{ - int64_t i0,i1,j0; - u_int64_t i; - GET_LDOUBLE_WORDS64(i0,i1,x); - j0 = ((i0>>48)&0x7fff)-0x3fff; /* exponent of x */ - if(j0<48) { /* integer part in high x */ - if(j0<0) { /* |x|<1 */ - /* *iptr = +-0 */ - SET_LDOUBLE_WORDS64(*iptr,i0&0x8000000000000000ULL,0); - return x; - } else { - i = (0x0000ffffffffffffLL)>>j0; - if(((i0&i)|i1)==0) { /* x is integral */ - *iptr = x; - /* return +-0 */ - SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); - return x; - } else { - SET_LDOUBLE_WORDS64(*iptr,i0&(~i),0); - return x - *iptr; - } - } - } else if (j0>111) { /* no fraction part */ - *iptr = x*one; - /* We must handle NaNs separately. */ - if (j0 == 0x4000 && ((i0 & 0x0000ffffffffffffLL) | i1)) - return x*one; - /* return +-0 */ - SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); - return x; - } else { /* fraction part in low x */ - i = -1ULL>>(j0-48); - if((i1&i)==0) { /* x is integral */ - *iptr = x; - /* return +-0 */ - SET_LDOUBLE_WORDS64(x,i0&0x8000000000000000ULL,0); - return x; - } else { - SET_LDOUBLE_WORDS64(*iptr,i0,i1&(~i)); - return x - *iptr; - } - } -} -weak_alias (__modfl, modfl) diff --git a/sysdeps/ieee754/ldbl-128/s_nearbyintl.c b/sysdeps/ieee754/ldbl-128/s_nearbyintl.c deleted file mode 100644 index 1565a8183f..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_nearbyintl.c +++ /dev/null @@ -1,67 +0,0 @@ -/* s_nearbyintl.c -- long double version of s_nearbyint.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * nearbyintl(x) - * Return x rounded to integral value according to the prevailing - * rounding mode. - * Method: - * Using floating addition. - * Exception: - * Inexact flag raised if x not equal to rintl(x). - */ - -#include <fenv.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 -TWO112[2]={ - L(5.19229685853482762853049632922009600E+33), /* 0x406F000000000000, 0 */ - L(-5.19229685853482762853049632922009600E+33) /* 0xC06F000000000000, 0 */ -}; - -_Float128 __nearbyintl(_Float128 x) -{ - fenv_t env; - int64_t i0,j0,sx; - u_int64_t i1 __attribute__ ((unused)); - _Float128 w,t; - GET_LDOUBLE_WORDS64(i0,i1,x); - sx = (((u_int64_t)i0)>>63); - j0 = ((i0>>48)&0x7fff)-0x3fff; - if(j0<112) { - if(j0<0) { - feholdexcept (&env); - w = TWO112[sx]+x; - t = w-TWO112[sx]; - math_force_eval (t); - fesetenv (&env); - GET_LDOUBLE_MSW64(i0,t); - SET_LDOUBLE_MSW64(t,(i0&0x7fffffffffffffffLL)|(sx<<63)); - return t; - } - } else { - if(j0==0x4000) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } - feholdexcept (&env); - w = TWO112[sx]+x; - t = w-TWO112[sx]; - math_force_eval (t); - fesetenv (&env); - return t; -} -weak_alias (__nearbyintl, nearbyintl) diff --git a/sysdeps/ieee754/ldbl-128/s_nextafterl.c b/sysdeps/ieee754/ldbl-128/s_nextafterl.c deleted file mode 100644 index d29f58a7e0..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_nextafterl.c +++ /dev/null @@ -1,86 +0,0 @@ -/* s_nextafterl.c -- long double version of s_nextafter.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* IEEE functions - * nextafterl(x,y) - * return the next machine floating-point number of x in the - * direction toward y. - * Special cases: - */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> - -_Float128 __nextafterl(_Float128 x, _Float128 y) -{ - int64_t hx,hy,ix,iy; - u_int64_t lx,ly; - - GET_LDOUBLE_WORDS64(hx,lx,x); - GET_LDOUBLE_WORDS64(hy,ly,y); - ix = hx&0x7fffffffffffffffLL; /* |x| */ - iy = hy&0x7fffffffffffffffLL; /* |y| */ - - if(((ix>=0x7fff000000000000LL)&&((ix-0x7fff000000000000LL)|lx)!=0) || /* x is nan */ - ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) /* y is nan */ - return x+y; - if(x==y) return y; /* x=y, return y */ - if((ix|lx)==0) { /* x == 0 */ - _Float128 u; - SET_LDOUBLE_WORDS64(x,hy&0x8000000000000000ULL,1);/* return +-minsubnormal */ - u = math_opt_barrier (x); - u = u * u; - math_force_eval (u); /* raise underflow flag */ - return x; - } - if(hx>=0) { /* x > 0 */ - if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */ - if(lx==0) hx--; - lx--; - } else { /* x < y, x += ulp */ - lx++; - if(lx==0) hx++; - } - } else { /* x < 0 */ - if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */ - if(lx==0) hx--; - lx--; - } else { /* x > y, x += ulp */ - lx++; - if(lx==0) hx++; - } - } - hy = hx&0x7fff000000000000LL; - if(hy==0x7fff000000000000LL) { - _Float128 u = x + x; /* overflow */ - math_force_eval (u); - __set_errno (ERANGE); - } - if(hy==0) { - _Float128 u = x*x; /* underflow */ - math_force_eval (u); /* raise underflow flag */ - __set_errno (ERANGE); - } - SET_LDOUBLE_WORDS64(x,hx,lx); - return x; -} -weak_alias (__nextafterl, nextafterl) -strong_alias (__nextafterl, __nexttowardl) -weak_alias (__nextafterl, nexttowardl) diff --git a/sysdeps/ieee754/ldbl-128/s_nexttoward.c b/sysdeps/ieee754/ldbl-128/s_nexttoward.c deleted file mode 100644 index 4343fe83f8..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_nexttoward.c +++ /dev/null @@ -1,89 +0,0 @@ -/* s_nexttoward.c - * Conversion from s_nextafter.c by Ulrich Drepper, Cygnus Support, - * drepper@cygnus.com and Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* IEEE functions - * nexttoward(x,y) - * return the next machine floating-point number of x in the - * direction toward y. - * Special cases: - */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -double __nexttoward(double x, long double y) -{ - int32_t hx,ix; - int64_t hy,iy; - u_int32_t lx; - u_int64_t ly; - - EXTRACT_WORDS(hx,lx,x); - GET_LDOUBLE_WORDS64(hy,ly,y); - ix = hx&0x7fffffff; /* |x| */ - iy = hy&0x7fffffffffffffffLL; /* |y| */ - - if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ - ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) - /* y is nan */ - return x+y; - if((long double) x==y) return y; /* x=y, return y */ - if((ix|lx)==0) { /* x == 0 */ - double u; - INSERT_WORDS(x,(u_int32_t)((hy>>32)&0x80000000),1);/* return +-minsub */ - u = math_opt_barrier (x); - u = u * u; - math_force_eval (u); /* raise underflow flag */ - return x; - } - if(hx>=0) { /* x > 0 */ - if (x > y) { /* x -= ulp */ - if(lx==0) hx -= 1; - lx -= 1; - } else { /* x < y, x += ulp */ - lx += 1; - if(lx==0) hx += 1; - } - } else { /* x < 0 */ - if (x < y) { /* x -= ulp */ - if(lx==0) hx -= 1; - lx -= 1; - } else { /* x > y, x += ulp */ - lx += 1; - if(lx==0) hx += 1; - } - } - hy = hx&0x7ff00000; - if(hy>=0x7ff00000) { - double u = x+x; /* overflow */ - math_force_eval (u); - __set_errno (ERANGE); - } - if(hy<0x00100000) { - double u = x*x; /* underflow */ - math_force_eval (u); /* raise underflow flag */ - __set_errno (ERANGE); - } - INSERT_WORDS(x,hx,lx); - return x; -} -weak_alias (__nexttoward, nexttoward) diff --git a/sysdeps/ieee754/ldbl-128/s_nexttowardf.c b/sysdeps/ieee754/ldbl-128/s_nexttowardf.c deleted file mode 100644 index 8703359d4f..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_nexttowardf.c +++ /dev/null @@ -1,76 +0,0 @@ -/* s_nexttowardf.c -- float version of s_nextafter.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com - * and Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -#include <errno.h> -#include <math.h> -#include <math_private.h> - -float __nexttowardf(float x, long double y) -{ - int32_t hx,ix; - int64_t hy,iy; - u_int64_t ly; - - GET_FLOAT_WORD(hx,x); - GET_LDOUBLE_WORDS64(hy,ly,y); - ix = hx&0x7fffffff; /* |x| */ - iy = hy&0x7fffffffffffffffLL; /* |y| */ - - if((ix>0x7f800000) || /* x is nan */ - ((iy>=0x7fff000000000000LL)&&((iy-0x7fff000000000000LL)|ly)!=0)) - /* y is nan */ - return x+y; - if((long double) x==y) return y; /* x=y, return y */ - if(ix==0) { /* x == 0 */ - float u; - SET_FLOAT_WORD(x,(u_int32_t)((hy>>32)&0x80000000)|1);/* return +-minsub*/ - u = math_opt_barrier (x); - u = u * u; - math_force_eval (u); /* raise underflow flag */ - return x; - } - if(hx>=0) { /* x > 0 */ - if(x > y) { /* x -= ulp */ - hx -= 1; - } else { /* x < y, x += ulp */ - hx += 1; - } - } else { /* x < 0 */ - if(x < y) { /* x < y, x -= ulp */ - hx -= 1; - } else { /* x > y, x += ulp */ - hx += 1; - } - } - hy = hx&0x7f800000; - if(hy>=0x7f800000) { - float u = x+x; /* overflow */ - math_force_eval (u); - __set_errno (ERANGE); - } - if(hy<0x00800000) { - float u = x*x; /* underflow */ - math_force_eval (u); /* raise underflow flag */ - __set_errno (ERANGE); - } - SET_FLOAT_WORD(x,hx); - return x; -} -weak_alias (__nexttowardf, nexttowardf) diff --git a/sysdeps/ieee754/ldbl-128/s_nextupl.c b/sysdeps/ieee754/ldbl-128/s_nextupl.c deleted file mode 100644 index 85f43b4eb0..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_nextupl.c +++ /dev/null @@ -1,56 +0,0 @@ -/* Return the least floating-point number greater than X. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> - -/* Return the least floating-point number greater than X. */ -_Float128 -__nextupl (_Float128 x) -{ - int64_t hx, ix; - u_int64_t lx; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - ix = hx & 0x7fffffffffffffffLL; - - /* x is nan. */ - if (((ix >= 0x7fff000000000000LL) - && ((ix - 0x7fff000000000000LL) | lx) != 0)) - return x + x; - if ((ix | lx) == 0) - return LDBL_TRUE_MIN; - if (hx >= 0) - { /* x > 0. */ - if (isinf (x)) - return x; - lx++; - if (lx == 0) - hx++; - } - else - { /* x < 0. */ - if (lx == 0) - hx--; - lx--; - } - SET_LDOUBLE_WORDS64 (x, hx, lx); - return x; -} - -weak_alias (__nextupl, nextupl) diff --git a/sysdeps/ieee754/ldbl-128/s_remquol.c b/sysdeps/ieee754/ldbl-128/s_remquol.c deleted file mode 100644 index d360f82dba..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_remquol.c +++ /dev/null @@ -1,112 +0,0 @@ -/* Compute remainder and a congruent to the quotient. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> - -#include <math_private.h> - - -static const _Float128 zero = 0.0; - - -_Float128 -__remquol (_Float128 x, _Float128 y, int *quo) -{ - int64_t hx,hy; - u_int64_t sx,lx,ly,qs; - int cquo; - - GET_LDOUBLE_WORDS64 (hx, lx, x); - GET_LDOUBLE_WORDS64 (hy, ly, y); - sx = hx & 0x8000000000000000ULL; - qs = sx ^ (hy & 0x8000000000000000ULL); - hy &= 0x7fffffffffffffffLL; - hx &= 0x7fffffffffffffffLL; - - /* Purge off exception values. */ - if ((hy | ly) == 0) - return (x * y) / (x * y); /* y = 0 */ - if ((hx >= 0x7fff000000000000LL) /* x not finite */ - || ((hy >= 0x7fff000000000000LL) /* y is NaN */ - && (((hy - 0x7fff000000000000LL) | ly) != 0))) - return (x * y) / (x * y); - - if (hy <= 0x7ffbffffffffffffLL) - x = __ieee754_fmodl (x, 8 * y); /* now x < 8y */ - - if (((hx - hy) | (lx - ly)) == 0) - { - *quo = qs ? -1 : 1; - return zero * x; - } - - x = fabsl (x); - y = fabsl (y); - cquo = 0; - - if (hy <= 0x7ffcffffffffffffLL && x >= 4 * y) - { - x -= 4 * y; - cquo += 4; - } - if (hy <= 0x7ffdffffffffffffLL && x >= 2 * y) - { - x -= 2 * y; - cquo += 2; - } - - if (hy < 0x0002000000000000LL) - { - if (x + x > y) - { - x -= y; - ++cquo; - if (x + x >= y) - { - x -= y; - ++cquo; - } - } - } - else - { - _Float128 y_half = L(0.5) * y; - if (x > y_half) - { - x -= y; - ++cquo; - if (x >= y_half) - { - x -= y; - ++cquo; - } - } - } - - *quo = qs ? -cquo : cquo; - - /* Ensure correct sign of zero result in round-downward mode. */ - if (x == 0) - x = 0; - if (sx) - x = -x; - return x; -} -weak_alias (__remquol, remquol) diff --git a/sysdeps/ieee754/ldbl-128/s_rintl.c b/sysdeps/ieee754/ldbl-128/s_rintl.c deleted file mode 100644 index 410951626b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_rintl.c +++ /dev/null @@ -1,62 +0,0 @@ -/* s_rintl.c -- long double version of s_rint.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * rintl(x) - * Return x rounded to integral value according to the prevailing - * rounding mode. - * Method: - * Using floating addition. - * Exception: - * Inexact flag raised if x not equal to rintl(x). - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -TWO112[2]={ - 5.19229685853482762853049632922009600E+33L, /* 0x406F000000000000, 0 */ - -5.19229685853482762853049632922009600E+33L /* 0xC06F000000000000, 0 */ -}; - -_Float128 __rintl(_Float128 x) -{ - int64_t i0,j0,sx; - u_int64_t i1 __attribute__ ((unused)); - _Float128 w,t; - GET_LDOUBLE_WORDS64(i0,i1,x); - sx = (((u_int64_t)i0)>>63); - j0 = ((i0>>48)&0x7fff)-0x3fff; - if(j0<112) { - if(j0<0) { - w = TWO112[sx]+x; - t = w-TWO112[sx]; - GET_LDOUBLE_MSW64(i0,t); - SET_LDOUBLE_MSW64(t,(i0&0x7fffffffffffffffLL)|(sx<<63)); - return t; - } - } else { - if(j0==0x4000) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } - w = TWO112[sx]+x; - return w-TWO112[sx]; -} -weak_alias (__rintl, rintl) diff --git a/sysdeps/ieee754/ldbl-128/s_roundevenl.c b/sysdeps/ieee754/ldbl-128/s_roundevenl.c deleted file mode 100644 index 93b895546a..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_roundevenl.c +++ /dev/null @@ -1,102 +0,0 @@ -/* Round to nearest integer value, rounding halfway cases to even. - ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <stdint.h> - -#define BIAS 0x3fff -#define MANT_DIG 113 -#define MAX_EXP (2 * BIAS + 1) - -_Float128 -roundevenl (_Float128 x) -{ - uint64_t hx, lx, uhx; - GET_LDOUBLE_WORDS64 (hx, lx, x); - uhx = hx & 0x7fffffffffffffffULL; - int exponent = uhx >> (MANT_DIG - 1 - 64); - if (exponent >= BIAS + MANT_DIG - 1) - { - /* Integer, infinity or NaN. */ - if (exponent == MAX_EXP) - /* Infinity or NaN; quiet signaling NaNs. */ - return x + x; - else - return x; - } - else if (exponent >= BIAS + MANT_DIG - 64) - { - /* Not necessarily an integer; integer bit is in low word. - Locate the bits with exponents 0 and -1. */ - int int_pos = (BIAS + MANT_DIG - 1) - exponent; - int half_pos = int_pos - 1; - uint64_t half_bit = 1ULL << half_pos; - uint64_t int_bit = 1ULL << int_pos; - if ((lx & (int_bit | (half_bit - 1))) != 0) - { - /* Carry into the exponent works correctly. No need to test - whether HALF_BIT is set. */ - lx += half_bit; - hx += lx < half_bit; - } - lx &= ~(int_bit - 1); - } - else if (exponent == BIAS + MANT_DIG - 65) - { - /* Not necessarily an integer; integer bit is bottom of high - word, half bit is top of low word. */ - if (((hx & 1) | (lx & 0x7fffffffffffffffULL)) != 0) - { - lx += 0x8000000000000000ULL; - hx += lx < 0x8000000000000000ULL; - } - lx = 0; - } - else if (exponent >= BIAS) - { - /* At least 1; not necessarily an integer, integer bit and half - bit are in the high word. Locate the bits with exponents 0 - and -1 (when the unbiased exponent is 0, the bit with - exponent 0 is implicit, but as the bias is odd it is OK to - take it from the low bit of the exponent). */ - int int_pos = (BIAS + MANT_DIG - 65) - exponent; - int half_pos = int_pos - 1; - uint64_t half_bit = 1ULL << half_pos; - uint64_t int_bit = 1ULL << int_pos; - if (((hx & (int_bit | (half_bit - 1))) | lx) != 0) - hx += half_bit; - hx &= ~(int_bit - 1); - lx = 0; - } - else if (exponent == BIAS - 1 && (uhx > 0x3ffe000000000000ULL || lx != 0)) - { - /* Interval (0.5, 1). */ - hx = (hx & 0x8000000000000000ULL) | 0x3fff000000000000ULL; - lx = 0; - } - else - { - /* Rounds to 0. */ - hx &= 0x8000000000000000ULL; - lx = 0; - } - SET_LDOUBLE_WORDS64 (x, hx, lx); - return x; -} diff --git a/sysdeps/ieee754/ldbl-128/s_roundl.c b/sysdeps/ieee754/ldbl-128/s_roundl.c deleted file mode 100644 index 078d9b9c45..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_roundl.c +++ /dev/null @@ -1,80 +0,0 @@ -/* Round long double to integer away from zero. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> - -#include <math_private.h> - - -_Float128 -__roundl (_Float128 x) -{ - int32_t j0; - u_int64_t i1, i0; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - if (j0 < 48) - { - if (j0 < 0) - { - i0 &= 0x8000000000000000ULL; - if (j0 == -1) - i0 |= 0x3fff000000000000LL; - i1 = 0; - } - else - { - u_int64_t i = 0x0000ffffffffffffLL >> j0; - if (((i0 & i) | i1) == 0) - /* X is integral. */ - return x; - - i0 += 0x0000800000000000LL >> j0; - i0 &= ~i; - i1 = 0; - } - } - else if (j0 > 111) - { - if (j0 == 0x4000) - /* Inf or NaN. */ - return x + x; - else - return x; - } - else - { - u_int64_t i = -1ULL >> (j0 - 48); - if ((i1 & i) == 0) - /* X is integral. */ - return x; - - u_int64_t j = i1 + (1LL << (111 - j0)); - if (j < i1) - i0 += 1; - i1 = j; - i1 &= ~i; - } - - SET_LDOUBLE_WORDS64 (x, i0, i1); - return x; -} -weak_alias (__roundl, roundl) diff --git a/sysdeps/ieee754/ldbl-128/s_scalblnl.c b/sysdeps/ieee754/ldbl-128/s_scalblnl.c deleted file mode 100644 index 5864eaf93c..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_scalblnl.c +++ /dev/null @@ -1,62 +0,0 @@ -/* s_scalblnl.c -- long double version of s_scalbn.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* @(#)s_scalbn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * scalblnl (long double x, long int n) - * scalblnl(x,n) returns x* 2**n computed by exponent - * manipulation rather than by actually performing an - * exponentiation or a multiplication. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -two114 = L(2.0769187434139310514121985316880384E+34), /* 0x4071000000000000, 0 */ -twom114 = L(4.8148248609680896326399448564623183E-35), /* 0x3F8D000000000000, 0 */ -huge = L(1.0E+4900), -tiny = L(1.0E-4900); - -_Float128 __scalblnl (_Float128 x, long int n) -{ - int64_t k,hx,lx; - GET_LDOUBLE_WORDS64(hx,lx,x); - k = (hx>>48)&0x7fff; /* extract exponent */ - if (k==0) { /* 0 or subnormal x */ - if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */ - x *= two114; - GET_LDOUBLE_MSW64(hx,x); - k = ((hx>>48)&0x7fff) - 114; - } - if (k==0x7fff) return x+x; /* NaN or Inf */ - if (n< -50000) return tiny*__copysignl(tiny,x); /*underflow*/ - if (n> 50000 || k+n > 0x7ffe) - return huge*__copysignl(huge,x); /* overflow */ - /* Now k and n are bounded we know that k = k+n does not - overflow. */ - k = k+n; - if (k > 0) /* normal result */ - {SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;} - if (k <= -114) - return tiny*__copysignl(tiny,x); /*underflow*/ - k += 114; /* subnormal result */ - SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); - return x*twom114; -} diff --git a/sysdeps/ieee754/ldbl-128/s_scalbnl.c b/sysdeps/ieee754/ldbl-128/s_scalbnl.c deleted file mode 100644 index e6fe796079..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_scalbnl.c +++ /dev/null @@ -1,62 +0,0 @@ -/* s_scalbnl.c -- long double version of s_scalbn.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* @(#)s_scalbn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * scalbnl (long double x, int n) - * scalbnl(x,n) returns x* 2**n computed by exponent - * manipulation rather than by actually performing an - * exponentiation or a multiplication. - */ - -#include <math.h> -#include <math_private.h> - -static const _Float128 -two114 = L(2.0769187434139310514121985316880384E+34), /* 0x4071000000000000, 0 */ -twom114 = L(4.8148248609680896326399448564623183E-35), /* 0x3F8D000000000000, 0 */ -huge = L(1.0E+4900), -tiny = L(1.0E-4900); - -_Float128 __scalbnl (_Float128 x, int n) -{ - int64_t k,hx,lx; - GET_LDOUBLE_WORDS64(hx,lx,x); - k = (hx>>48)&0x7fff; /* extract exponent */ - if (k==0) { /* 0 or subnormal x */ - if ((lx|(hx&0x7fffffffffffffffULL))==0) return x; /* +-0 */ - x *= two114; - GET_LDOUBLE_MSW64(hx,x); - k = ((hx>>48)&0x7fff) - 114; - } - if (k==0x7fff) return x+x; /* NaN or Inf */ - if (n< -50000) return tiny*__copysignl(tiny,x); /*underflow*/ - if (n> 50000 || k+n > 0x7ffe) - return huge*__copysignl(huge,x); /* overflow */ - /* Now k and n are bounded we know that k = k+n does not - overflow. */ - k = k+n; - if (k > 0) /* normal result */ - {SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); return x;} - if (k <= -114) - return tiny*__copysignl(tiny,x); /*underflow*/ - k += 114; /* subnormal result */ - SET_LDOUBLE_MSW64(x,(hx&0x8000ffffffffffffULL)|(k<<48)); - return x*twom114; -} diff --git a/sysdeps/ieee754/ldbl-128/s_setpayloadl.c b/sysdeps/ieee754/ldbl-128/s_setpayloadl.c deleted file mode 100644 index 1aba33e6e2..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_setpayloadl.c +++ /dev/null @@ -1,3 +0,0 @@ -#define SIG 0 -#define FUNC setpayloadl -#include <s_setpayloadl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c b/sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c deleted file mode 100644 index 5646634db2..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c +++ /dev/null @@ -1,69 +0,0 @@ -/* Set NaN payload. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <nan-high-order-bit.h> -#include <stdint.h> - -#define SET_HIGH_BIT (HIGH_ORDER_BIT_IS_SET_FOR_SNAN ? SIG : !SIG) -#define BIAS 0x3fff -#define PAYLOAD_DIG 111 -#define EXPLICIT_MANT_DIG 112 - -int -FUNC (_Float128 *x, _Float128 payload) -{ - uint64_t hx, lx; - GET_LDOUBLE_WORDS64 (hx, lx, payload); - int exponent = hx >> (EXPLICIT_MANT_DIG - 64); - /* Test if argument is (a) negative or too large; (b) too small, - except for 0 when allowed; (c) not an integer. */ - if (exponent >= BIAS + PAYLOAD_DIG - || (exponent < BIAS && !(SET_HIGH_BIT && hx == 0 && lx == 0))) - { - SET_LDOUBLE_WORDS64 (*x, 0, 0); - return 1; - } - int shift = BIAS + EXPLICIT_MANT_DIG - exponent; - if (shift < 64 - ? (lx & ((1ULL << shift) - 1)) != 0 - : (lx != 0 || (hx & ((1ULL << (shift - 64)) - 1)) != 0)) - { - SET_LDOUBLE_WORDS64 (*x, 0, 0); - return 1; - } - if (exponent != 0) - { - hx &= (1ULL << (EXPLICIT_MANT_DIG - 64)) - 1; - hx |= 1ULL << (EXPLICIT_MANT_DIG - 64); - if (shift >= 64) - { - lx = hx >> (shift - 64); - hx = 0; - } - else if (shift != 0) - { - lx = (lx >> shift) | (hx << (64 - shift)); - hx >>= shift; - } - } - hx |= 0x7fff000000000000ULL | (SET_HIGH_BIT ? 0x800000000000ULL : 0); - SET_LDOUBLE_WORDS64 (*x, hx, lx); - return 0; -} diff --git a/sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c b/sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c deleted file mode 100644 index d97e2c8206..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c +++ /dev/null @@ -1,3 +0,0 @@ -#define SIG 1 -#define FUNC setpayloadsigl -#include <s_setpayloadl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/s_signbitl.c b/sysdeps/ieee754/ldbl-128/s_signbitl.c deleted file mode 100644 index 062b47f55b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_signbitl.c +++ /dev/null @@ -1,27 +0,0 @@ -/* Return nonzero value if number is negative. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> - -int -__signbitl (_Float128 x) -{ - return __builtin_signbitl (x); -} diff --git a/sysdeps/ieee754/ldbl-128/s_sincosl.c b/sysdeps/ieee754/ldbl-128/s_sincosl.c deleted file mode 100644 index 34ca6ee03b..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_sincosl.c +++ /dev/null @@ -1,73 +0,0 @@ -/* Compute sine and cosine of argument. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <errno.h> -#include <math.h> - -#include <math_private.h> - -void -__sincosl (_Float128 x, _Float128 *sinx, _Float128 *cosx) -{ - int64_t ix; - - /* High word of x. */ - GET_LDOUBLE_MSW64 (ix, x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffffffffffffLL; - if (ix <= 0x3ffe921fb54442d1LL) - __kernel_sincosl (x, 0, sinx, cosx, 0); - else if (ix >= 0x7fff000000000000LL) - { - /* sin(Inf or NaN) is NaN */ - *sinx = *cosx = x - x; - if (isinf (x)) - __set_errno (EDOM); - } - else - { - /* Argument reduction needed. */ - _Float128 y[2]; - int n; - - n = __ieee754_rem_pio2l (x, y); - switch (n & 3) - { - case 0: - __kernel_sincosl (y[0], y[1], sinx, cosx, 1); - break; - case 1: - __kernel_sincosl (y[0], y[1], cosx, sinx, 1); - *cosx = -*cosx; - break; - case 2: - __kernel_sincosl (y[0], y[1], sinx, cosx, 1); - *sinx = -*sinx; - *cosx = -*cosx; - break; - default: - __kernel_sincosl (y[0], y[1], cosx, sinx, 1); - *sinx = -*sinx; - break; - } - } -} -weak_alias (__sincosl, sincosl) diff --git a/sysdeps/ieee754/ldbl-128/s_sinl.c b/sysdeps/ieee754/ldbl-128/s_sinl.c deleted file mode 100644 index 887e45dbfa..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_sinl.c +++ /dev/null @@ -1,86 +0,0 @@ -/* s_sinl.c -- long double version of s_sin.c. - * Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* sinl(x) - * Return sine function of x. - * - * kernel function: - * __kernel_sinl ... sine function on [-pi/4,pi/4] - * __kernel_cosl ... cose function on [-pi/4,pi/4] - * __ieee754_rem_pio2l ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> - -_Float128 __sinl(_Float128 x) -{ - _Float128 y[2],z=0; - int64_t n, ix; - - /* High word of x. */ - GET_LDOUBLE_MSW64(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffffffffffffLL; - if(ix <= 0x3ffe921fb54442d1LL) - return __kernel_sinl(x,z,0); - - /* sin(Inf or NaN) is NaN */ - else if (ix>=0x7fff000000000000LL) { - if (ix == 0x7fff000000000000LL) { - GET_LDOUBLE_LSW64(n,x); - if (n == 0) - __set_errno (EDOM); - } - return x-x; - } - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2l(x,y); - switch(n&3) { - case 0: return __kernel_sinl(y[0],y[1],1); - case 1: return __kernel_cosl(y[0],y[1]); - case 2: return -__kernel_sinl(y[0],y[1],1); - default: - return -__kernel_cosl(y[0],y[1]); - } - } -} -weak_alias (__sinl, sinl) diff --git a/sysdeps/ieee754/ldbl-128/s_tanhl.c b/sysdeps/ieee754/ldbl-128/s_tanhl.c deleted file mode 100644 index 0db8f5f775..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_tanhl.c +++ /dev/null @@ -1,100 +0,0 @@ -/* s_tanhl.c -- long double version of s_tanh.c. - * Conversion to long double by Ulrich Drepper, - * Cygnus Support, drepper@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* Changes for 128-bit long double contributed by - Stephen L. Moshier <moshier@na-net.ornl.gov> */ - -/* tanhl(x) - * Return the Hyperbolic Tangent of x - * - * Method : - * x -x - * e - e - * 0. tanhl(x) is defined to be ----------- - * x -x - * e + e - * 1. reduce x to non-negative by tanhl(-x) = -tanhl(x). - * 2. 0 <= x <= 2**-57 : tanhl(x) := x*(one+x) - * -t - * 2**-57 < x <= 1 : tanhl(x) := -----; t = expm1l(-2x) - * t + 2 - * 2 - * 1 <= x <= 40.0 : tanhl(x) := 1- ----- ; t=expm1l(2x) - * t + 2 - * 40.0 < x <= INF : tanhl(x) := 1. - * - * Special cases: - * tanhl(NaN) is NaN; - * only tanhl(0)=0 is exact for finite argument. - */ - -#include <float.h> -#include <math.h> -#include <math_private.h> - -static const _Float128 one = 1.0, two = 2.0, tiny = L(1.0e-4900); - -_Float128 -__tanhl (_Float128 x) -{ - _Float128 t, z; - u_int32_t jx, ix; - ieee854_long_double_shape_type u; - - /* Words of |x|. */ - u.value = x; - jx = u.parts32.w0; - ix = jx & 0x7fffffff; - /* x is INF or NaN */ - if (ix >= 0x7fff0000) - { - /* for NaN it's not important which branch: tanhl(NaN) = NaN */ - if (jx & 0x80000000) - return one / x - one; /* tanhl(-inf)= -1; */ - else - return one / x + one; /* tanhl(+inf)=+1 */ - } - - /* |x| < 40 */ - if (ix < 0x40044000) - { - if (u.value == 0) - return x; /* x == +- 0 */ - if (ix < 0x3fc60000) /* |x| < 2^-57 */ - { - math_check_force_underflow (x); - return x * (one + tiny); /* tanh(small) = small */ - } - u.parts32.w0 = ix; /* Absolute value of x. */ - if (ix >= 0x3fff0000) - { /* |x| >= 1 */ - t = __expm1l (two * u.value); - z = one - two / (t + two); - } - else - { - t = __expm1l (-two * u.value); - z = -t / (t + two); - } - /* |x| > 40, return +-1 */ - } - else - { - z = one - tiny; /* raised inexact flag */ - } - return (jx & 0x80000000) ? -z : z; -} -weak_alias (__tanhl, tanhl) diff --git a/sysdeps/ieee754/ldbl-128/s_tanl.c b/sysdeps/ieee754/ldbl-128/s_tanl.c deleted file mode 100644 index cd7b258616..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_tanl.c +++ /dev/null @@ -1,80 +0,0 @@ -/* s_tanl.c -- long double version of s_tan.c. - * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. - */ - -/* @(#)s_tan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* tanl(x) - * Return tangent function of x. - * - * kernel function: - * __kernel_tanl ... tangent function on [-pi/4,pi/4] - * __ieee754_rem_pio2l ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include <errno.h> -#include <math.h> -#include <math_private.h> - -_Float128 __tanl(_Float128 x) -{ - _Float128 y[2],z=0; - int64_t n, ix; - - /* High word of x. */ - GET_LDOUBLE_MSW64(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffffffffffffLL; - if(ix <= 0x3ffe921fb54442d1LL) return __kernel_tanl(x,z,1); - - /* tanl(Inf or NaN) is NaN */ - else if (ix>=0x7fff000000000000LL) { - if (ix == 0x7fff000000000000LL) { - GET_LDOUBLE_LSW64(n,x); - if (n == 0) - __set_errno (EDOM); - } - return x-x; /* NaN */ - } - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2l(x,y); - return __kernel_tanl(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even - -1 -- n odd */ - } -} -weak_alias (__tanl, tanl) diff --git a/sysdeps/ieee754/ldbl-128/s_totalorderl.c b/sysdeps/ieee754/ldbl-128/s_totalorderl.c deleted file mode 100644 index ca7b3102e1..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_totalorderl.c +++ /dev/null @@ -1,54 +0,0 @@ -/* Total order operation. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <nan-high-order-bit.h> -#include <stdint.h> - -int -totalorderl (_Float128 x, _Float128 y) -{ - int64_t hx, hy; - uint64_t lx, ly; - GET_LDOUBLE_WORDS64 (hx, lx, x); - GET_LDOUBLE_WORDS64 (hy, ly, y); -#if HIGH_ORDER_BIT_IS_SET_FOR_SNAN - uint64_t uhx = hx & 0x7fffffffffffffffULL; - uint64_t uhy = hy & 0x7fffffffffffffffULL; - /* For the preferred quiet NaN convention, this operation is a - comparison of the representations of the arguments interpreted as - sign-magnitude integers. If both arguments are NaNs, invert the - quiet/signaling bit so comparing that way works. */ - if ((uhx > 0x7fff000000000000ULL || (uhx == 0x7fff000000000000ULL - && lx != 0)) - && (uhy > 0x7fff000000000000ULL || (uhy == 0x7fff000000000000ULL - && ly != 0))) - { - hx ^= 0x0000800000000000ULL; - hy ^= 0x0000800000000000ULL; - } -#endif - uint64_t hx_sign = hx >> 63; - uint64_t hy_sign = hy >> 63; - hx ^= hx_sign >> 1; - lx ^= hx_sign; - hy ^= hy_sign >> 1; - ly ^= hy_sign; - return hx < hy || (hx == hy && lx <= ly); -} diff --git a/sysdeps/ieee754/ldbl-128/s_totalordermagl.c b/sysdeps/ieee754/ldbl-128/s_totalordermagl.c deleted file mode 100644 index 41b969d811..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_totalordermagl.c +++ /dev/null @@ -1,48 +0,0 @@ -/* Total order operation on absolute values. ldbl-128 version. - Copyright (C) 2016-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <nan-high-order-bit.h> -#include <stdint.h> - -int -totalordermagl (_Float128 x, _Float128 y) -{ - uint64_t hx, hy; - uint64_t lx, ly; - GET_LDOUBLE_WORDS64 (hx, lx, x); - GET_LDOUBLE_WORDS64 (hy, ly, y); - hx &= 0x7fffffffffffffffULL; - hy &= 0x7fffffffffffffffULL; -#if HIGH_ORDER_BIT_IS_SET_FOR_SNAN - /* For the preferred quiet NaN convention, this operation is a - comparison of the representations of the absolute values of the - arguments. If both arguments are NaNs, invert the - quiet/signaling bit so comparing that way works. */ - if ((hx > 0x7fff000000000000ULL || (hx == 0x7fff000000000000ULL - && lx != 0)) - && (hy > 0x7fff000000000000ULL || (hy == 0x7fff000000000000ULL - && ly != 0))) - { - hx ^= 0x0000800000000000ULL; - hy ^= 0x0000800000000000ULL; - } -#endif - return hx < hy || (hx == hy && lx <= ly); -} diff --git a/sysdeps/ieee754/ldbl-128/s_truncl.c b/sysdeps/ieee754/ldbl-128/s_truncl.c deleted file mode 100644 index 6d1a11e7c4..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_truncl.c +++ /dev/null @@ -1,56 +0,0 @@ -/* Truncate argument to nearest integral value not larger than the argument. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and - Jakub Jelinek <jj@ultra.linux.cz>, 1999. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> - -#include <math_private.h> - - -_Float128 -__truncl (_Float128 x) -{ - int32_t j0; - u_int64_t i0, i1, sx; - - GET_LDOUBLE_WORDS64 (i0, i1, x); - sx = i0 & 0x8000000000000000ULL; - j0 = ((i0 >> 48) & 0x7fff) - 0x3fff; - if (j0 < 48) - { - if (j0 < 0) - /* The magnitude of the number is < 1 so the result is +-0. */ - SET_LDOUBLE_WORDS64 (x, sx, 0); - else - SET_LDOUBLE_WORDS64 (x, i0 & ~(0x0000ffffffffffffLL >> j0), 0); - } - else if (j0 > 111) - { - if (j0 == 0x4000) - /* x is inf or NaN. */ - return x + x; - } - else - { - SET_LDOUBLE_WORDS64 (x, i0, i1 & ~(0xffffffffffffffffULL >> (j0 - 48))); - } - - return x; -} -weak_alias (__truncl, truncl) diff --git a/sysdeps/ieee754/ldbl-128/s_ufromfpl.c b/sysdeps/ieee754/ldbl-128/s_ufromfpl.c deleted file mode 100644 index c686daa4a7..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_ufromfpl.c +++ /dev/null @@ -1,4 +0,0 @@ -#define UNSIGNED 1 -#define INEXACT 0 -#define FUNC ufromfpl -#include <s_fromfpl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/s_ufromfpxl.c b/sysdeps/ieee754/ldbl-128/s_ufromfpxl.c deleted file mode 100644 index 906066c83c..0000000000 --- a/sysdeps/ieee754/ldbl-128/s_ufromfpxl.c +++ /dev/null @@ -1,4 +0,0 @@ -#define UNSIGNED 1 -#define INEXACT 1 -#define FUNC ufromfpxl -#include <s_fromfpl_main.c> diff --git a/sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h b/sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h deleted file mode 100644 index 142393d787..0000000000 --- a/sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h +++ /dev/null @@ -1,33 +0,0 @@ -/* Convert string for NaN payload to corresponding NaN. For ldbl-128. - Copyright (C) 1997-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#define FLOAT long double -#define SET_MANTISSA(flt, mant) \ - do \ - { \ - union ieee854_long_double u; \ - u.d = (flt); \ - u.ieee_nan.mantissa0 = 0; \ - u.ieee_nan.mantissa1 = 0; \ - u.ieee_nan.mantissa2 = (mant) >> 32; \ - u.ieee_nan.mantissa3 = (mant); \ - if ((u.ieee.mantissa0 | u.ieee.mantissa1 \ - | u.ieee.mantissa2 | u.ieee.mantissa3) != 0) \ - (flt) = u.d; \ - } \ - while (0) diff --git a/sysdeps/ieee754/ldbl-128/strtold_l.c b/sysdeps/ieee754/ldbl-128/strtold_l.c deleted file mode 100644 index 4a8b14c4bb..0000000000 --- a/sysdeps/ieee754/ldbl-128/strtold_l.c +++ /dev/null @@ -1,37 +0,0 @@ -/* Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> - -/* The actual implementation for all floating point sizes is in strtod.c. - These macros tell it to produce the `long double' version, `strtold'. */ - -#define FLOAT long double -#define FLT LDBL -#ifdef USE_WIDE_CHAR -# define STRTOF wcstold_l -# define __STRTOF __wcstold_l -# define STRTOF_NAN __wcstold_nan -#else -# define STRTOF strtold_l -# define __STRTOF __strtold_l -# define STRTOF_NAN __strtold_nan -#endif -#define MPN2FLOAT __mpn_construct_long_double -#define FLOAT_HUGE_VAL HUGE_VALL - -#include <strtod_l.c> diff --git a/sysdeps/ieee754/ldbl-128/t_expl.h b/sysdeps/ieee754/ldbl-128/t_expl.h deleted file mode 100644 index 2b1b647db9..0000000000 --- a/sysdeps/ieee754/ldbl-128/t_expl.h +++ /dev/null @@ -1,970 +0,0 @@ -/* Accurate table for expl(). - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* __expl_table basically consists of four tables, T_EXPL_ARG{1,2} and - T_EXPL_RES{1,2}. All tables use positive and negative indexes, the 0 points - are marked by T_EXPL_* defines. - For ARG1 and RES1 tables lets B be 89 and S 256.0, for ARG2 and RES2 B is 65 - and S 32768.0. - These table have the property that, for all integers -B <= i <= B - expl(__expl_table[T_EXPL_ARGN+2*i]+__expl_table[T_EXPL_ARGN+2*i+1]+r) == - __expl_table[T_EXPL_RESN+i], __expl_table[T_EXPL_RESN+i] is some exact number - with the low 58 bits of the mantissa 0, - __expl_table[T_EXPL_ARGN+2*i] == i/S+s - where absl(s) <= 2^-54 and absl(r) <= 2^-212. */ - -static const _Float128 __expl_table [] = { - L(-3.47656250000000000584188889839535373E-01), /* bffd640000000000002b1b04213cf000 */ - L(6.90417668990715641167244540876988960E-32), /* 3f97667c3fdb588a6ae1af8748357a17 */ - L(-3.43749999999999981853132895957607418E-01), /* bffd5ffffffffffffac4ff5f4050b000 */ - L(-7.16021898043268093462818380603370350E-33), /* bf94296c8219427edc1431ac2498583e */ - L(-3.39843750000000013418643523138766329E-01), /* bffd5c000000000003de1f027a30e000 */ - L(8.16920774283317801641347327589583265E-32), /* 3f97a82b65774bdca1b4440d749ed8d3 */ - L(-3.35937500000000014998092453039303051E-01), /* bffd5800000000000452a9f4d8857000 */ - L(-6.55865578425428447938248396879359670E-32), /* bf97548b7d240f3d034b395e6eecfac8 */ - L(-3.32031250000000000981984049529998541E-01), /* bffd540000000000004875277cda5000 */ - L(6.91213046334032232108944519541512737E-32), /* 3f9766e5f925338a19045c94443b66e1 */ - L(-3.28124999999999986646017645350399708E-01), /* bffd4ffffffffffffc26a667bf44d000 */ - L(-6.16281060996110316602421505683742661E-32), /* bf973ffdcdcffb6fbffc86b2b8d42f5d */ - L(-3.24218749999999991645717430645867963E-01), /* bffd4bfffffffffffd97901063e48000 */ - L(-7.90797211087760527593856542417304137E-32), /* bf979a9afaaca1ada6a8ed1c80584d60 */ - L(-3.20312499999999998918211610690789652E-01), /* bffd47ffffffffffffb02d9856d71000 */ - L(8.64024799457616856987630373786503376E-32), /* 3f97c0a098623f95579d5d9b2b67342d */ - L(-3.16406249999999998153974811017181883E-01), /* bffd43ffffffffffff77c991f1076000 */ - L(-2.73176610180696076418536105483668404E-32), /* bf961baeccb32f9b1fcbb8e60468e95a */ - L(-3.12500000000000011420976192575972779E-01), /* bffd400000000000034ab8240483d000 */ - L(7.16573502812389453744433792609989420E-32), /* 3f977410f4c2cfc4335f28446c0fb363 */ - L(-3.08593750000000001735496343854851414E-01), /* bffd3c000000000000800e995c176000 */ - L(-1.56292999645122272621237565671593071E-32), /* bf95449b9cbdaff6ac1246adb2c826ac */ - L(-3.04687499999999982592401295899221626E-01), /* bffd37fffffffffffafb8bc1e061a000 */ - L(6.48993208584888904958594509625158417E-32), /* 3f9750f9fe8366d82d77afa0031a92e1 */ - L(-3.00781249999999999230616898937763959E-01), /* bffd33ffffffffffffc73ac39da54000 */ - L(6.57082437496961397305801409357792029E-32), /* 3f97552d3cb598ea80135cf3feb27ec4 */ - L(-2.96874999999999998788769281703245722E-01), /* bffd2fffffffffffffa6a07fa5021000 */ - L(-3.26588297198283968096426564544269170E-32), /* bf9653260fc1802f46b629aee171809b */ - L(-2.92968750000000015318089182805941695E-01), /* bffd2c0000000000046a468614bd6000 */ - L(-1.73291974845198589684358727559290718E-32), /* bf9567e9d158f52e483c8d8dcb5961dd */ - L(-2.89062500000000007736778942676309681E-01), /* bffd280000000000023adf9f4c3d3000 */ - L(-6.83629745986675744404029225571026236E-32), /* bf9762f5face6281c1daf1c6aedbdb45 */ - L(-2.85156250000000001367091555763661937E-01), /* bffd2400000000000064dfa11e3fb000 */ - L(-5.44898442619766878281110054067026237E-32), /* bf971aed6d2db9f542986a785edae072 */ - L(-2.81249999999999986958718100227029406E-01), /* bffd1ffffffffffffc3db9265ca9d000 */ - L(1.13007318374506125723591889451107046E-32), /* 3f94d569fe387f456a97902907ac3856 */ - L(-2.77343750000000000356078829380495179E-01), /* bffd1c0000000000001a462390083000 */ - L(-4.98979365468978332358409063436543102E-32), /* bf970315bbf3e0d14b5c94c900702d4c */ - L(-2.73437499999999990276993957508540484E-01), /* bffd17fffffffffffd32919bcdc94000 */ - L(-8.79390484115892344533724650295100871E-32), /* bf97c89b0b89cc19c3ab2b60da9bbbc3 */ - L(-2.69531250000000002434203866460082225E-01), /* bffd14000000000000b39ccf9e130000 */ - L(9.44060754687026590886751809927191596E-32), /* 3f97ea2f32cfecca5c64a26137a9210f */ - L(-2.65624999999999997296320716986257179E-01), /* bffd0fffffffffffff3880f13a2bc000 */ - L(2.07142664067265697791007875348396921E-32), /* 3f95ae37ee685b9122fbe377bd205ee4 */ - L(-2.61718750000000010237478733739017956E-01), /* bffd0c000000000002f3648179d40000 */ - L(-6.10552936159265665298996309192680256E-32), /* bf973d0467d31e407515a3cca0f3b4e2 */ - L(-2.57812500000000011948220522778370303E-01), /* bffd08000000000003719f81275bd000 */ - L(6.72477169058908902499239631466443836E-32), /* 3f975d2b8c475d3160cf72d227d8e6f9 */ - L(-2.53906249999999991822993360536596860E-01), /* bffd03fffffffffffda4a4b62f818000 */ - L(-2.44868296623215865054704392917190994E-32), /* bf95fc92516c6d057d29fc2528855976 */ - L(-2.49999999999999986862019457428548084E-01), /* bffcfffffffffffff86d2d20d5ff4000 */ - L(-3.85302898949105073614122724961613078E-32), /* bf96901f147cb7d643af71b6129ce929 */ - L(-2.46093750000000000237554160737318435E-01), /* bffcf8000000000000230e8ade26b000 */ - L(-1.52823675242678363494345369284988589E-32), /* bf953d6700c5f3fc303f79d0ec8c680a */ - L(-2.42187500000000003023380963205457065E-01), /* bffcf0000000000001be2c1a78bb0000 */ - L(-7.78402037952209709489481182714311699E-34), /* bf9102ab1f3998e887f0ee4cf940faa5 */ - L(-2.38281249999999995309623303145485725E-01), /* bffce7fffffffffffd4bd2940f43f000 */ - L(-3.54307216794236899443913216397197696E-32), /* bf966fef03ab69c3f289436205b21d02 */ - L(-2.34374999999999998425804947623207526E-01), /* bffcdfffffffffffff17b097a6092000 */ - L(-2.86038428948386602859761879407549696E-32), /* bf96290a0eba0131efe3a05fe188f2e3 */ - L(-2.30468749999999993822207406785200832E-01), /* bffcd7fffffffffffc70519834eae000 */ - L(-2.54339521031747516806893838749365762E-32), /* bf96081f0ad7f9107ae6cddb32c178ab */ - L(-2.26562499999999997823524030344489884E-01), /* bffccffffffffffffebecf10093df000 */ - L(4.31904611473158635644635628922959401E-32), /* 3f96c083f0b1faa7c4c686193e38d67c */ - L(-2.22656250000000004835132405125162742E-01), /* bffcc8000000000002c98a233f19f000 */ - L(2.54709791629335691650310168420597566E-33), /* 3f92a735903f5eed07a716ab931e20d9 */ - L(-2.18749999999999988969454021829236626E-01), /* bffcbffffffffffff9a42dc14ce36000 */ - L(-3.77236096429336082213752014054909454E-32), /* bf9687be8e5b2fca54d3e81157eac660 */ - L(-2.14843750000000010613256919115758495E-01), /* bffcb80000000000061e3d828ecac000 */ - L(-4.55194148712216691177097854305964738E-32), /* bf96d8b35c776aa3e1a4768271380503 */ - L(-2.10937499999999993204656148110447201E-01), /* bffcaffffffffffffc152f2aea118000 */ - L(-2.95044199165561453749332254271716417E-32), /* bf96326433b00b2439094d9bef22ddd1 */ - L(-2.07031250000000012233944895423355677E-01), /* bffca80000000000070d695ee0e94000 */ - L(1.93146788688385419095981415411012357E-32), /* 3f959126729135a5e390d4bb802a0bde */ - L(-2.03125000000000008030983633336321863E-01), /* bffca0000000000004a129fbc51af000 */ - L(2.37361904671826193563212931215900137E-32), /* 3f95ecfb3c4ba1b97ea3ad45cbb1e68a */ - L(-1.99218750000000001763815712796132779E-01), /* bffc98000000000001044b12d9950000 */ - L(-3.63171243370923753295192486732883239E-33), /* bf932db5fb3f27c38e0fa7bbcfc64f55 */ - L(-1.95312500000000004883660234506677272E-01), /* bffc90000000000002d0b3779d1f9000 */ - L(-3.19989507343607877747980892249711601E-33), /* bf9309d63de96bb3ef744c865f22f1bd */ - L(-1.91406250000000013720152363227519348E-01), /* bffc88000000000007e8bcb387121000 */ - L(-1.89295754093147174148371614722178860E-32), /* bf958926e2e67dfe812c508290add2e7 */ - L(-1.87500000000000000182342082774432620E-01), /* bffc800000000000001ae8b06a39f000 */ - L(-2.96812835183184815200854214892983927E-32), /* bf96343a62d156bbe71f55d14ca4b6e5 */ - L(-1.83593750000000012410147185883290345E-01), /* bffc78000000000007276a1adda8d000 */ - L(-2.02191931237489669058466239995304587E-32), /* bf95a3efab92d26ec2df90df036a117f */ - L(-1.79687499999999997439177363346082917E-01), /* bffc6ffffffffffffe8616db2927d000 */ - L(-9.92752326937775530007399526834009465E-33), /* bf949c5f88ed17041e1a3f1829d543cd */ - L(-1.75781249999999995824373974504785174E-01), /* bffc67fffffffffffd97c94f13ea3000 */ - L(1.44184772065335613487885714828816178E-32), /* 3f952b75c63476e7fcc2f5841c27bcce */ - L(-1.71874999999999986685050259043077809E-01), /* bffc5ffffffffffff8530f6bc531a000 */ - L(-3.49007014971241147689894940544402482E-32), /* bf966a6dfaa012aea8ffe6d90b02330f */ - L(-1.67968749999999997316058782350439701E-01), /* bffc57fffffffffffe73eb914f2aa000 */ - L(3.34025733574205019081305778794376391E-32), /* 3f965adf4572561fd5456a6c13d8babf */ - L(-1.64062499999999993322730602128318480E-01), /* bffc4ffffffffffffc269be4f68f3000 */ - L(-1.83345916769684984022099095506340635E-32), /* bf957ccb69026cb2f6024c211576d5f4 */ - L(-1.60156249999999992419000744447607979E-01), /* bffc47fffffffffffba13df21784a000 */ - L(2.73442789798110494773517431626534726E-32), /* 3f961bf58ff22c9b30f1e2b39f26d7d5 */ - L(-1.56249999999999987665010524130393080E-01), /* bffc3ffffffffffff8e3ad45e7508000 */ - L(2.02695576464836145806428118889332191E-32), /* 3f95a4fb7435a4a2f71de81eb8ae75d1 */ - L(-1.52343749999999989905291167951491803E-01), /* bffc37fffffffffffa2e48aecfc24000 */ - L(-3.61436631548815190395331054871041524E-32), /* bf967756567ebd108075ae527cc2e7f0 */ - L(-1.48437500000000006686107754967759751E-01), /* bffc30000000000003dab20261b3c000 */ - L(-2.15524270159131591469319477922198390E-32), /* bf95bfa05b82ef3a708c4f0395e9fcf6 */ - L(-1.44531250000000005132889939177166485E-01), /* bffc28000000000002f57b1969e7b000 */ - L(2.74741116529653547935086189244019604E-32), /* 3f961d4eb77c1185d34fe1b04a3f3cf5 */ - L(-1.40625000000000000707469094533647325E-01), /* bffc2000000000000068676d3d5c4000 */ - L(4.40607097220049957013547629906723266E-33), /* 3f936e0ac425daf795b42913cf0ef881 */ - L(-1.36718749999999995713752139187543306E-01), /* bffc17fffffffffffd87762255991000 */ - L(-3.73751317180116492404578048203389108E-32), /* bf9684202491e9cbb7ceb67d9ff7e0c9 */ - L(-1.32812500000000007198453630478482191E-01), /* bffc10000000000004264de3a4379000 */ - L(-3.97050085179660203884930593717220728E-32), /* bf969c52048de14be3c9c1971e50869c */ - L(-1.28906250000000006070486371645733082E-01), /* bffc080000000000037fd87db2cb0000 */ - L(3.59610068058504988294019521946586131E-32), /* 3f967570c10687cb8e9ebd0b280abf5a */ - L(-1.25000000000000003700729208608337966E-01), /* bffc00000000000002222198bbc74000 */ - L(3.23464851393124362331846965931995969E-33), /* 3f930cb95da3bfc847e593716c91d57a */ - L(-1.21093750000000013729038501177102555E-01), /* bffbf000000000000fd418d1f5fda000 */ - L(2.45242487730722066611358741283977619E-32), /* 3f95fd5945ad86a464292e26ac192a84 */ - L(-1.17187499999999999765305306880205578E-01), /* bffbdfffffffffffffbabaf869845000 */ - L(-1.14557520298960389903199646350205537E-32), /* bf94dbda735322179d9bcf392e1dd06d */ - L(-1.13281250000000009579647893740755690E-01), /* bffbd000000000000b0b69bae7ab9000 */ - L(2.37873962873837390105423621772752350E-32), /* 3f95ee0b7e0bd5ac1f6fab1e2a71abc3 */ - L(-1.09375000000000008981153004560108539E-01), /* bffbc000000000000a5ac4bc1d2c3000 */ - L(1.53152444860014076105003555837231015E-32), /* 3f953e15ce931e12ef9a152522e32bdd */ - L(-1.05468749999999992399063850363228723E-01), /* bffbaffffffffffff73c998091408000 */ - L(-8.75920903597804862471749360196688834E-33), /* bf946bd7e310a01bae5687ebdc47fcc5 */ - L(-1.01562500000000007685885179918350550E-01), /* bffba0000000000008dc7910a648c000 */ - L(-4.63820993797174451904075397785059501E-33), /* bf938153d0e54001a472da180fb5e8aa */ - L(-9.76562499999999887262211517861331814E-02), /* bffb8ffffffffffff300915aa6fd6000 */ - L(-2.63767025974952608658936466715705903E-33), /* bf92b64215bb8d520be5404620d38088 */ - L(-9.37499999999999939650246024457439795E-02), /* bffb7ffffffffffff90aca26bd0fc000 */ - L(-1.72047822349322956713582039121348377E-32), /* bf9565545015c5b9b56d02cfefca2c7d */ - L(-8.98437500000000033088896383977486369E-02), /* bffb70000000000003d09ca1e3cbe000 */ - L(3.04831994420989436248526129869697270E-33), /* 3f92fa7d30d2ed90e7ebbd6231fd08b1 */ - L(-8.59374999999999947312400115121319225E-02), /* bffb5ffffffffffff9ecefc03376e000 */ - L(1.50416954438393392150792422537312281E-32), /* 3f9538675ee99bd722fad0023c09c915 */ - L(-8.20312500000000054182280847004695514E-02), /* bffb500000000000063f2dbd40200000 */ - L(2.68399664523430004488075638997207289E-33), /* 3f92bdf49766629882c49a3da88928ed */ - L(-7.81250000000000114767533968079748798E-02), /* bffb4000000000000d3b56f81ba70000 */ - L(1.72318124201659121296305402819694281E-32), /* 3f9565e407aaabfb359e8a567d760de3 */ - L(-7.42187500000000035531829472486812869E-02), /* bffb3000000000000418b6e9b5388000 */ - L(2.09401756478514117051383998628099655E-32), /* 3f95b2e91221fcd74be0a86d8ad658d2 */ - L(-7.03124999999999987474933134860732535E-02), /* bffb1ffffffffffffe8e53453d2ac000 */ - L(2.28515798224350800271565551341211666E-32), /* 3f95da9bd6adf00894f05b5cc5530125 */ - L(-6.64062500000000042267533361089054159E-02), /* bffb10000000000004df8473dbcf2000 */ - L(1.97576478800281368377376002585430031E-32), /* 3f959a59acbddb2f53bd3096b66370e9 */ - L(-6.25000000000000066329769382774201686E-02), /* bffb00000000000007a5b5914e336000 */ - L(-1.46422615813786836245343723048221678E-33), /* bf91e69295f069fc0c4a9db181ea25a3 */ - L(-5.85937500000000002823707957982406053E-02), /* bffae0000000000000a6aeab10592000 */ - L(9.25637741701318872896718218457555829E-33), /* 3f94807eb021f1f40a37d4015b1eb76b */ - L(-5.46875000000000081586888005226044448E-02), /* bffac0000000000012d00a3171e3a000 */ - L(-4.87144542459404765480424673678105050E-33), /* bf9394b42faba6b7036fe7b36269daf3 */ - L(-5.07812499999999927720348253140567013E-02), /* bffa9fffffffffffef555cc8dd914000 */ - L(-3.01901021987395945826043649523451725E-33), /* bf92f59e7e3025691f290f8f67277faf */ - L(-4.68749999999999935349476738962633103E-02), /* bffa7ffffffffffff117b4ea2b876000 */ - L(1.21521638219189777347767475937119750E-32), /* 3f94f8c7f88c5b56674b94d984ac8ecb */ - L(-4.29687500000000056305562847814228219E-02), /* bffa6000000000000cfbb19be30c0000 */ - L(-1.18643699217679276275559592978275214E-32), /* bf94ecd39f0833a876550e83eb012b99 */ - L(-3.90624999999999962692914526031373542E-02), /* bffa3ffffffffffff765c743922f9000 */ - L(-4.91277156857520035712509544689973679E-33), /* bf939823189996193872e58ac0dececb */ - L(-3.51562500000000108152468207687602886E-02), /* bffa20000000000018f031e41177f000 */ - L(1.18599806302656253755207072755609820E-32), /* 3f94eca4f23e787fab73ce8f6b9b8d64 */ - L(-3.12500000000000077376981036742289578E-02), /* bffa00000000000011d787e0b386f000 */ - L(9.97730386477005171963635210799577079E-33), /* 3f949e70e498c46a0173ac0d46c699fc */ - L(-2.73437500000000139436129596418623235E-02), /* bff9c00000000000404db66e70a08000 */ - L(2.25755321633070123579875157841633859E-33), /* 3f927719b1a93074bdf9f3c2cb784785 */ - L(-2.34375000000000088003629211828324876E-02), /* bff98000000000002895a27d45feb000 */ - L(2.84374279216848803102126617873942975E-33), /* 3f92d87f70e749d6da6c260b68dc210b */ - L(-1.95312500000000107408831063404855424E-02), /* bff9400000000000318898ba69f71000 */ - L(2.47348089686935458989103979140011912E-33), /* 3f929afa3de45086fe909fdddb41edce */ - L(-1.56250000000000081443917555362290635E-02), /* bff9000000000000258f335e9cdd6000 */ - L(-2.43379314483517422161458863218426254E-33), /* bf9294621c8a9ccacf2b020ec19cad27 */ - L(-1.17187500000000051490597418161403184E-02), /* bff88000000000002f7ddfa26221f000 */ - L(1.83405297208145390679150568810924707E-33), /* 3f9230bbfc5d5fe1b534fbcda0465bb9 */ - L(-7.81249999999999715861805208310174953E-03), /* bff7ffffffffffffcb95f3fff157d000 */ - L(3.51548384878710915171654413641872451E-34), /* 3f8fd349b76c22966f77a39fc37ed704 */ - L(-3.90625000000000309326013918295097128E-03), /* bff7000000000000390f820c8e153000 */ - L(6.38058004651791109324060099097251911E-36), /* 3f8a0f665d3ac25a1ac94d688273dbcd */ -#define T_EXPL_ARG1 (2*89) - L(0.00000000000000000000000000000000000E+00), /* 00000000000000000000000000000000 */ - L(0.00000000000000000000000000000000000E+00), /* 00000000000000000000000000000000 */ - L(3.90625000000000245479958859972588985E-03), /* 3ff70000000000002d48769ac9874000 */ - L(-6.58439598384342854976169982902779828E-36), /* bf8a1811b923e6c626b07ef29761482a */ - L(7.81250000000001311374391093664996358E-03), /* 3ff800000000000078f3f3cd89111000 */ - L(2.60265650555493781464273319671555602E-33), /* 3f92b070c3b635b87af426735a71fc87 */ - L(1.17187500000000269581156218247101912E-02), /* 3ff8800000000000f8a50d02fe20d000 */ - L(1.00961747974945520631836275894919326E-33), /* 3f914f80c1a4f8042044fe3b757b030b */ - L(1.56249999999999797878275270751825475E-02), /* 3ff8ffffffffffff45935b69da62e000 */ - L(2.03174577741375590087897353146748580E-33), /* 3f925194e863496e0f6e91cbf6b22e26 */ - L(1.95312499999999760319884511789111533E-02), /* 3ff93fffffffffff917790ff9a8f4000 */ - L(4.62788519658803722282100289809515007E-33), /* 3f9380783ba81295feeb3e4879d7d52d */ - L(2.34374999999999822953909016349145918E-02), /* 3ff97fffffffffffae5a163bd3cd5000 */ - L(-3.19499956304699705390404384504876533E-33), /* bf93096e2037ced8194cf344c692f8d6 */ - L(2.73437500000000137220327275871555682E-02), /* 3ff9c000000000003f481dea5dd51000 */ - L(-2.25757776523031994464630107442723424E-33), /* bf92771abcf988a02b414bf2614e3734 */ - L(3.12499999999999790857640618332718621E-02), /* 3ff9ffffffffffff9f8cd40b51509000 */ - L(-4.22479470489989916319395454536511458E-33), /* bf935efb7245612f371deca17cb7b30c */ - L(3.51562499999999840753382405747597346E-02), /* 3ffa1fffffffffffdb47bd275f722000 */ - L(1.08459658374118041980976756063083500E-34), /* 3f8e2055d18b7117c9db1c318b1e889b */ - L(3.90624999999999989384433621470426757E-02), /* 3ffa3ffffffffffffd8d5e18b042e000 */ - L(-7.41674226146122000759491297811091830E-33), /* bf94341454e48029e5b0205d91baffdc */ - L(4.29687500000000107505739500500200462E-02), /* 3ffa60000000000018ca04cd9085c000 */ - L(-4.74689012756713017494437969420919847E-34), /* bf903b7c268103c6f7fbaaa24142e287 */ - L(4.68749999999999978700749928325717352E-02), /* 3ffa7ffffffffffffb16b6d5479e3000 */ - L(-1.06208165308448830117773486334902917E-32), /* bf94b92be4b3b5b5a596a0a5187cc955 */ - L(5.07812499999999815072625435955786253E-02), /* 3ffa9fffffffffffd55bd086d5cbc000 */ - L(-9.37038897148383660401929567549111394E-33), /* bf94853b111b0175b491c80d00419416 */ - L(5.46874999999999809511553152189867394E-02), /* 3ffabfffffffffffd4138bfa74a61000 */ - L(1.06642963074562437340498606682822123E-32), /* 3f94bafa3fe991b39255d563dfa05d89 */ - L(5.85937500000000184331996330905145551E-02), /* 3ffae000000000002a810a5f2f8bf000 */ - L(-1.76639977694797200820296641773791945E-34), /* bf8ed596f07ce4408f1705c8ec16864c */ - L(6.25000000000000021544696744852045001E-02), /* 3ffb000000000000027be32045e2b000 */ - L(1.68616371995798354366633034788947149E-32), /* 3f955e33d7440794d8a1b25233d086ab */ - L(6.64062499999999965563110718495802889E-02), /* 3ffb0ffffffffffffc079a38a3fed000 */ - L(-1.82463217667830160048872113565316215E-32), /* bf957af6163bcdb97cefab44a942482a */ - L(7.03124999999999759989183341261898222E-02), /* 3ffb1fffffffffffe454218acea05000 */ - L(-1.07843770101525495515646940862541503E-32), /* bf94bff72aada26d94e76e71c07e0580 */ - L(7.42187499999999898968873730710101412E-02), /* 3ffb2ffffffffffff45a166496dc1000 */ - L(1.28629441689592874462780757154138223E-32), /* 3f950b2724597b8b93ce1e9d1cf4d035 */ - L(7.81249999999999957198938523510804668E-02), /* 3ffb3ffffffffffffb10bc52adbc5000 */ - L(1.13297573459968118467100063135856856E-33), /* 3f91787eea895b3c245899cf34ad0abd */ - L(8.20312500000000199911640621145851159E-02), /* 3ffb500000000000170c59a661a89000 */ - L(-1.51161335208135146756554123073528707E-32), /* bf9539f326c5ca84e7db5401566f3775 */ - L(8.59375000000000134175373433347670743E-02), /* 3ffb6000000000000f78287547af0000 */ - L(1.09763629458404270323909815379924900E-32), /* 3f94c7f0b61b6e3e27d44b9f5bbc7e9d */ - L(8.98437500000000036533922600308306335E-02), /* 3ffb70000000000004364a83b7a14000 */ - L(3.11459653680110433194288029777718358E-33), /* 3f9302c0248136d65cebeab69488d949 */ - L(9.37500000000000184977946245216914691E-02), /* 3ffb800000000000155395d870b17000 */ - L(-4.66656154468277949130395786965043927E-33), /* bf9383aec9b993b6db492b1ede786d8a */ - L(9.76562500000000237839723100419376084E-02), /* 3ffb9000000000001b6bca237f6c4000 */ - L(-1.03028043424658760249140747856831301E-32), /* bf94abf6352e3d2bb398e47919a343fb */ - L(1.01562500000000012345545575236836572E-01), /* 3ffba000000000000e3bc30cd9a1f000 */ - L(2.15755372310795701322789783729456319E-32), /* 3f95c01b3b819edd9d07548fafd61550 */ - L(1.05468749999999976493840484471911438E-01), /* 3ffbafffffffffffe4e634cd77985000 */ - L(1.78771847038773333029677216592309083E-32), /* 3f95734b6ae650f33dd43c49a1df9fc0 */ - L(1.09375000000000002267015055992785402E-01), /* 3ffbc00000000000029d1ad08de7b000 */ - L(6.23263106693943817730045115112427717E-33), /* 3f9402e4b39ce2198a45e1d045868cd6 */ - L(1.13281250000000022354208618429577398E-01), /* 3ffbd0000000000019c5cc3f9d2b5000 */ - L(5.40514416644786448581426756221178868E-33), /* 3f93c10ab4021472c662f69435de9269 */ - L(1.17187500000000013252367133076817603E-01), /* 3ffbe000000000000f47688cc561b000 */ - L(-7.12412585457324989451327215568641325E-33), /* bf9427ecb343a8d1758990565fcfbf45 */ - L(1.21093750000000020759863992944300792E-01), /* 3ffbf0000000000017ef3af97bf04000 */ - L(6.26591408357572503875647872077266444E-33), /* 3f940446a09a2da771b45fc075514d12 */ - L(1.25000000000000004739659392396765618E-01), /* 3ffc00000000000002bb7344ecd89000 */ - L(-1.55611398459729463981000080101758830E-32), /* bf95433135febefa9e6aa4db39e263d2 */ - L(1.28906249999999982360888081057894783E-01), /* 3ffc07fffffffffff5d4ed3154361000 */ - L(-1.77531518652835570781208599686606474E-32), /* bf9570b7f225ea076f97f418d11359c1 */ - L(1.32812500000000010568583998727400436E-01), /* 3ffc1000000000000617a5d09526a000 */ - L(2.12104021624990594668286391598300893E-32), /* 3f95b885d767a1048d93055927a27adc */ - L(1.36718749999999998434125157367005292E-01), /* 3ffc17ffffffffffff18eaebc7970000 */ - L(2.50454798592543203967309921276955297E-32), /* 3f9604164e5598528a76faff26cd1c97 */ - L(1.40625000000000015550032422969330356E-01), /* 3ffc20000000000008f6c79d8928c000 */ - L(7.80972982879849783680252962992639832E-33), /* 3f9444674acf2b3225c7647e0d95edf3 */ - L(1.44531250000000012402535562111122522E-01), /* 3ffc28000000000007264a8bc1ff1000 */ - L(2.79662468716455159585514763921671876E-32), /* 3f96226b095bd78aa650faf95a221993 */ - L(1.48437500000000007761020440087419948E-01), /* 3ffc3000000000000479530ff8fe3000 */ - L(2.15518492972728435680556239996258527E-32), /* 3f95bf9d49295e73a957906a029768cb */ - L(1.52343750000000001733189947520484032E-01), /* 3ffc38000000000000ffc6109f71f000 */ - L(8.34032236093545825619420380704500188E-33), /* 3f945a71851226a1d0ce5e656693153e */ - L(1.56249999999999988073295321246958484E-01), /* 3ffc3ffffffffffff91fedd62ae0f000 */ - L(2.44119337150624789345260194989620908E-32), /* 3f95fb041a57bc1c1280680ac1620bea */ - L(1.60156250000000002076894210913572460E-01), /* 3ffc48000000000001327ed84a199000 */ - L(-7.36124501128859978061216696286151753E-33), /* bf9431c62f01e59d2c1e00f195a0037f */ - L(1.64062500000000000950861276373482172E-01), /* 3ffc500000000000008c5285fba85000 */ - L(-4.80566184447001164583855800470217373E-33), /* bf938f3d1fcafd390f22f80e6c19421f */ - L(1.67968749999999989878071706155265999E-01), /* 3ffc57fffffffffffa2a445c548c5000 */ - L(-4.42154428718618459799673088733365064E-32), /* bf96cb28cf1c1b28006d53ffe633b22a */ - L(1.71874999999999999459734108403218175E-01), /* 3ffc5fffffffffffffb04554e9dd4000 */ - L(-3.29736288190321377985697972236270628E-32), /* bf96566af0ebc852e84be12859b24a31 */ - L(1.75781249999999997987525759778901845E-01), /* 3ffc67fffffffffffed702df6ffff000 */ - L(-1.28800728638468399687523924685844352E-32), /* bf950b8236b88ca0c1b739dc91a7e3fc */ - L(1.79687500000000004929565820437175783E-01), /* 3ffc70000000000002d779bb32d2e000 */ - L(1.60624461317978482424582320675174225E-32), /* 3f954d9a9cc0c963fd081f3dc922d04e */ - L(1.83593750000000016873727045739708856E-01), /* 3ffc78000000000009ba1f6263c9a000 */ - L(-3.83390389582056606880506003118452558E-32), /* bf968e22a5d826f77f19ee788474df22 */ - L(1.87500000000000013443068740761666872E-01), /* 3ffc80000000000007bfd8c72a1bf000 */ - L(-2.74141662712926256150154726565203091E-32), /* bf961caf5ac59c7f941f928e324c2cc1 */ - L(1.91406249999999981494101786848611970E-01), /* 3ffc87fffffffffff55502eeae001000 */ - L(3.68992437075565165346469517256118001E-32), /* 3f967f2f03f9096793372a27b92ad79d */ - L(1.95312499999999989069921848800501648E-01), /* 3ffc8ffffffffffff9b3015280394000 */ - L(3.69712249337856518452988332367785220E-32), /* 3f967fee5fdb5bd501ff93516999faa0 */ - L(1.99218750000000021148042946919300804E-01), /* 3ffc9800000000000c30e67939095000 */ - L(2.50142536781142175091322844848566649E-32), /* 3f9603c34ae58e10b300b07137ee618a */ - L(2.03124999999999977732559198825437141E-01), /* 3ffc9ffffffffffff329e7df079e4000 */ - L(-2.41951877287895024779300892731537816E-32), /* bf95f683aefe6965f080df8f59dd34a1 */ - L(2.07031249999999996744030653771913124E-01), /* 3ffca7fffffffffffe1f80f4b73ca000 */ - L(-1.94346475904454000031592792989765585E-32), /* bf9593a44f87870a3d100d498501ecc7 */ - L(2.10937500000000000251399259834392298E-01), /* 3ffcb000000000000025199873310000 */ - L(-1.33528748788094249098998693871759411E-33), /* bf91bbb9b25c813668d6103d08acac35 */ - L(2.14843749999999993936323609611875097E-01), /* 3ffcb7fffffffffffc8128c866236000 */ - L(1.14839877977014974625242788556545292E-32), /* 3f94dd06b4655c9b83a1305b240e7a42 */ - L(2.18750000000000015181732784749663837E-01), /* 3ffcc0000000000008c06da5fff24000 */ - L(1.42689085313142539755499441881408391E-32), /* 3f95285a87dfa7ea7dad5b3be8c669f4 */ - L(2.22656249999999992172647770539596569E-01), /* 3ffcc7fffffffffffb7ce2fe531f6000 */ - L(-3.34421462850496887359128610229650547E-32), /* bf965b487962b5c2d9056ca6ac0c2e5c */ - L(2.26562499999999989595607223847082419E-01), /* 3ffccffffffffffffa0095277be5c000 */ - L(-3.08983588107248752517344356508205569E-32), /* bf9640dded57157f8eded311213bdbcd */ - L(2.30468749999999979130462438434567117E-01), /* 3ffcd7fffffffffff3f8332996560000 */ - L(-3.01407539802851697849105682795217019E-32), /* bf9638ffde35dbdfe1a1ffe45185de5d */ - L(2.34375000000000012194252337217891971E-01), /* 3ffce0000000000007078dd402c86000 */ - L(-8.46879710915628592284714319904522657E-33), /* bf945fc7b29a2ac6c9eff9eb258a510f */ - L(2.38281249999999982991877076137149870E-01), /* 3ffce7fffffffffff6320b486eece000 */ - L(-2.93563878880439245627127095245798544E-32), /* bf9630daaa4f40ff05caf29ace2ea7d4 */ - L(2.42187499999999981447559841442773990E-01), /* 3ffceffffffffffff54e24a09a8d5000 */ - L(-4.56766746558806021264215486909850481E-32), /* bf96da556dee11f3113e5a3467b908e6 */ - L(2.46093749999999991067720539980207318E-01), /* 3ffcf7fffffffffffad9d405dcb5d000 */ - L(2.14033004219908074003010247652128251E-32), /* 3f95bc8776e8f9ae098884aa664cc3df */ - L(2.50000000000000016613825838126835953E-01), /* 3ffd00000000000004c9e24c12bb3000 */ - L(2.57617532593749185996714235009382870E-32), /* 3f960b867cc01178c0ec68226c6cb47d */ - L(2.53906250000000013372004437827044321E-01), /* 3ffd04000000000003daae05b3168000 */ - L(7.20177123439204414298152646284640101E-32), /* 3f9775eff59ddad7e7530b83934af87f */ - L(2.57812499999999995765234725413886085E-01), /* 3ffd07fffffffffffec7878bad9d5000 */ - L(6.51253187532920882777046064603770602E-32), /* 3f975226659ca241402e71c2011583b0 */ - L(2.61718750000000007647689994011222248E-01), /* 3ffd0c000000000002344cc793a0f000 */ - L(3.02370610028725823590045201871491395E-32), /* 3f9639ffe55fa2fa011674448b4e5b96 */ - L(2.65624999999999986893899042596554269E-01), /* 3ffd0ffffffffffffc38f0c0a1e9f000 */ - L(-2.07683715950724761146070082510569258E-32), /* bf95af579a92e872fef81abfdf06bae8 */ - L(2.69531249999999979842788204900639327E-01), /* 3ffd13fffffffffffa30a908d67db000 */ - L(8.71465252506557329027658736641075706E-32), /* 3f97c47d99e19830447a42b1c0ffac61 */ - L(2.73437500000000006712165837793818271E-01), /* 3ffd18000000000001ef453a58edb000 */ - L(-6.62704045767568912140550474455810301E-32), /* bf9758187a204dcb06ece46588aeeaba */ - L(2.77343749999999994411329302988535617E-01), /* 3ffd1bfffffffffffe63a0fec9c9e000 */ - L(-4.87273466291944117406493607771338767E-32), /* bf96fa0381b0844a0be46bac2d673f0c */ - L(2.81250000000000012677892447379453135E-01), /* 3ffd20000000000003a7769e125d6000 */ - L(-8.55871796664700790726282049552906783E-32), /* bf97bc64e01332cf7616b0091b8dff2c */ - L(2.85156249999999998558643013736363981E-01), /* 3ffd23ffffffffffff95a5894bccf000 */ - L(-1.33068334720606220176455289635046875E-32), /* bf95145f43290ecf5b7adcb24697bc73 */ - L(2.89062500000000008831431235621753924E-01), /* 3ffd280000000000028ba504fac59000 */ - L(-9.34157398616814623985483776710704237E-32), /* bf97e50ad1115b941fcb5f0c88a428f7 */ - L(2.92968750000000019840235286110877063E-01), /* 3ffd2c000000000005b7f372d184f000 */ - L(4.99302093775173155906059132992249671E-33), /* 3f939ecdcfb97bad3f8dbec5df5ec67d */ - L(2.96875000000000015867911730971630513E-01), /* 3ffd3000000000000492d860c79db000 */ - L(7.86107787827057767235127454590866211E-33), /* 3f944689517ee8f16cdb97d6a6938f32 */ - L(3.00781250000000015814100002286124758E-01), /* 3ffd340000000000048edfe73a17d000 */ - L(-1.65419431293024229981937172317171504E-32), /* bf9557900e3efca16c89646b57f68dc0 */ - L(3.04687499999999985213157159965287195E-01), /* 3ffd37fffffffffffbbcec6f99b36000 */ - L(9.68753602893894024018934325652944198E-32), /* 3f97f70170e5458660c33a7e8d43d049 */ - L(3.08593749999999989969324338045156215E-01), /* 3ffd3bfffffffffffd1bdde4d0fb1000 */ - L(7.10268609610294706092252562643261106E-32), /* 3f9770cae45cdf615010401a4b37d8d4 */ - L(3.12500000000000002971606591018488854E-01), /* 3ffd40000000000000db440fbc06b000 */ - L(6.38924218802905979887732294952782964E-32), /* 3f974bbf988bb5622bd8fbaa46e8b811 */ - L(3.16406250000000006594921047402056305E-01), /* 3ffd44000000000001e69e8954814000 */ - L(3.96079878754651470094149874444850097E-32), /* 3f969b5017b9fa7a1e86975258c73d3d */ - L(3.20312500000000006713799366908329147E-01), /* 3ffd48000000000001ef64159c065000 */ - L(-1.86401314975634286055150437995880517E-32), /* bf958323f0434911794e5fb8bfe136ba */ - L(3.24218749999999987061246567584951210E-01), /* 3ffd4bfffffffffffc4549db9b928000 */ - L(-3.18643523744758601387071062700407431E-32), /* bf964ae5fa7e26c2c3981bed12e14372 */ - L(3.28124999999999991782776266707412953E-01), /* 3ffd4ffffffffffffda1ad0840ca8000 */ - L(-4.46964199751314296839915534813144652E-32), /* bf96d0277729ffd74727150df6d15547 */ - L(3.32031250000000000393816557756032682E-01), /* 3ffd540000000000001d0efc04fad000 */ - L(-9.03246333902065439930373230002688649E-33), /* bf947731a008748cc6dee948839ef7ae */ - L(3.35937499999999983810482995064392173E-01), /* 3ffd57fffffffffffb556cab8ae61000 */ - L(5.27742727066129518825981597650621794E-32), /* 3f9712050a6ddbf1cabf1b971f4b5d0b */ - L(3.39843750000000004310441349760912471E-01), /* 3ffd5c0000000000013e0def5ddc4000 */ - L(-3.85927263474732591932884416445586106E-32), /* bf9690c51088ef3db9ca000829c450c2 */ - L(3.43749999999999990248130003997484364E-01), /* 3ffd5ffffffffffffd3070624a0af000 */ - L(9.62005170171527308106468341512327487E-34), /* 3f913fae595cea84432eb01430817fca */ - L(3.47656250000000004085726414568625697E-01), /* 3ffd640000000000012d79309e291000 */ - L(-6.59664093705705297250259434519072507E-32), /* bf97568465eafb0e662e64a5dbfaf35f */ - - L(-1.98364257812501251077851763965418372E-03), /* bff6040000000001cd90f658cf0b1000 */ - L(-3.71984513103117734260309047540278737E-34), /* bf8fee73c54483194782aac4a6154d11 */ - L(-1.95312500000000378520649630233891879E-03), /* bff60000000000008ba643bb5e2e8000 */ - L(-1.12194202736719050440745599339855038E-34), /* bf8e2a436aeff7bc529873354f47a3f5 */ - L(-1.92260742187499397430259771221991482E-03), /* bff5f7fffffffffe4361cb51170da000 */ - L(-2.30068299876822157331268484824540848E-34), /* bf8f31d02f85cfe8c0cc02276ce0f437 */ - L(-1.89208984375001137424603270262074989E-03), /* bff5f0000000000347456ed490c23000 */ - L(-1.15012507244426243338260435466985403E-34), /* bf8e31c174d5677a937a34ad8d2a70b4 */ - L(-1.86157226562500172319250342061336738E-03), /* bff5e800000000007f262fa3617b4000 */ - L(-3.12438344643346437509767736937785561E-34), /* bf8f9f4d426a2457c273d34ef7d9bde9 */ - L(-1.83105468749999505256246872355430379E-03), /* bff5dffffffffffe92f18c1c2b6fa000 */ - L(-5.91130415288336591179087455220308942E-35), /* bf8d3a4c80b42dc036bae446c9807f78 */ - L(-1.80053710937499445182387245573120522E-03), /* bff5d7fffffffffe669dea82b4a4c000 */ - L(-1.92396289352411531324908916321392100E-34), /* bf8eff7a2123fb573ba9778550d669bd */ - L(-1.77001953125000387737631542516323906E-03), /* bff5d000000000011e19915c3ddb7000 */ - L(7.91101758977203355387806553469731354E-36), /* 3f8a507f5a70faaccf469e3461873dea */ - L(-1.73950195312500034854670281415554486E-03), /* bff5c8000000000019b7dc6ef97bd000 */ - L(1.55906551582436824067407021178835755E-34), /* 3f8e9e7880333e34955aebcde3cfb053 */ - L(-1.70898437499998955782591472611429852E-03), /* bff5bffffffffffcfd80e88aa6b96000 */ - L(8.22951661962611381718215899498500357E-35), /* 3f8db58e6031a779b59f6ece191de7cc */ - L(-1.67846679687500586652037711131708544E-03), /* bff5b80000000001b0df6fd21c133000 */ - L(-8.96642618848426299713145894522897419E-35), /* bf8ddcbcab46d531801bfae4121f2f8a */ - L(-1.64794921875000109499161354039904782E-03), /* bff5b0000000000050cbce8915575000 */ - L(-2.88077905394253859590587789680486639E-34), /* bf8f7eebd4dd860ef73b674d5e707959 */ - L(-1.61743164062501133830507079150388351E-03), /* bff5a80000000003449e8700c3e82000 */ - L(-3.68271725851639066312899986829350273E-34), /* bf8fe9845fe20a5fe74059e0cae185d6 */ - L(-1.58691406249999015546015764131101956E-03), /* bff59ffffffffffd2999e668cdd28000 */ - L(8.48197657099957029953716507898788812E-35), /* 3f8dc2faaebb97392e451b07b28c4b12 */ - L(-1.55639648437500317366570219290722587E-03), /* bff5980000000000ea2cd9a40d256000 */ - L(-3.45156704719737676412949957712570373E-36), /* bf8925a079505516c8e317ac1ff53255 */ - L(-1.52587890625000568759013197767046039E-03), /* bff5900000000001a3ab8a3f6b698000 */ - L(-1.01902948542497496574967177677556729E-34), /* bf8e0ee78d94d9b5ad3d63ae35c9b554 */ - L(-1.49536132812500945889014955936485340E-03), /* bff5880000000002b9f1621b57743000 */ - L(-3.32264697086631598830366079048117140E-34), /* bf8fb9a7d14c32289204fbb0c9eb20e0 */ - L(-1.46484374999999931883259902869504725E-03), /* bff57fffffffffffcdbd1c90e1b4a000 */ - L(-1.76487524793892929381101031660811433E-34), /* bf8ed52f2f724bc1ae870b18356337b4 */ - L(-1.43432617187498876325946983333888768E-03), /* bff577fffffffffcc2dff8faa5570000 */ - L(-3.54550084538495708816233114576143814E-34), /* bf8fd74724576915868c1e8ce9f430f1 */ - L(-1.40380859374999215367421282192718062E-03), /* bff56ffffffffffdbd0b18aac65ed000 */ - L(-1.90585907028351204486765167064669639E-34), /* bf8efaaa0c0e23e50c11b2120348054f */ - L(-1.37329101562499692341771212945644892E-03), /* bff567ffffffffff1cfd00f1b0577000 */ - L(-3.59631150411372589637918252836880320E-34), /* bf8fde08239ac74942a46298ea4fb715 */ - L(-1.34277343749999137467356674296739172E-03), /* bff55ffffffffffd839030b05d53d000 */ - L(-1.49571076125940368185068762485268117E-35), /* bf8b3e1a3d5c684b27a9f835b1d8d3c9 */ - L(-1.31225585937499247038404301859788734E-03), /* bff557fffffffffdd469936e691e3000 */ - L(3.10375845385355395586146533282311300E-34), /* 3f8f9c8f6d63b7a4145716ffd92491fb */ - L(-1.28173828124999024755581675764821898E-03), /* bff54ffffffffffd306589b0ab21d000 */ - L(-1.98541096105909793397376077900810019E-34), /* bf8f07e808bbb1e35106c294ffbb9687 */ - L(-1.25122070312500340204619591143332523E-03), /* bff5480000000000fb06d5f16ad2c000 */ - L(3.62884195935761446237911443317457521E-34), /* 3f8fe25b17d623178a386a6fa6c5afb2 */ - L(-1.22070312499999591578388993012071279E-03), /* bff53ffffffffffed2a356c440074000 */ - L(-2.96756662615653130862526710937493307E-35), /* bf8c3b90d8ff2a991e5bd16718fb0645 */ - L(-1.19018554687498821966212632349422735E-03), /* bff537fffffffffc9ac3b585dda89000 */ - L(1.44659971891167323357060028901142644E-34), /* 3f8e809279ab249edf1dad9fe13fb0bf */ - L(-1.15966796875000160938908064907298384E-03), /* bff530000000000076c0800db9639000 */ - L(2.50088010538742402346270685365928513E-34), /* 3f8f4c6c8a483b60201d30c1a83c3cb7 */ - L(-1.12915039062500267151512523291939657E-03), /* bff5280000000000c51f7e7315137000 */ - L(7.56402096465615210500092443924888831E-35), /* 3f8d922c1e485d99aea2668ed32b55a6 */ - L(-1.09863281249998665006360103291051571E-03), /* bff51ffffffffffc26f2d4c9ce2ba000 */ - L(1.43982174467233642713619821353592061E-34), /* 3f8e7ec530b3d92b6303bec1c81214d1 */ - L(-1.06811523437500522742248711752028025E-03), /* bff518000000000181b7380f10446000 */ - L(5.41265133745862349181293024531133174E-35), /* 3f8d1fc9313d018b30e790e06b6be723 */ - L(-1.03759765624999980942114138999770552E-03), /* bff50ffffffffffff1f01130490e1000 */ - L(1.21525139612685854366189534669623436E-34), /* 3f8e4311b96b6fcde412caf3f0d86fb9 */ - L(-1.00708007812499602697537601515759439E-03), /* bff507fffffffffedad7afcce7051000 */ - L(1.00020246351201558505328236381833392E-34), /* 3f8e09e640992512b1300744a7e984ed */ - L(-9.76562499999992592487302113340463694E-04), /* bff4fffffffffffbbad8151f8adf6000 */ - L(-1.64984406575162932060422892046851002E-34), /* bf8eb69a919986e8054b86fc34300f24 */ - L(-9.46044921874989085824996924138179594E-04), /* bff4effffffffff9b55a204fd9792000 */ - L(-9.29539174108308550334255350011347171E-35), /* bf8dee3a50ed896b4656fa577a1df3d7 */ - L(-9.15527343750013735214860599791540029E-04), /* bff4e00000000007eaf5bf103f82d000 */ - L(3.07557018309280519949818825519490586E-35), /* 3f8c470cfbef77d32c74cb8042f6ee81 */ - L(-8.85009765625012292294986105781516428E-04), /* bff4d000000000071605c65403b97000 */ - L(4.77499983783821950338363358545463558E-35), /* 3f8cfbc3dc18884c4c4f9e07d90d7bd3 */ - L(-8.54492187499986941239470706817188192E-04), /* bff4bffffffffff878ddf9cab264a000 */ - L(-1.60128240346239526958630011447901568E-34), /* bf8ea9b1a21e19e2d5bd84b0fbffcf95 */ - L(-8.23974609374996290174598690241743810E-04), /* bff4affffffffffddc86c249ebe06000 */ - L(1.61677540391961912631535763471935882E-34), /* 3f8eadd00841366b0dc2bc262c2c8c36 */ - L(-7.93457031249988696952538334288757473E-04), /* bff49ffffffffff97bf6f0aa85a5f000 */ - L(1.22318577008381887076634753347515709E-34), /* 3f8e452db5b5d250878f71040da06d14 */ - L(-7.62939453124996723316499040007097041E-04), /* bff48ffffffffffe1c7265b431108000 */ - L(-1.03845161748762410745671891558398468E-34), /* bf8e14115ad884c96d1a820c73647220 */ - L(-7.32421874999998242520117923997325794E-04), /* bff47ffffffffffefca4498b7aa8a000 */ - L(5.64005211953031009549514026639438083E-35), /* 3f8d2be06950f68f1a6d8ff829a6928e */ - L(-7.01904296874999772890934814265622012E-04), /* bff46fffffffffffde7c0fe5d8041000 */ - L(5.90245467325173644235991233229525762E-35), /* 3f8d39d40cc49002189243c194b1db0e */ - L(-6.71386718750008699269643939210658742E-04), /* bff460000000000503c91d798b60c000 */ - L(-5.20515801723324452151498579012322191E-35), /* bf8d14c0f08a6a9285b32b8bda003eb5 */ - L(-6.40869140625005499535275057463709988E-04), /* bff45000000000032b969184e9751000 */ - L(-6.69469163285461870099846471658294534E-35), /* bf8d63f36bab7b24d936c9380e3d3fa6 */ - L(-6.10351562499999293780097329596079841E-04), /* bff43fffffffffff97c7c433e35ed000 */ - L(-1.16941808547394177991845382085515086E-34), /* bf8e36e27886f10b234a7dd8fc588bf0 */ - L(-5.79833984375000068291972326409994795E-04), /* bff43000000000000a13ff6dcf2bf000 */ - L(1.17885044988246219185041488459766001E-34), /* 3f8e3964677e001a00412aab52790842 */ - L(-5.49316406249990904622170867910987793E-04), /* bff41ffffffffffac1c25739c716b000 */ - L(-3.31875702128137033065075734368960972E-35), /* bf8c60e928d8982c3c99aef4f885a121 */ - L(-5.18798828125011293653756992177727236E-04), /* bff410000000000682a62cff36775000 */ - L(-5.69971237642088463334239430962628187E-35), /* bf8d2f0c76f8757d61cd1abc7ea7d066 */ - L(-4.88281249999990512232251384917893121E-04), /* bff3fffffffffff50fb48992320df000 */ - L(1.02144616714408655325510171265051108E-35), /* 3f8ab279a3626612710b9b3ac71734ac */ - L(-4.57763671874997554564967307956493434E-04), /* bff3dffffffffffd2e3c272e3cca9000 */ - L(-8.25484058867957231164162481843653503E-35), /* bf8db6e71158e7bf93e2e683f07aa841 */ - L(-4.27246093749991203999790346349633286E-04), /* bff3bffffffffff5dbe103cba0eb2000 */ - L(-3.51191203319375193921924105905691755E-35), /* bf8c757356d0f3dd7fbefc0dd419ab50 */ - L(-3.96728515624986649402960638705483281E-04), /* bff39ffffffffff09b996882706ec000 */ - L(-5.51925962073095883016589497244931171E-36), /* bf89d586d49f22289cfc860bebb99056 */ - L(-3.66210937499999945095511981300980754E-04), /* bff37fffffffffffefcb88bfc7df6000 */ - L(-2.11696465278144529364423332249588595E-35), /* bf8bc23a84d28e5496c874ef9833be25 */ - L(-3.35693359374992480958458008559640163E-04), /* bff35ffffffffff754c548a8798f2000 */ - L(-8.58941791799705081104736787493668352E-35), /* bf8dc8b1192fb7c3662826d43acb7c68 */ - L(-3.05175781250009811036303273640122156E-04), /* bff340000000000b4fb4f1aad1c76000 */ - L(-8.61173897858769926480551302277426632E-35), /* bf8dc9e0eabb1c0b33051011b64769fa */ - L(-2.74658203124987298321920308390303850E-04), /* bff31ffffffffff15b2056ac252fd000 */ - L(3.35152809454778381053519808988046631E-37), /* 3f85c82fb59ff8d7c80d44e635420ab1 */ - L(-2.44140624999999992770514819575735516E-04), /* bff2fffffffffffffbbb82d6a7636000 */ - L(3.54445837111124472730013879165516908E-35), /* 3f8c78e955b01378be647b1c92aa9a77 */ - L(-2.13623046875012756463165168672749438E-04), /* bff2c0000000001d6a1635fea6bbf000 */ - L(1.50050816288650121729916777279129473E-35), /* 3f8b3f1f6f616a61129a58e131cbd31d */ - L(-1.83105468749991323078784464300306893E-04), /* bff27fffffffffebfe0cbd0c82399000 */ - L(-9.14919506501448661140572099029756008E-37), /* bf873754bacaa9d9513b6127e791eb47 */ - L(-1.52587890625013337032336300236461546E-04), /* bff240000000001ec0cb57f2cc995000 */ - L(2.84906084373176180870418394956384516E-35), /* 3f8c2ef6d03a7e6ab087c4f099e4de89 */ - L(-1.22070312499990746786116828458007518E-04), /* bff1ffffffffffd553bbb49f35a34000 */ - L(6.71618008964968339584520728412444537E-36), /* 3f8a1dacb99c60071fc9cd2349495bf0 */ - L(-9.15527343750029275602791047595142231E-05), /* bff180000000000d8040cd6ecde28000 */ - L(-1.95753652091078750312541716951402172E-35), /* bf8ba0526cfb24d8d59122f1c7a09a14 */ - L(-6.10351562499913258461494008080572701E-05), /* bff0ffffffffffaffebbb92d7f6a9000 */ - L(5.69868489273961111703398456218119973E-36), /* 3f89e4ca5df09ef4a4386dd5b3bf0331 */ - L(-3.05175781250092882818419203884960853E-05), /* bff0000000000055ab55de88fac1d000 */ - L(9.03341100018476837609128961872915953E-36), /* 3f8a803d229fa3a0e834a63abb06662b */ -#define T_EXPL_ARG2 (2*T_EXPL_ARG1 + 2 + 2*65) - L(0.00000000000000000000000000000000000E+00), /* 00000000000000000000000000000000 */ - L(0.00000000000000000000000000000000000E+00), /* 00000000000000000000000000000000 */ - L(3.05175781249814607084128277672749162E-05), /* 3feffffffffffeaa02abb9102f499000 */ - L(1.00271855391179733380665816525889949E-36), /* 3f8755351afa042ac3f58114824d4c10 */ - L(6.10351562500179243748093427073421439E-05), /* 3ff1000000000052a95de07a4c26d000 */ - L(1.67231624299180373502350811501181670E-36), /* 3f881c87a53691cae9d77f4e40d66616 */ - L(9.15527343749970728685313252158399200E-05), /* 3ff17ffffffffff28040cc2acde28000 */ - L(2.43665747834893104318707597514407880E-36), /* 3f889e9366c7c6c6a2ecb78dc9b0509e */ - L(1.22070312500027751961838150070880064E-04), /* 3ff200000000003ffddde6c153b53000 */ - L(-1.73322146370624186623546452226755405E-35), /* bf8b709d8d658ed5dbbe943de56ee84e */ - L(1.52587890624995916105682628143179430E-04), /* 3ff23ffffffffff6954b56e285d23000 */ - L(1.23580432650945898349135528000443828E-35), /* 3f8b06d396601dde16de7d7bc27346e6 */ - L(1.83105468750008670314358488289621794E-04), /* 3ff2800000000013fe0cdc8c823b7000 */ - L(4.30446229148833293310207915930740796E-35), /* 3f8cc9ba9bfe554a4f7f2fece291eb23 */ - L(2.13623046875005741337455947623248132E-04), /* 3ff2c0000000000d3d1662de21a3f000 */ - L(-3.96110759869520786681660669615255057E-35), /* bf8ca5379b04ff4a31aab0ceacc917e6 */ - L(2.44140624999981493573336463433440506E-04), /* 3ff2ffffffffffd553bbdf48e0534000 */ - L(-1.39617373942387888957350179316792928E-35), /* bf8b28eeedc286015802b63f96b8c5cd */ - L(2.74658203124984920706309918754626834E-04), /* 3ff31fffffffffee9d60c8439ec1d000 */ - L(-3.16168080483901830349738314447356223E-36), /* bf890cf74f81c77a611abc1243812444 */ - L(3.05175781250008648918265055410966055E-04), /* 3ff3400000000009f8b5c9a346636000 */ - L(8.54421306185008998867856704677221443E-35), /* 3f8dc649cd40922fc08adc6b6b20ead0 */ - L(3.35693359374988945462612499316774515E-04), /* 3ff35ffffffffff34146c540f15b2000 */ - L(7.96443137431639500475160850431097078E-35), /* 3f8da77638ed3148fc4d99d1c9e13446 */ - L(3.66210937500027690542093987739604535E-04), /* 3ff380000000001fecce34bea89c4000 */ - L(2.14507323877752361258862577769090367E-35), /* 3f8bc834e554d38894cf91957b0253d3 */ - L(3.96728515625003928083564943615052121E-04), /* 3ff3a00000000004875d9a4acf6ab000 */ - L(4.88358523466632050664019922448605508E-35), /* 3f8d03a7eaeef1a9f78c71a12c44dd28 */ - L(4.27246093750017799227172345607351585E-04), /* 3ff3c00000000014856794c3ee850000 */ - L(6.66520494592631402182216588784828935E-35), /* 3f8d6262118fcdb59b8f16108f5f1a6c */ - L(4.57763671875002108342364320152138181E-04), /* 3ff3e000000000026e45d855410b9000 */ - L(7.21799615960261390920033272189522298E-35), /* 3f8d7fc645cff8879462296af975c9fd */ - L(4.88281249999999768797631616370963356E-04), /* 3ff3ffffffffffffbbc2d7cc004df000 */ - L(-5.30564629906905979452258114088325361E-35), /* bf8d1a18b71929a30d67a217a27ae851 */ - L(5.18798828124997339054881383202487041E-04), /* 3ff40ffffffffffe775055eea5851000 */ - L(-4.03682911253647925867848180522846377E-35), /* bf8cad44f0f3e5199d8a589d9332acad */ - L(5.49316406249980511907933706754958501E-04), /* 3ff41ffffffffff4c410b29bb62fb000 */ - L(-2.08166843948323917121806956728438051E-35), /* bf8bbab8cf691403249fe5b699e25143 */ - L(5.79833984374989593561576568548497165E-04), /* 3ff42ffffffffffa0047df328d817000 */ - L(-1.72745033420153042445343706432627539E-34), /* bf8ecb3c2d7d3a9e6e960576be901fdf */ - L(6.10351562500008540711511259540838154E-04), /* 3ff4400000000004ec62f54f8c271000 */ - L(7.41889382604319545724663095428976499E-35), /* 3f8d8a74c002c81a47c93b8e05d15f8e */ - L(6.40869140625020444702875407535884986E-04), /* 3ff450000000000bc91b09718515d000 */ - L(-4.47321009727305792048065440180490107E-35), /* bf8cdbac5c8fe70822081d8993eb5cb6 */ - L(6.71386718750007531635964622352684074E-04), /* 3ff460000000000457792973db05c000 */ - L(5.13698959677949336513874456684462092E-35), /* 3f8d112114436949c5ef38d8049004ab */ - L(7.01904296875006634673332887754430334E-04), /* 3ff4700000000003d31adf2cb8b1d000 */ - L(-8.25665755717729437292989870760751482E-35), /* bf8db6ffcc8ef71f8e648e3a8b160f5a */ - L(7.32421874999998244664170215504673504E-04), /* 3ff47ffffffffffefcf5498bd5c8a000 */ - L(-5.64005234937832153139057628112753364E-35), /* bf8d2be06a1dfe90e7bf90fba7c12a98 */ - L(7.62939453125017456345986752604096408E-04), /* 3ff490000000000a101a1b093d4a8000 */ - L(-1.11084094120417622468550608896588329E-34), /* bf8e274feabd2d94f6694507a46accb1 */ - L(7.93457031249987558617598988993908016E-04), /* 3ff49ffffffffff8d3f9dcab74bbf000 */ - L(-1.22966480225449015129079129940978828E-34), /* bf8e46e6a65eef8fa9e42eddf3da305e */ - L(8.23974609374997378723747633335135819E-04), /* 3ff4affffffffffe7d2afbaa55b26000 */ - L(-1.62270010016794279091906973366704963E-34), /* bf8eaf633f057ebdb664a34566401c4e */ - L(8.54492187500023938282350821569920958E-04), /* 3ff4c0000000000dccaabce399e59000 */ - L(-1.39076361712838158775374263169606160E-34), /* bf8e71ba779364b3bbdba7841f2c4ca1 */ - L(8.85009765624987932362186815286691297E-04), /* 3ff4cffffffffff90b218886edc2a000 */ - L(4.07328275060905585228261577392403980E-35), /* 3f8cb1254dbb6ea4b8cfa5ed4cf28d24 */ - L(9.15527343749975579461305518559161974E-04), /* 3ff4dffffffffff1ec2a21f25df33000 */ - L(1.16855112459192484947855553716334015E-35), /* 3f8af10bf319e9f5270cf249eeffbe5c */ - L(9.46044921875016761584725882821122521E-04), /* 3ff4f00000000009a992c46c16d71000 */ - L(9.51660680007524262741115611071680436E-35), /* 3f8df9fd56e81f8edf133843910ee831 */ - L(9.76562499999974118878133088548272636E-04), /* 3ff4fffffffffff1149edc46a6df6000 */ - L(-5.65271128977550656964071208289181661E-36), /* bf89e0e12689dd721aa2314c81eb6429 */ - L(1.00708007812498671732140389760347830E-03), /* 3ff507fffffffffc2be94b90ed091000 */ - L(-1.43355074891483635310132767255371379E-34), /* bf8e7d1a688c247b16022daab1316d55 */ - L(1.03759765625002637786192745235343007E-03), /* 3ff51000000000079a57b966bc158000 */ - L(2.95905815240957629366749917020106928E-34), /* 3f8f895387fc73bb38f8a1b254c01a60 */ - L(1.06811523437500860568717813047520763E-03), /* 3ff51800000000027afcd5b35f5e6000 */ - L(-5.98328495358586628195372356742878314E-35), /* bf8d3e204130013bf6328f1b70ff8c76 */ - L(1.09863281250001439958487251556220070E-03), /* 3ff5200000000004268077c6c66bd000 */ - L(2.41371837889426603334113000868144760E-34), /* 3f8f40d6948edf864054ccf151f9815e */ - L(1.12915039062501298413451613770002366E-03), /* 3ff5280000000003be0f5dd8fe81b000 */ - L(-1.28815268997394164973472617519705703E-34), /* bf8e567321172ea089dce4bc8354ecb7 */ - L(1.15966796874997272036339054191407232E-03), /* 3ff52ffffffffff8231e3bcfff1e8000 */ - L(1.02996064554316248496839462594377804E-34), /* 3f8e11cf7d402789244f68e2d4f985b1 */ - L(1.19018554687502744121802585360546796E-03), /* 3ff5380000000007e8cdf3f8f6c20000 */ - L(-1.43453217726255628994625761307322163E-34), /* bf8e7d5d3370d85a374f5f4802fc517a */ - L(1.22070312499997743541996266398850614E-03), /* 3ff53ffffffffff97f0722561f454000 */ - L(-1.41086259180534339713692694428211646E-34), /* bf8e77125519ff76244dfec5fbd58402 */ - L(1.25122070312501024092560690174507039E-03), /* 3ff5480000000002f3a59d8820691000 */ - L(3.84102646020099293168698506729765213E-34), /* 3f8ffe8f5b86f9c3569c8f26e19b1f50 */ - L(1.28173828124997986521442660131425390E-03), /* 3ff54ffffffffffa3250a764439d9000 */ - L(1.44644589735033114377952806106652650E-34), /* 3f8e808801b80dcf38323cdbfdca2549 */ - L(1.31225585937501665804856968749058137E-03), /* 3ff5580000000004cd25a414c6d62000 */ - L(1.67474574742200577294563576414361377E-34), /* 3f8ebd394a151dbda4f81d5d83c0f1e9 */ - L(1.34277343749997290265837386401818888E-03), /* 3ff55ffffffffff83091b042cfd59000 */ - L(-1.55650565030381326742591837551559103E-34), /* bf8e9dca490d7fecfadba9625ffb91c5 */ - L(1.37329101562497720784949380297774268E-03), /* 3ff567fffffffff96e3c7312f5ccf000 */ - L(1.65279335325630026116581677369221748E-34), /* 3f8eb763496f5bd7404f2298b402074f */ - L(1.40380859374999099958354100336136647E-03), /* 3ff56ffffffffffd67e2f09f2a381000 */ - L(1.89919944388961890195706641264717076E-34), /* 3f8ef8e4d0ffdfeba982aa8829501389 */ - L(1.43432617187497484122173130998160625E-03), /* 3ff577fffffffff8bf9c1d71af8a8000 */ - L(2.57638517142061429772064578590009568E-34), /* 3f8f5675d82c1cc4ada70fd3a957b89a */ - L(1.46484374999999929342158925502052945E-03), /* 3ff57fffffffffffcbdd1c7671b46000 */ - L(1.76487201934184070490166772482073801E-34), /* 3f8ed52ef732458f6e4c5c07504f33cc */ - L(1.49536132812502318451070466256902933E-03), /* 3ff5880000000006aeb7066c8ad43000 */ - L(2.38068367275295804321313550609246656E-34), /* 3f8f3c7277ae6fc390ace5e06c0b025b */ - L(1.52587890625000448053340248672949543E-03), /* 3ff59000000000014a9ae2104b3bc000 */ - L(1.01174455568392813258454590274740959E-34), /* 3f8e0cf7c434762991bb38e12acee215 */ - L(1.55639648437501113499837053523090913E-03), /* 3ff5980000000003359e2c204355e000 */ - L(-2.82398418808099749023517211651363693E-35), /* bf8c2c4c2971d88caa95e15fb1ccb1a1 */ - L(1.58691406249999937955142588308171026E-03), /* 3ff59fffffffffffd2380ecbc87c2000 */ - L(-1.27361695572422741562701199136538047E-34), /* bf8e5295e0e206dfb0f0266c07225448 */ - L(1.61743164062498000531048954475329309E-03), /* 3ff5a7fffffffffa3ca6fe61ed94c000 */ - L(-1.22606548862580061633942923016222044E-34), /* bf8e45f1b17bb61039d21a351bb207b8 */ - L(1.64794921875001835451453858682255576E-03), /* 3ff5b000000000054a52fa20f6565000 */ - L(1.39132339594152335892305491425264583E-34), /* 3f8e71e0904c5449b414ee49b191cef2 */ - L(1.67846679687501263995029340691547953E-03), /* 3ff5b80000000003a4a9e912c910b000 */ - L(6.67245854693585315412242764786197029E-35), /* 3f8d62c4ccac1e7511a617d469468ccd */ - L(1.70898437500002646861403514115369655E-03), /* 3ff5c00000000007a109fbaa7e015000 */ - L(6.87367172354719289559624829652240928E-36), /* 3f8a245fa835eceb42bae8128d9336db */ - L(1.73950195312501174308226096992992128E-03), /* 3ff5c80000000003627c8d637a005000 */ - L(-2.20824271875474985927385878948759352E-34), /* bf8f25869b1cbefb25e735992f232f57 */ - L(1.77001953124997491747605207736194513E-03), /* 3ff5cffffffffff8c53c84b6883b8000 */ - L(3.43123048533596296514343180408963705E-34), /* 3f8fc816b91d173ddadbbf09b1287906 */ - L(1.80053710937497698911127570705069398E-03), /* 3ff5d7fffffffff95e1899f4a8430000 */ - L(3.99231237340890073475077494556136100E-35), /* 3f8ca889148f62fa854da5674df41279 */ - L(1.83105468750002267094899598630423914E-03), /* 3ff5e0000000000688d21e62ba674000 */ - L(-3.22274595655810623999007524769365273E-34), /* bf8fac605cb9ae01eb719675ced25560 */ - L(1.86157226562500499224728040579690330E-03), /* 3ff5e80000000001705ce28a6d89e000 */ - L(3.07094985075881613489605622068441083E-34), /* 3f8f98330225ec7e2c8f3c0d1c432b91 */ - L(1.89208984374998234666824993196980949E-03), /* 3ff5effffffffffae969fdc7cd8cf000 */ - L(-3.06287628722973914692165056776495733E-34), /* bf8f9720477d9cfa10e464df7f91020c */ - L(1.92260742187501225343755557292811682E-03), /* 3ff5f800000000038824e428ed49a000 */ - L(6.30049124729794620592961282769623368E-35), /* 3f8d4efdd7cd4336d88a6aa49e1e96bc */ - L(1.95312499999998514894032051116231258E-03), /* 3ff5fffffffffffbb82f6a04f1ae0000 */ - L(-6.14610057507500948543216998736262902E-35), /* bf8d46c862d39255370e7974d48daa7e */ - L(1.98364257812501222021119324146882732E-03), /* 3ff6040000000001c2d8a1aa5188d000 */ - L(3.71942298418113774118754986159801984E-34), /* 3f8fee6567d9940495519ffe62cbc9a4 */ - - L(7.06341639425619532977052017486130353E-01), /* 3ffe69a59c8245a9ac00000000000000 */ - L(7.09106182437398424589503065362805501E-01), /* 3ffe6b0ff72deb89d000000000000000 */ - L(7.11881545564596485142772053222870454E-01), /* 3ffe6c7bbce9a6d93000000000000000 */ - L(7.14667771155948150507697391731198877E-01), /* 3ffe6de8ef213d71e000000000000000 */ - L(7.17464901725936049503573599395167548E-01), /* 3ffe6f578f41e1a9e400000000000000 */ - L(7.20272979955439790478166628417966422E-01), /* 3ffe70c79eba33c06c00000000000000 */ - L(7.23092048692387218133958981525211129E-01), /* 3ffe72391efa434c7400000000000000 */ - L(7.25922150952408251622927082280511968E-01), /* 3ffe73ac117390acd800000000000000 */ - L(7.28763329919491220643124052003258839E-01), /* 3ffe752077990e79d000000000000000 */ - L(7.31615628946641782803794740175362676E-01), /* 3ffe769652df22f7e000000000000000 */ - L(7.34479091556544505525749855223693885E-01), /* 3ffe780da4bba98c4800000000000000 */ - L(7.37353761442226890432394270646909717E-01), /* 3ffe79866ea5f432d400000000000000 */ - L(7.40239682467726090031590047146892175E-01), /* 3ffe7b00b216ccf53000000000000000 */ - L(7.43136898668758316688354170764796436E-01), /* 3ffe7c7c70887763c000000000000000 */ - L(7.46045454253390638577059235103661194E-01), /* 3ffe7df9ab76b20fd000000000000000 */ - L(7.48965393602715662213498148958024103E-01), /* 3ffe7f78645eb8076400000000000000 */ - L(7.51896761271528629722027403659012634E-01), /* 3ffe80f89cbf42526400000000000000 */ - L(7.54839601989007347171423134568613023E-01), /* 3ffe827a561889716000000000000000 */ - L(7.57793960659394638668118204805068672E-01), /* 3ffe83fd91ec46ddc000000000000000 */ - L(7.60759882362683631518152083117456641E-01), /* 3ffe858251bdb68b8c00000000000000 */ - L(7.63737412355305483879774897104653064E-01), /* 3ffe87089711986c9400000000000000 */ - L(7.66726596070820082262642358728044201E-01), /* 3ffe8890636e31f54400000000000000 */ - L(7.69727479120609181517664865168626420E-01), /* 3ffe8a19b85b4fa2d800000000000000 */ - L(7.72740107294572486917871856348938309E-01), /* 3ffe8ba4976246833800000000000000 */ - L(7.75764526561826289752232810315035749E-01), /* 3ffe8d31020df5be4400000000000000 */ - L(7.78800783071404878477039801509818062E-01), /* 3ffe8ebef9eac820b000000000000000 */ - L(7.81848923152964780936002853195532225E-01), /* 3ffe904e8086b5a87800000000000000 */ - L(7.84908993317491698871180005880887620E-01), /* 3ffe91df97714512d800000000000000 */ - L(7.87981040258010162480317717381694820E-01), /* 3ffe9372403b8d6bcc00000000000000 */ - L(7.91065110850296016042904057030682452E-01), /* 3ffe95067c78379f2800000000000000 */ - L(7.94161252153591734614934694036492147E-01), /* 3ffe969c4dbb800b4800000000000000 */ - L(7.97269511411324433014513601847284008E-01), /* 3ffe9833b59b38154400000000000000 */ - L(8.00389936051826789142893403550260700E-01), /* 3ffe99ccb5aec7bec800000000000000 */ - L(8.03522573689060742863077280162542593E-01), /* 3ffe9b674f8f2f3d7c00000000000000 */ - L(8.06667472123343942680406826184480451E-01), /* 3ffe9d0384d70893f800000000000000 */ - L(8.09824679342079301047618855591281317E-01), /* 3ffe9ea15722892c7800000000000000 */ - L(8.12994243520486992160556383169023320E-01), /* 3ffea040c80f8374f000000000000000 */ - L(8.16176213022339780422953481320291758E-01), /* 3ffea1e1d93d687d0000000000000000 */ - L(8.19370636400700819157449927843117621E-01), /* 3ffea3848c4d49954c00000000000000 */ - L(8.22577562398664585696650419777142815E-01), /* 3ffea528e2e1d9f09800000000000000 */ - L(8.25797039950100647542896581398963463E-01), /* 3ffea6cede9f70467c00000000000000 */ - L(8.29029118180400342863478613253391813E-01), /* 3ffea876812c0877bc00000000000000 */ - L(8.32273846407226292054559735333896242E-01), /* 3ffeaa1fcc2f45343800000000000000 */ - L(8.35531274141265073440720811959181447E-01), /* 3ffeabcac15271a2a400000000000000 */ - L(8.38801451086982535754188461396552157E-01), /* 3ffead7762408309bc00000000000000 */ - L(8.42084427143382358016410194068157580E-01), /* 3ffeaf25b0a61a7b4c00000000000000 */ - L(8.45380252404767357221615498019673396E-01), /* 3ffeb0d5ae318680c400000000000000 */ - L(8.48688977161503960155997106085123960E-01), /* 3ffeb2875c92c4c99400000000000000 */ - L(8.52010651900789478530029441571969073E-01), /* 3ffeb43abd7b83db1c00000000000000 */ - L(8.55345327307422548246407245642330963E-01), /* 3ffeb5efd29f24c26400000000000000 */ - L(8.58693054264576483003423845730139874E-01), /* 3ffeb7a69db2bcc77800000000000000 */ - L(8.62053883854575708767242758767679334E-01), /* 3ffeb95f206d17228000000000000000 */ - L(8.65427867359675251357487013592617586E-01), /* 3ffebb195c86b6b29000000000000000 */ - L(8.68815056262843166123843730019871145E-01), /* 3ffebcd553b9d7b62000000000000000 */ - L(8.72215502248546159513864495238522068E-01), /* 3ffebe9307c271855000000000000000 */ - L(8.75629257203538208242932228131394368E-01), /* 3ffec0527a5e384ddc00000000000000 */ - L(8.79056373217652342599848225290770642E-01), /* 3ffec213ad4c9ed0d800000000000000 */ - L(8.82496902584595399599010079327854328E-01), /* 3ffec3d6a24ed8221800000000000000 */ - L(8.85950897802745995779361010136199184E-01), /* 3ffec59b5b27d9696800000000000000 */ - L(8.89418411575955636383383762222365476E-01), /* 3ffec761d99c5ba58800000000000000 */ - L(8.92899496814352794382685374330321793E-01), /* 3ffec92a1f72dd70d400000000000000 */ - L(8.96394206635150403439382671422208659E-01), /* 3ffecaf42e73a4c7d800000000000000 */ - L(8.99902594363456265202927397695020773E-01), /* 3ffeccc00868c0d18800000000000000 */ - L(9.03424713533086704009278378180169966E-01), /* 3ffece8daf1e0ba94c00000000000000 */ - L(9.06960617887383580004723171441582963E-01), /* 3ffed05d24612c2af000000000000000 */ - L(9.10510361380034133338412516422977205E-01), /* 3ffed22e6a0197c02c00000000000000 */ - L(9.14073998175894436579724811053893063E-01), /* 3ffed40181d094303400000000000000 */ - L(9.17651582651815816982221463149471674E-01), /* 3ffed5d66da13970f400000000000000 */ - L(9.21243169397474526149949269893113524E-01), /* 3ffed7ad2f48737a2000000000000000 */ - L(9.24848813216204823639543519675498828E-01), /* 3ffed985c89d041a3000000000000000 */ - L(9.28468569125835141431224428743007593E-01), /* 3ffedb603b7784cd1800000000000000 */ - L(9.32102492359527579068867453315760940E-01), /* 3ffedd3c89b26894e000000000000000 */ - L(9.35750638366620729469147477175283711E-01), /* 3ffedf1ab529fdd41c00000000000000 */ - L(9.39413062813475779888605643463961314E-01), /* 3ffee0fabfbc702a3c00000000000000 */ - L(9.43089821584325888048638830696290825E-01), /* 3ffee2dcab49ca51b400000000000000 */ - L(9.46780970782128888929563004239753354E-01), /* 3ffee4c079b3f8000400000000000000 */ - L(9.50486566729423443256052905780961737E-01), /* 3ffee6a62cdec7c7b000000000000000 */ - L(9.54206665969188322362626308859034907E-01), /* 3ffee88dc6afecfbfc00000000000000 */ - L(9.57941325265705301283958306157728657E-01), /* 3ffeea77490f0196b000000000000000 */ - L(9.61690601605425299247542625380447134E-01), /* 3ffeec62b5e5881fb000000000000000 */ - L(9.65454552197837823079851204965962097E-01), /* 3ffeee500f1eed967000000000000000 */ - L(9.69233234476344074348475032820715569E-01), /* 3ffef03f56a88b5d7800000000000000 */ - L(9.73026706099133165128733935489435680E-01), /* 3ffef2308e71a927a800000000000000 */ - L(9.76835024950062025261843245971249416E-01), /* 3ffef423b86b7ee79000000000000000 */ - L(9.80658249139538557015427500118676107E-01), /* 3ffef618d68936c09c00000000000000 */ - L(9.84496437005408397968864164795377292E-01), /* 3ffef80feabfeefa4800000000000000 */ - L(9.88349647113845042323276857132441364E-01), /* 3ffefa08f706bbf53800000000000000 */ - L(9.92217938260243514925207364285597578E-01), /* 3ffefc03fd56aa225000000000000000 */ - L(9.96101369470117486981664001177705359E-01), /* 3ffefe00ffaabffbbc00000000000000 */ -#define T_EXPL_RES1 (T_EXPL_ARG2 + 2 + 2*65 + 89) - L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ - L(1.00391388933834757590801700644078664E+00), /* 3fff0100802ab5577800000000000000 */ - L(1.00784309720644799091004983893071767E+00), /* 3fff0202015600445c00000000000000 */ - L(1.01178768355933151879000320150225889E+00), /* 3fff0304848362076c00000000000000 */ - L(1.01574770858668572692806719715008512E+00), /* 3fff04080ab55de39000000000000000 */ - L(1.01972323271377413034244341361045372E+00), /* 3fff050c94ef7a206c00000000000000 */ - L(1.02371431660235789884438872832106426E+00), /* 3fff06122436410dd000000000000000 */ - L(1.02772102115162167201845022646011785E+00), /* 3fff0718b98f42085000000000000000 */ - L(1.03174340749910264936062276319717057E+00), /* 3fff08205601127ec800000000000000 */ - L(1.03578153702162378824169763902318664E+00), /* 3fff0928fa934ef90800000000000000 */ - L(1.03983547133622999947277776300325058E+00), /* 3fff0a32a84e9c1f5800000000000000 */ - L(1.04390527230112850620713516036630608E+00), /* 3fff0b3d603ca7c32800000000000000 */ - L(1.04799100201663270004459604933799710E+00), /* 3fff0c49236829e8bc00000000000000 */ - L(1.05209272282610977189420964350574650E+00), /* 3fff0d55f2dce5d1e800000000000000 */ - L(1.05621049731693195106174698594259098E+00), /* 3fff0e63cfa7ab09d000000000000000 */ - L(1.06034438832143151909548350886325352E+00), /* 3fff0f72bad65671b800000000000000 */ - L(1.06449445891785943185681162503897212E+00), /* 3fff1082b577d34ed800000000000000 */ - L(1.06866077243134810492719566354935523E+00), /* 3fff1193c09c1c595c00000000000000 */ - L(1.07284339243487741866189821848820429E+00), /* 3fff12a5dd543ccc4c00000000000000 */ - L(1.07704238275024494209120007326419000E+00), /* 3fff13b90cb25176a400000000000000 */ - L(1.08125780744903959851299646288680378E+00), /* 3fff14cd4fc989cd6400000000000000 */ - L(1.08548973085361949442173568058933597E+00), /* 3fff15e2a7ae28fecc00000000000000 */ - L(1.08973821753809324563988525369495619E+00), /* 3fff16f9157587069400000000000000 */ - L(1.09400333232930546678574046381982043E+00), /* 3fff18109a3611c35000000000000000 */ - L(1.09828514030782586896606289883493446E+00), /* 3fff192937074e0cd800000000000000 */ - L(1.10258370680894224324930519287590869E+00), /* 3fff1a42ed01d8cbc800000000000000 */ - L(1.10689909742365749645287564817408565E+00), /* 3fff1b5dbd3f68122400000000000000 */ - L(1.11123137799969046168868658241990488E+00), /* 3fff1c79a8dacc350c00000000000000 */ - L(1.11558061464248076122274255794764031E+00), /* 3fff1d96b0eff0e79400000000000000 */ - L(1.11994687371619722204840741142106708E+00), /* 3fff1eb4d69bde569c00000000000000 */ - L(1.12433022184475073235176978414529003E+00), /* 3fff1fd41afcba45e800000000000000 */ - L(1.12873072591281087273529237791080959E+00), /* 3fff20f47f31c92e4800000000000000 */ - L(1.13314845306682632219974493636982515E+00), /* 3fff2216045b6f5cd000000000000000 */ - L(1.13758347071604959399593326452304609E+00), /* 3fff2338ab9b32134800000000000000 */ - L(1.14203584653356560174586320499656722E+00), /* 3fff245c7613b8a9b000000000000000 */ - L(1.14650564845732405583333957110880874E+00), /* 3fff258164e8cdb0d800000000000000 */ - L(1.15099294469117646722011727433709893E+00), /* 3fff26a7793f60164400000000000000 */ - L(1.15549780370591653744227755851170514E+00), /* 3fff27ceb43d84490400000000000000 */ - L(1.16002029424032515603215642840950750E+00), /* 3fff28f7170a755fd800000000000000 */ - L(1.16456048530221917269855680387991015E+00), /* 3fff2a20a2ce96406400000000000000 */ - L(1.16911844616950438835445424956560601E+00), /* 3fff2b4b58b372c79400000000000000 */ - L(1.17369424639123270948104504896036815E+00), /* 3fff2c7739e3c0f32c00000000000000 */ - L(1.17828795578866324378353169777255971E+00), /* 3fff2da4478b620c7400000000000000 */ - L(1.18289964445632783673900689791480545E+00), /* 3fff2ed282d763d42400000000000000 */ - L(1.18752938276310060494722620205720887E+00), /* 3fff3001ecf601af7000000000000000 */ - L(1.19217724135327157730657177125976887E+00), /* 3fff31328716a5d63c00000000000000 */ - L(1.19684329114762477708211463323095813E+00), /* 3fff32645269ea829000000000000000 */ - L(1.20152760334452030077656559114984702E+00), /* 3fff339750219b212c00000000000000 */ - L(1.20623024942098072687102217059873510E+00), /* 3fff34cb8170b5835400000000000000 */ - L(1.21095130113378179892436037334846333E+00), /* 3fff3600e78b6b11d000000000000000 */ - L(1.21569083052054743854242246925423387E+00), /* 3fff373783a722012400000000000000 */ - L(1.22044890990084875515009343871497549E+00), /* 3fff386f56fa7686e800000000000000 */ - L(1.22522561187730755216662714701669756E+00), /* 3fff39a862bd3c106400000000000000 */ - L(1.23002100933670455162882717559114099E+00), /* 3fff3ae2a8287e7a8000000000000000 */ - L(1.23483517545109100499445276000187732E+00), /* 3fff3c1e2876834aa800000000000000 */ - L(1.23966818367890557750499169742397498E+00), /* 3fff3d5ae4e2cae92c00000000000000 */ - L(1.24452010776609517384017067342938390E+00), /* 3fff3e98deaa11dcbc00000000000000 */ - L(1.24939102174724003813111039562500082E+00), /* 3fff3fd8170a52071800000000000000 */ - L(1.25428099994668373895478907797951251E+00), /* 3fff41188f42c3e32000000000000000 */ - L(1.25919011697966698459794088194030337E+00), /* 3fff425a4893dfc3f800000000000000 */ - L(1.26411844775346637881341393949696794E+00), /* 3fff439d443f5f159000000000000000 */ - L(1.26906606746853711786826579555054195E+00), /* 3fff44e183883d9e4800000000000000 */ - L(1.27403305161966090564007458851847332E+00), /* 3fff462707b2bac20c00000000000000 */ - L(1.27901947599709753244923149395617656E+00), /* 3fff476dd2045ac67800000000000000 */ - L(1.28402541668774150540599521264084615E+00), /* 3fff48b5e3c3e8186800000000000000 */ - L(1.28905095007628295311619126550795045E+00), /* 3fff49ff3e397492bc00000000000000 */ - L(1.29409615284637330434591717676084954E+00), /* 3fff4b49e2ae5ac67400000000000000 */ - L(1.29916110198179535206719492634874769E+00), /* 3fff4c95d26d3f440800000000000000 */ - L(1.30424587476763775839572190307080746E+00), /* 3fff4de30ec211e60000000000000000 */ - L(1.30935054879147461104338390214252286E+00), /* 3fff4f3198fa0f1cf800000000000000 */ - L(1.31447520194454914310711046709911898E+00), /* 3fff50817263c13cd000000000000000 */ - L(1.31961991242296217130558488861424848E+00), /* 3fff51d29c4f01cb3000000000000000 */ - L(1.32478475872886558573071624778094701E+00), /* 3fff5325180cfacf7800000000000000 */ - L(1.32996981967165983640200010995613411E+00), /* 3fff5478e6f02823d000000000000000 */ - L(1.33517517436919680440254865061433520E+00), /* 3fff55ce0a4c58c7bc00000000000000 */ - L(1.34040090224898678084031189428060316E+00), /* 3fff57248376b033d800000000000000 */ - L(1.34564708304941055283521222918352578E+00), /* 3fff587c53c5a7af0400000000000000 */ - L(1.35091379682093615244298234756570309E+00), /* 3fff59d57c910fa4e000000000000000 */ - L(1.35620112392734021300455538039386738E+00), /* 3fff5b2fff3210fd9400000000000000 */ - L(1.36150914504693443252136830778908916E+00), /* 3fff5c8bdd032e770800000000000000 */ - L(1.36683794117379636690046140756749082E+00), /* 3fff5de9176045ff5400000000000000 */ - L(1.37218759361900544124779344201670028E+00), /* 3fff5f47afa69210a800000000000000 */ - L(1.37755818401188367960941150158760138E+00), /* 3fff60a7a734ab0e8800000000000000 */ - L(1.38294979430124120867162673675920814E+00), /* 3fff6208ff6a88a46000000000000000 */ - L(1.38836250675662681297595213436579797E+00), /* 3fff636bb9a983258400000000000000 */ - L(1.39379640396958309755959248832368758E+00), /* 3fff64cfd75454ee7c00000000000000 */ - L(1.39925156885490681313299887733592186E+00), /* 3fff663559cf1bc7c400000000000000 */ - L(1.40472808465191417726103395580139477E+00), /* 3fff679c427f5a49f400000000000000 */ - L(1.41022603492571069194738697660795879E+00), /* 3fff690492cbf9432c00000000000000 */ - L(1.41574550356846662335641440222389065E+00), /* 3fff6a6e4c1d491e1800000000000000 */ - - L(9.98018323540573404351050612604012713E-01), /* 3ffefefc41f8d4bdb000000000000000 */ - L(9.98048781107475468932221929208026268E-01), /* 3ffeff003ff556aa8800000000000000 */ - L(9.98079239603882895082165305211674422E-01), /* 3ffeff043df9d4986000000000000000 */ - L(9.98109699029824021243584297735651489E-01), /* 3ffeff083c064e972c00000000000000 */ - L(9.98140159385327269125909310787392315E-01), /* 3ffeff0c3a1ac4b6ec00000000000000 */ - L(9.98170620670420977171843901487591211E-01), /* 3ffeff10383737079400000000000000 */ - L(9.98201082885133511579667242585856002E-01), /* 3ffeff14365ba5991c00000000000000 */ - L(9.98231546029493238547658506831794512E-01), /* 3ffeff183488107b7c00000000000000 */ - L(9.98262010103528552029672482603928074E-01), /* 3ffeff1c32bc77beb000000000000000 */ - L(9.98292475107267818223988342651864514E-01), /* 3ffeff2030f8db72b000000000000000 */ - L(9.98322941040739375573309644096298143E-01), /* 3ffeff242f3d3ba77000000000000000 */ - L(9.98353407903971645787066790944663808E-01), /* 3ffeff282d89986cf000000000000000 */ - L(9.98383875696992967307963340317655820E-01), /* 3ffeff2c2bddf1d32400000000000000 */ - L(9.98414344419831761845429696222709026E-01), /* 3ffeff302a3a47ea0c00000000000000 */ - L(9.98444814072516340086593800151604228E-01), /* 3ffeff34289e9ac19800000000000000 */ - L(9.98475284655075123740886056111776270E-01), /* 3ffeff38270aea69c800000000000000 */ - L(9.98505756167536479006585636852832977E-01), /* 3ffeff3c257f36f29400000000000000 */ - L(9.98536228609928799837547330753295682E-01), /* 3ffeff4023fb806bf800000000000000 */ - L(9.98566701982280452432050310562772211E-01), /* 3ffeff44227fc6e5ec00000000000000 */ - L(9.98597176284619802988373749030870385E-01), /* 3ffeff48210c0a706800000000000000 */ - L(9.98627651516975245460372434536111541E-01), /* 3ffeff4c1fa04b1b6800000000000000 */ - L(9.98658127679375173801901155457017012E-01), /* 3ffeff501e3c88f6e800000000000000 */ - L(9.98688604771847954211239084543194622E-01), /* 3ffeff541ce0c412e000000000000000 */ - L(9.98719082794421980642241010173165705E-01), /* 3ffeff581b8cfc7f4c00000000000000 */ - L(9.98749561747125619293186105096538085E-01), /* 3ffeff5c1a41324c2400000000000000 */ - L(9.98780041629987291873504773320746608E-01), /* 3ffeff6018fd65896800000000000000 */ - L(9.98810522443035364581476187595399097E-01), /* 3ffeff6417c196471000000000000000 */ - L(9.98841004186298203615379520670103375E-01), /* 3ffeff68168dc4951400000000000000 */ - L(9.98871486859804230684645176552294288E-01), /* 3ffeff6c1561f0837400000000000000 */ - L(9.98901970463581839743127943620493170E-01), /* 3ffeff70143e1a222c00000000000000 */ - L(9.98932454997659369233531378995394334E-01), /* 3ffeff74132241813000000000000000 */ - L(9.98962940462065268620861502313346136E-01), /* 3ffeff78120e66b08400000000000000 */ - L(9.98993426856827904103397486323956400E-01), /* 3ffeff7c110289c02000000000000000 */ - L(9.99023914181975669634994119405746460E-01), /* 3ffeff800ffeaac00000000000000000 */ - L(9.99054402437536959169506189937237650E-01), /* 3ffeff840f02c9c02000000000000000 */ - L(9.99084891623540138905212870668037795E-01), /* 3ffeff880e0ee6d07800000000000000 */ - L(9.99115381740013658307120181234495249E-01), /* 3ffeff8c0d2302010c00000000000000 */ - L(9.99145872786985911329082910015131347E-01), /* 3ffeff900c3f1b61d800000000000000 */ - L(9.99176364764485236413804614130640402E-01), /* 3ffeff940b633302d000000000000000 */ - L(9.99206857672540083026291313217370771E-01), /* 3ffeff980a8f48f3f800000000000000 */ - L(9.99237351511178817364822180024930276E-01), /* 3ffeff9c09c35d454800000000000000 */ - L(9.99267846280429861138827618560753763E-01), /* 3ffeffa008ff7006c000000000000000 */ - L(9.99298341980321608302162417203362565E-01), /* 3ffeffa4084381485c00000000000000 */ - L(9.99328838610882452808681364331278019E-01), /* 3ffeffa8078f911a1800000000000000 */ - L(9.99359336172140816367814863951934967E-01), /* 3ffeffac06e39f8bf400000000000000 */ - L(9.99389834664125092933417704443854745E-01), /* 3ffeffb0063facadec00000000000000 */ - L(9.99420334086863676459344674185558688E-01), /* 3ffeffb405a3b88ffc00000000000000 */ - L(9.99450834440384988655026177184481639E-01), /* 3ffeffb8050fc3422400000000000000 */ - L(9.99481335724717395718741386190231424E-01), /* 3ffeffbc0483ccd45c00000000000000 */ - L(9.99511837939889374871071936468069907E-01), /* 3ffeffc003ffd556ac00000000000000 */ - L(9.99542341085929264554721385138691403E-01), /* 3ffeffc40383dcd90800000000000000 */ - L(9.99572845162865514234695751838444266E-01), /* 3ffeffc8030fe36b7400000000000000 */ - L(9.99603350170726517864849824945849832E-01), /* 3ffeffcc02a3e91dec00000000000000 */ - L(9.99633856109540669399038392839429434E-01), /* 3ffeffd0023fee006c00000000000000 */ - L(9.99664362979336418302267475155531429E-01), /* 3ffeffd401e3f222f800000000000000 */ - L(9.99694870780142130772816244643763639E-01), /* 3ffeffd8018ff5958800000000000000 */ - L(9.99725379511986284031266336569387931E-01), /* 3ffeffdc0143f8682400000000000000 */ - L(9.99755889174897216520321308053098619E-01), /* 3ffeffe000fffaaac000000000000000 */ - L(9.99786399768903377704987178731244057E-01), /* 3ffeffe400c3fc6d6000000000000000 */ - L(9.99816911294033217050269968240172602E-01), /* 3ffeffe8008ffdc00800000000000000 */ - L(9.99847423750315072998873233700578567E-01), /* 3ffeffec0063feb2ac00000000000000 */ - L(9.99877937137777450526954226006637327E-01), /* 3ffefff0003fff555800000000000000 */ - L(9.99908451456448688077216502279043198E-01), /* 3ffefff40023ffb80000000000000000 */ - L(9.99938966706357262870241697783058044E-01), /* 3ffefff8000fffeaac00000000000000 */ - L(9.99969482887531541104308985268289689E-01), /* 3ffefffc0003fffd5400000000000000 */ -#define T_EXPL_RES2 (T_EXPL_RES1 + 1 + 89 + 65) - L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */ - L(1.00003051804379100575559391472779680E+00), /* 3fff0002000200015400000000000000 */ - L(1.00006103701893306334724798034585547E+00), /* 3fff00040008000aac00000000000000 */ - L(1.00009155692545448346209013834595680E+00), /* 3fff0006001200240000000000000000 */ - L(1.00012207776338379883185325525118969E+00), /* 3fff0008002000555800000000000000 */ - L(1.00015259953274932014366527255333494E+00), /* 3fff000a003200a6ac00000000000000 */ - L(1.00018312223357958012925905677548144E+00), /* 3fff000c004801200400000000000000 */ - L(1.00021364586590294498691378066723701E+00), /* 3fff000e006201c95c00000000000000 */ - L(1.00024417042974783642605984823603649E+00), /* 3fff0010008002aab400000000000000 */ - L(1.00027469592514273166727889474714175E+00), /* 3fff001200a203cc1000000000000000 */ - L(1.00030522235211605242000132420798764E+00), /* 3fff001400c805357000000000000000 */ - L(1.00033574971069616488250630936818197E+00), /* 3fff001600f206eed000000000000000 */ - L(1.00036627800091160178652671675081365E+00), /* 3fff0018012009003800000000000000 */ - L(1.00039680722279067381919048784766346E+00), /* 3fff001a01520b71a000000000000000 */ - L(1.00042733737636191371223048918182030E+00), /* 3fff001c01880e4b1000000000000000 */ - L(1.00045786846165368766392589350289200E+00), /* 3fff001e01c211948400000000000000 */ - L(1.00048840047869447289485833607614040E+00), /* 3fff0020020015560000000000000000 */ - L(1.00051893342751269111445822090900037E+00), /* 3fff0022024219978400000000000000 */ - L(1.00054946730813676403215595200890675E+00), /* 3fff002402881e611000000000000000 */ - L(1.00058000212059516886853316464112140E+00), /* 3fff002602d223baa800000000000000 */ - L(1.00061053786491632733302026281307917E+00), /* 3fff0028032029ac4c00000000000000 */ - L(1.00064107454112866113504765053221490E+00), /* 3fff002a0372303dfc00000000000000 */ - L(1.00067161214926059198404573180596344E+00), /* 3fff002c03c83777b800000000000000 */ - L(1.00070215068934059710059614189958666E+00), /* 3fff002e04223f618400000000000000 */ - L(1.00073269016139709819412928482051939E+00), /* 3fff0030048048036000000000000000 */ - L(1.00076323056545857248522679583402351E+00), /* 3fff003204e251655000000000000000 */ - L(1.00079377190155338617216784768970683E+00), /* 3fff003405485b8f5000000000000000 */ - L(1.00082431416971007198668530691065826E+00), /* 3fff003605b266896800000000000000 */ - L(1.00085485736995705163820957750431262E+00), /* 3fff00380620725b9800000000000000 */ - L(1.00088540150232269132501983222027775E+00), /* 3fff003a06927f0ddc00000000000000 */ - L(1.00091594656683552377884893758164253E+00), /* 3fff003c07088ca83c00000000000000 */ - L(1.00094649256352402622027852885366883E+00), /* 3fff003e07829b32bc00000000000000 */ - L(1.00097703949241650933643654752813745E+00), /* 3fff00400800aab55400000000000000 */ - L(1.00100758735354156137020709138596430E+00), /* 3fff00420882bb381000000000000000 */ - L(1.00103813614692760403102056443458423E+00), /* 3fff00440908ccc2f000000000000000 */ - L(1.00106868587260300351715613942360505E+00), /* 3fff00460992df5df000000000000000 */ - L(1.00109923653059629256034668287611566E+00), /* 3fff00480a20f3111800000000000000 */ - L(1.00112978812093589287002259879955091E+00), /* 3fff004a0ab307e46800000000000000 */ - L(1.00116034064365022615561429120134562E+00), /* 3fff004c0b491ddfe000000000000000 */ - L(1.00119089409876788066000585786241572E+00), /* 3fff004e0be3350b8c00000000000000 */ - L(1.00122144848631711155917400901671499E+00), /* 3fff00500c814d6f6000000000000000 */ - L(1.00125200380632656260715407370298635E+00), /* 3fff00520d2367136c00000000000000 */ - L(1.00128256005882454449107399341301061E+00), /* 3fff00540dc981ffa800000000000000 */ - L(1.00131311724383964545381786592770368E+00), /* 3fff00560e739e3c2000000000000000 */ - L(1.00134367536140017618251363273884635E+00), /* 3fff00580f21bbd0cc00000000000000 */ - L(1.00137423441153472492004539162735455E+00), /* 3fff005a0fd3dac5b800000000000000 */ - L(1.00140479439427171337584354660066310E+00), /* 3fff005c1089fb22e400000000000000 */ - L(1.00143535530963956325933850166620687E+00), /* 3fff005e11441cf05000000000000000 */ - L(1.00146591715766680730226312334707472E+00), /* 3fff0060120240360400000000000000 */ - L(1.00149647993838186721404781565070152E+00), /* 3fff006212c464fc0000000000000000 */ - L(1.00152704365181316470412298258452211E+00), /* 3fff0064138a8b4a4400000000000000 */ - L(1.00155760829798923250422149067162536E+00), /* 3fff00661454b328d800000000000000 */ - L(1.00158817387693849232377374391944613E+00), /* 3fff00681522dc9fbc00000000000000 */ - L(1.00161874038868942138336137759324629E+00), /* 3fff006a15f507b6f400000000000000 */ - L(1.00164930783327055241471725821611471E+00), /* 3fff006c16cb34768800000000000000 */ - L(1.00167987621071025161612055853765924E+00), /* 3fff006e17a562e67400000000000000 */ - L(1.00171044552103705171930414508096874E+00), /* 3fff00701883930ec000000000000000 */ - L(1.00174101576427937443369842185347807E+00), /* 3fff00721965c4f76c00000000000000 */ - L(1.00177158694046569697988502412044909E+00), /* 3fff00741a4bf8a87c00000000000000 */ - L(1.00180215904962455208959681840497069E+00), /* 3fff00761b362e29f800000000000000 */ - L(1.00183273209178441698341543997230474E+00), /* 3fff00781c246583e400000000000000 */ - L(1.00186330606697365785962006157205906E+00), /* 3fff007a1d169ebe3c00000000000000 */ - L(1.00189388097522080744994354972732253E+00), /* 3fff007c1e0cd9e10800000000000000 */ - L(1.00192445681655439848611877096118405E+00), /* 3fff007e1f0716f45000000000000000 */ - L(1.00195503359100279716642489802325144E+00), /* 3fff0080200556001000000000000000 */ - L(1.00198561129859459173374602869444061E+00), /* 3fff00822107970c5400000000000000 */ -}; diff --git a/sysdeps/ieee754/ldbl-128/t_sincosl.c b/sysdeps/ieee754/ldbl-128/t_sincosl.c deleted file mode 100644 index 601662c399..0000000000 --- a/sysdeps/ieee754/ldbl-128/t_sincosl.c +++ /dev/null @@ -1,696 +0,0 @@ -/* Quad-precision floating point sine and cosine tables. - Copyright (C) 1999-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Jakub Jelinek <jj@ultra.linux.cz> - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -/* For 0.1484375 + n/128.0, n=0..82 this table contains - first 113 bits of cosine, then at least 113 additional - bits and the same for sine. - 0.1484375+82.0/128.0 is the smallest number among above defined numbers - larger than pi/4. - Computed using gmp. - */ - -/* Include to grab typedefs and wrappers for _Float128 and such. */ -#include <math_private.h> - -const _Float128 __sincosl_table[] = { - -/* x = 1.48437500000000000000000000000000000e-01L 3ffc3000000000000000000000000000 */ -/* cos(x) = 0.fd2f5320e1b790209b4dda2f98f79caaa7b873aff1014b0fbc5243766d03cb006bc837c4358 */ - L(9.89003367927322909016887196069562069e-01), /* 3ffefa5ea641c36f2041369bb45f31ef */ - L(2.15663692029265697782289400027743703e-35), /* 3f8bcaaa7b873aff1014b0fbc5243767 */ -/* sin(x) = 0.25dc50bc95711d0d9787d108fd438cf5959ee0bfb7a1e36e8b1a112968f356657420e9cc9ea */ - L(1.47892995873409608580026675734609314e-01), /* 3ffc2ee285e4ab88e86cbc3e8847ea1c */ - L(9.74950446464233268291647449768590886e-36), /* 3f8a9eb2b3dc17f6f43c6dd16342252d */ - -/* x = 1.56250000000000000000000000000000000e-01 3ffc4000000000000000000000000000 */ -/* cos(x) = 0.fce1a053e621438b6d60c76e8c45bf0a9dc71aa16f922acc10e95144ec796a249813c9cb649 */ - L(9.87817783816471944100503034363211317e-01), /* 3ffef9c340a7cc428716dac18edd188b */ - L(4.74271307836705897892468107620526395e-35), /* 3f8cf854ee38d50b7c915660874a8a27 */ -/* sin(x) = 0.27d66258bacd96a3eb335b365c87d59438c5142bb56a489e9b8db9d36234ffdebb6bdc22d8e */ - L(1.55614992773556041209920643203516258e-01), /* 3ffc3eb312c5d66cb51f599ad9b2e43f */ -L(-7.83989563419287980121718050629497270e-36), /* bf8a4d78e75d7a8952b6ec2c8e48c594 */ - -/* x = 1.64062500000000000000000000000000000e-01 3ffc5000000000000000000000000000 */ -/* cos(x) = 0.fc8ffa01ba6807417e05962b0d9fdf1fddb0cc4c07d22e19e08019bffa50a6c7acdb40307a3 */ - L(9.86571908399497588757337407495308409e-01), /* 3ffef91ff40374d00e82fc0b2c561b40 */ -L(-2.47327949936985362476252401212720725e-35), /* bf8c070112799d9fc16e8f30fbff3200 */ -/* sin(x) = 0.29cfd49b8be4f665276cab01cbf0426934906c3dd105473b226e410b1450f62e53ff7c6cce1 */ - L(1.63327491736612850846866172454354370e-01), /* 3ffc4e7ea4dc5f27b3293b65580e5f82 */ - L(1.81380344301155485770367902300754350e-36), /* 3f88349a48361ee882a39d913720858a */ - -/* x = 1.71875000000000000000000000000000000e-01 3ffc6000000000000000000000000000 */ -/* cos(x) = 0.fc3a6170f767ac735d63d99a9d439e1db5e59d3ef153a4265d5855850ed82b536bf361b80e3 */ - L(9.85265817718213816204294709759578994e-01), /* 3ffef874c2e1eecf58e6bac7b3353a87 */ - L(2.26568029505818066141517497778527952e-35), /* 3f8be1db5e59d3ef153a4265d5855851 */ -/* sin(x) = 0.2bc89f9f424de5485de7ce03b2514952b9faf5648c3244d4736feb95dbb9da49f3b58a9253b */ - L(1.71030022031395019281347969239834331e-01), /* 3ffc5e44fcfa126f2a42ef3e701d928a */ - L(7.01395875187487608875416030203241317e-36), /* 3f8a2a573f5eac9186489a8e6dfd72bb */ - -/* x = 1.79687500000000000000000000000000000e-01 3ffc7000000000000000000000000000 */ -/* cos(x) = 0.fbe0d7f7fef11e70aa43b8abf4f6a457cea20c8f3f676b47781f9821bbe9ce04b3c7b981c0b */ - L(9.83899591489663972178309351416487245e-01), /* 3ffef7c1afeffde23ce154877157e9ed */ - L(2.73414318948066207810486330723761265e-35), /* 3f8c22be75106479fb3b5a3bc0fcc10e */ -/* sin(x) = 0.2dc0bb80b49a97ffb34e8dd1f8db9df7af47ed2dcf58b12c8e7827e048cae929da02c04ecac */ - L(1.78722113535153659375356241864180724e-01), /* 3ffc6e05dc05a4d4bffd9a746e8fc6dd */ -L(-1.52906926517265103202547561260594148e-36), /* bf8804285c09691853a769b8c3ec0fdc */ - -/* x = 1.87500000000000000000000000000000000e-01 3ffc8000000000000000000000000000 */ -/* cos(x) = 0.fb835efcf670dd2ce6fe7924697eea13ea358867e9cdb3899b783f4f9f43aa5626e8b67b3bc */ - L(9.82473313101255257487327683243622495e-01), /* 3ffef706bdf9ece1ba59cdfcf248d2fe */ -L(-1.64924358891557584625463868014230342e-35), /* bf8b5ec15ca779816324c766487c0b06 */ -/* sin(x) = 0.2fb8205f75e56a2b56a1c4792f856258769af396e0189ef72c05e4df59a6b00e4b44a6ea515 */ - L(1.86403296762269884552379983103205261e-01), /* 3ffc7dc102fbaf2b515ab50e23c97c2b */ - L(1.76460304806826780010586715975331753e-36), /* 3f882c3b4d79cb700c4f7b9602f26fad */ - -/* x = 1.95312500000000000000000000000000000e-01 3ffc9000000000000000000000000000 */ -/* cos(x) = 0.fb21f7f5c156696b00ac1fe28ac5fd76674a92b4df80d9c8a46c684399005deccc41386257c */ - L(9.80987069605669190469329896435309665e-01), /* 3ffef643efeb82acd2d601583fc5158c */ -L(-1.90899259410096419886996331536278461e-36), /* bf8844cc5ab6a5903f931badc9cbde34 */ -/* sin(x) = 0.31aec65df552876f82ece9a2356713246eba6799983d7011b0b3698d6e1da919c15d57c30c1 */ - L(1.94073102892909791156055200214145404e-01), /* 3ffc8d7632efaa943b7c17674d11ab39 */ -L(-9.67304741051998267208945242944928999e-36), /* bf8a9b7228b30cccf851fdc9e992ce52 */ - -/* x = 2.03125000000000000000000000000000000e-01 3ffca000000000000000000000000000 */ -/* cos(x) = 0.fabca467fb3cb8f1d069f01d8ea33ade5bfd68296ecd1cc9f7b7609bbcf3676e726c3301334 */ - L(9.79440951715548359998530954502987493e-01), /* 3ffef57948cff67971e3a0d3e03b1d46 */ - L(4.42878056591560757066844797290067990e-35), /* 3f8cd6f2dfeb414b7668e64fbdbb04de */ -/* sin(x) = 0.33a4a5a19d86246710f602c44df4fa513f4639ce938477aeeabb82e8e0a7ed583a188879fd4 */ - L(2.01731063801638804725038151164000971e-01), /* 3ffc9d252d0cec31233887b016226fa8 */ -L(-4.27513434754966978435151290617384120e-36), /* bf896bb02e718c5b1ee21445511f45c8 */ - -/* x = 2.10937500000000000000000000000000000e-01 3ffcb000000000000000000000000000 */ -/* cos(x) = 0.fa5365e8f1d3ca27be1db5d76ae64d983d7470a4ab0f4ccf65a2b8c67a380df949953a09bc1 */ - L(9.77835053797959793331971572944454549e-01), /* 3ffef4a6cbd1e3a7944f7c3b6baed5cd */ -L(-3.79207422905180416937210853779192702e-35), /* bf8c933e145c7adaa7859984d2ea39cc */ -/* sin(x) = 0.3599b652f40ec999df12a0a4c8561de159c98d4e54555de518b97f48886f715d8df5f4f093e */ - L(2.09376712085993643711890752724881652e-01), /* 3ffcaccdb297a0764ccef895052642b1 */ -L(-1.59470287344329449965314638482515925e-36), /* bf880f531b3958d5d5510d73a3405bbc */ - -/* x = 2.18750000000000000000000000000000000e-01 3ffcc000000000000000000000000000 */ -/* cos(x) = 0.f9e63e1d9e8b6f6f2e296bae5b5ed9c11fd7fa2fe11e09fc7bde901abed24b6365e72f7db4e */ - L(9.76169473868635276723989035435135534e-01), /* 3ffef3cc7c3b3d16dede5c52d75cb6be */ -L(-2.87727974249481583047944860626985460e-35), /* bf8c31f701402e80f70fb01c210b7f2a */ -/* sin(x) = 0.378df09db8c332ce0d2b53d865582e4526ea336c768f68c32b496c6d11c1cd241bb9f1da523 */ - L(2.17009581095010156760578095826055396e-01), /* 3ffcbc6f84edc6199670695a9ec32ac1 */ - L(1.07356488794216831812829549198201194e-35), /* 3f8ac8a4dd466d8ed1ed1865692d8da2 */ - -/* x = 2.26562500000000000000000000000000000e-01 3ffcd000000000000000000000000000 */ -/* cos(x) = 0.f9752eba9fff6b98842beadab054a932fb0f8d5b875ae63d6b2288d09b148921aeb6e52f61b */ - L(9.74444313585988980349711056045434344e-01), /* 3ffef2ea5d753ffed7310857d5b560a9 */ - L(3.09947905955053419304514538592548333e-35), /* 3f8c4997d87c6adc3ad731eb59144685 */ -/* sin(x) = 0.39814cb10513453cb97b21bc1ca6a337b150c21a675ab85503bc09a436a10ab1473934e20c8 */ - L(2.24629204957705292350428549796424820e-01), /* 3ffccc0a6588289a29e5cbd90de0e535 */ - L(2.42061510849297469844695751870058679e-36), /* 3f889bd8a8610d33ad5c2a81de04d21b */ - -/* x = 2.34375000000000000000000000000000000e-01 3ffce000000000000000000000000000 */ -/* cos(x) = 0.f90039843324f9b940416c1984b6cbed1fc733d97354d4265788a86150493ce657cae032674 */ - L(9.72659678244912752670913058267565260e-01), /* 3ffef20073086649f3728082d833096e */ -L(-3.91759231819314904966076958560252735e-35), /* bf8ca09701c6613465595ecd43babcf5 */ -/* sin(x) = 0.3b73c2bf6b4b9f668ef9499c81f0d965087f1753fa64b086e58cb8470515c18c1412f8c2e02 */ - L(2.32235118611511462413930877746235872e-01), /* 3ffcdb9e15fb5a5cfb3477ca4ce40f87 */ -L(-4.96930483364191020075024624332928910e-36), /* bf89a6bde03a2b0166d3de469cd1ee3f */ - -/* x = 2.42187500000000000000000000000000000e-01 3ffcf000000000000000000000000000 */ -/* cos(x) = 0.f887604e2c39dbb20e4ec5825059a789ffc95b275ad9954078ba8a28d3fcfe9cc2c1d49697b */ - L(9.70815676770349462947490545785046027e-01), /* 3ffef10ec09c5873b7641c9d8b04a0b3 */ - L(2.97458820972393859125277682021202860e-35), /* 3f8c3c4ffe4ad93ad6ccaa03c5d45147 */ -/* sin(x) = 0.3d654aff15cb457a0fca854698aba33039a8a40626609204472d9d40309b626eccc6dff0ffa */ - L(2.39826857830661564441369251810886574e-01), /* 3ffceb2a57f8ae5a2bd07e542a34c55d */ - L(2.39867036569896287240938444445071448e-36), /* 3f88981cd45203133049022396cea018 */ - -/* x = 2.50000000000000000000000000000000000e-01 3ffd0000000000000000000000000000 */ -/* cos(x) = 0.f80aa4fbef750ba783d33cb95f94f8a41426dbe79edc4a023ef9ec13c944551c0795b84fee1 */ - L(9.68912421710644784144595449494189205e-01), /* 3ffef01549f7deea174f07a67972bf2a */ -L(-5.53634706113461989398873287749326500e-36), /* bf89d6faf649061848ed7f704184fb0e */ -/* sin(x) = 0.3f55dda9e62aed7513bd7b8e6a3d1635dd5676648d7db525898d7086af9330f03c7f285442a */ - L(2.47403959254522929596848704849389203e-01), /* 3ffcfaaeed4f31576ba89debdc7351e9 */ -L(-7.36487001108599532943597115275811618e-36), /* bf8a39445531336e50495b4ece51ef2a */ - -/* x = 2.57812500000000000000000000000000000e-01 3ffd0800000000000000000000000000 */ -/* cos(x) = 0.f78a098069792daabc9ee42591b7c5a68cb1ab822aeb446b3311b4ba5371b8970e2c1547ad7 */ - L(9.66950029230677822008341623610531503e-01), /* 3ffeef141300d2f25b55793dc84b2370 */ -L(-4.38972214432792412062088059990480514e-35), /* bf8cd2cb9a72a3eea8a5dca667725a2d */ -/* sin(x) = 0.414572fd94556e6473d620271388dd47c0ba050cdb5270112e3e370e8c4705ae006426fb5d5 */ - L(2.54965960415878467487556574864872628e-01), /* 3ffd0515cbf65155b991cf58809c4e23 */ - L(2.20280377918534721005071688328074154e-35), /* 3f8bd47c0ba050cdb5270112e3e370e9 */ - -/* x = 2.65625000000000000000000000000000000e-01 3ffd1000000000000000000000000000 */ -/* cos(x) = 0.f7058fde0788dfc805b8fe88789e4f4253e3c50afe8b22f41159620ab5940ff7df9557c0d1f */ - L(9.64928619104771009581074665315748371e-01), /* 3ffeee0b1fbc0f11bf900b71fd10f13d */ -L(-3.66685832670820775002475545602761113e-35), /* bf8c85ed60e1d7a80ba6e85f7534efaa */ -/* sin(x) = 0.4334033bcd90d6604f5f36c1d4b84451a87150438275b77470b50e5b968fa7962b5ffb379b7 */ - L(2.62512399769153281450949626395692931e-01), /* 3ffd0cd00cef364359813d7cdb0752e1 */ - L(3.24923677072031064673177178571821843e-36), /* 3f89146a1c5410e09d6ddd1c2d4396e6 */ - -/* x = 2.73437500000000000000000000000000000e-01 3ffd1800000000000000000000000000 */ -/* cos(x) = 0.f67d3a26af7d07aa4bd6d42af8c0067fefb96d5b46c031eff53627f215ea3242edc3f2e13eb */ - L(9.62848314709379699899701093480214365e-01), /* 3ffeecfa744d5efa0f5497ada855f180 */ - L(4.88986966383343450799422013051821394e-36), /* 3f899ffbee5b56d1b00c7bfd4d89fc85 */ -/* sin(x) = 0.452186aa5377ab20bbf2524f52e3a06a969f47166ab88cf88c111ad12c55941021ef3317a1a */ - L(2.70042816718585031552755063618827102e-01), /* 3ffd14861aa94ddeac82efc9493d4b8f */ -L(-2.37608892440611310321138680065803162e-35), /* bf8bf956960b8e99547730773eee52ed */ - -/* x = 2.81250000000000000000000000000000000e-01 3ffd2000000000000000000000000000 */ -/* cos(x) = 0.f5f10a7bb77d3dfa0c1da8b57842783280d01ce3c0f82bae3b9d623c168d2e7c29977994451 */ - L(9.60709243015561903066659350581313472e-01), /* 3ffeebe214f76efa7bf4183b516af085 */ -L(-5.87011558231583960712013351601221840e-36), /* bf89f35fcbf8c70fc1f5147118a770fa */ -/* sin(x) = 0.470df5931ae1d946076fe0dcff47fe31bb2ede618ebc607821f8462b639e1f4298b5ae87fd3 */ - L(2.77556751646336325922023446828128568e-01), /* 3ffd1c37d64c6b8765181dbf8373fd20 */ -L(-1.35848595468998128214344668770082997e-36), /* bf87ce44d1219e71439f87de07b9d49c */ - -/* x = 2.89062500000000000000000000000000000e-01 3ffd2800000000000000000000000000 */ -/* cos(x) = 0.f561030ddd7a78960ea9f4a32c6521554995667f5547bafee9ec48b3155cdb0f7fd00509713 */ - L(9.58511534581228627301969408154919822e-01), /* 3ffeeac2061bbaf4f12c1d53e94658ca */ - L(2.50770779371636481145735089393154404e-35), /* 3f8c0aaa4cab33faaa3dd7f74f624599 */ -/* sin(x) = 0.48f948446abcd6b0f7fccb100e7a1b26eccad880b0d24b59948c7cdd49514d44b933e6985c2 */ - L(2.85053745940547424587763033323252561e-01), /* 3ffd23e52111aaf35ac3dff32c4039e8 */ - L(2.04269325885902918802700123680403749e-35), /* 3f8bb26eccad880b0d24b59948c7cdd5 */ - -/* x = 2.96875000000000000000000000000000000e-01 3ffd3000000000000000000000000000 */ -/* cos(x) = 0.f4cd261d3e6c15bb369c8758630d2ac00b7ace2a51c0631bfeb39ed158ba924cc91e259c195 */ - L(9.56255323543175296975599942263028361e-01), /* 3ffee99a4c3a7cd82b766d390eb0c61a */ - L(3.21616572190865997051103645135837207e-35), /* 3f8c56005bd671528e0318dff59cf68b */ -/* sin(x) = 0.4ae37710fad27c8aa9c4cf96c03519b9ce07dc08a1471775499f05c29f86190aaebaeb9716e */ - L(2.92533342023327543624702326493913423e-01), /* 3ffd2b8ddc43eb49f22aa7133e5b00d4 */ - L(1.93539408668704450308003687950685128e-35), /* 3f8b9b9ce07dc08a1471775499f05c2a */ - -/* x = 3.04687500000000000000000000000000000e-01 3ffd3800000000000000000000000000 */ -/* cos(x) = 0.f43575f94d4f6b272f5fb76b14d2a64ab52df1ee8ddf7c651034e5b2889305a9ea9015d758a */ - L(9.53940747608894733981324795987611623e-01), /* 3ffee86aebf29a9ed64e5ebf6ed629a5 */ - L(2.88075689052478602008395972924657164e-35), /* 3f8c3255a96f8f746efbe32881a72d94 */ -/* sin(x) = 0.4ccc7a50127e1de0cb6b40c302c651f7bded4f9e7702b0471ae0288d091a37391950907202f */ - L(2.99995083378683051163248282011699944e-01), /* 3ffd3331e94049f877832dad030c0b19 */ - L(1.35174265535697850139283361475571050e-35), /* 3f8b1f7bded4f9e7702b0471ae0288d1 */ - -/* x = 3.12500000000000000000000000000000000e-01 3ffd4000000000000000000000000000 */ -/* cos(x) = 0.f399f500c9e9fd37ae9957263dab8877102beb569f101ee4495350868e5847d181d50d3cca2 */ - L(9.51567948048172202145488217364270962e-01), /* 3ffee733ea0193d3fa6f5d32ae4c7b57 */ - L(6.36842628598115658308749288799884606e-36), /* 3f8a0ee2057d6ad3e203dc892a6a10d2 */ -/* sin(x) = 0.4eb44a5da74f600207aaa090f0734e288603ffadb3eb2542a46977b105f8547128036dcf7f0 */ - L(3.07438514580380850670502958201982091e-01), /* 3ffd3ad129769d3d80081eaa8243c1cd */ - L(1.06515172423204645839241099453417152e-35), /* 3f8ac510c07ff5b67d64a8548d2ef621 */ - -/* x = 3.20312500000000000000000000000000000e-01 3ffd4800000000000000000000000000 */ -/* cos(x) = 0.f2faa5a1b74e82fd61fa05f9177380e8e69b7b15a945e8e5ae1124bf3d12b0617e03af4fab5 */ - L(9.49137069684463027665847421762105623e-01), /* 3ffee5f54b436e9d05fac3f40bf22ee7 */ - L(6.84433965991637152250309190468859701e-37), /* 3f86d1cd36f62b528bd1cb5c22497e7a */ -/* sin(x) = 0.509adf9a7b9a5a0f638a8fa3a60a199418859f18b37169a644fdb986c21ecb00133853bc35b */ - L(3.14863181319745250865036315126939016e-01), /* 3ffd426b7e69ee69683d8e2a3e8e9828 */ - L(1.92431240212432926993057705062834160e-35), /* 3f8b99418859f18b37169a644fdb986c */ - -/* x = 3.28125000000000000000000000000000000e-01 3ffd5000000000000000000000000000 */ -/* cos(x) = 0.f2578a595224dd2e6bfa2eb2f99cc674f5ea6f479eae2eb580186897ae3f893df1113ca06b8 */ - L(9.46648260886053321846099507295532976e-01), /* 3ffee4af14b2a449ba5cd7f45d65f33a */ -L(-4.32906339663000890941529420498824645e-35), /* bf8ccc5850ac85c30a8e8a53ff3cbb43 */ -/* sin(x) = 0.5280326c3cf481823ba6bb08eac82c2093f2bce3c4eb4ee3dec7df41c92c8a4226098616075 */ - L(3.22268630433386625687745919893188031e-01), /* 3ffd4a00c9b0f3d20608ee9aec23ab21 */ -L(-1.49505897804759263483853908335500228e-35), /* bf8b3df6c0d431c3b14b11c213820be3 */ - -/* x = 3.35937500000000000000000000000000000e-01 3ffd5800000000000000000000000000 */ -/* cos(x) = 0.f1b0a5b406b526d886c55feadc8d0dcc8eb9ae2ac707051771b48e05b25b000009660bdb3e3 */ - L(9.44101673557004345630017691253124860e-01), /* 3ffee3614b680d6a4db10d8abfd5b91a */ - L(1.03812535240120229609822461172145584e-35), /* 3f8ab991d735c558e0e0a2ee3691c0b6 */ -/* sin(x) = 0.54643b3da29de9b357155eef0f332fb3e66c83bf4dddd9491c5eb8e103ccd92d6175220ed51 */ - L(3.29654409930860171914317725126463176e-01), /* 3ffd5190ecf68a77a6cd5c557bbc3ccd */ -L(-1.22606996784743214973082192294232854e-35), /* bf8b04c19937c40b22226b6e3a1471f0 */ - -/* x = 3.43750000000000000000000000000000000e-01 3ffd6000000000000000000000000000 */ -/* cos(x) = 0.f105fa4d66b607a67d44e042725204435142ac8ad54dfb0907a4f6b56b06d98ee60f19e557a */ - L(9.41497463127881068644511236053670815e-01), /* 3ffee20bf49acd6c0f4cfa89c084e4a4 */ - L(3.20709366603165602071590241054884900e-36), /* 3f8910d450ab22b5537ec241e93dad5b */ -/* sin(x) = 0.5646f27e8bd65cbe3a5d61ff06572290ee826d9674a00246b05ae26753cdfc90d9ce81a7d02 */ - L(3.37020069022253076261281754173810024e-01), /* 3ffd591bc9fa2f5972f8e97587fc195d */ -L(-2.21435756148839473677777545049890664e-35), /* bf8bd6f117d92698b5ffdb94fa51d98b */ - -/* x = 3.51562500000000000000000000000000000e-01 3ffd6800000000000000000000000000 */ -/* cos(x) = 0.f0578ad01ede707fa39c09dc6b984afef74f3dc8d0efb0f4c5a6b13771145b3e0446fe33887 */ - L(9.38835788546265488632578305984712554e-01), /* 3ffee0af15a03dbce0ff473813b8d731 */ -L(-3.98758068773974031348585072752245458e-35), /* bf8ca808458611b978827859d2ca7644 */ -/* sin(x) = 0.582850a41e1dd46c7f602ea244cdbbbfcdfa8f3189be794dda427ce090b5f85164f1f80ac13 */ - L(3.44365158145698408207172046472223747e-01), /* 3ffd60a14290787751b1fd80ba891337 */ -L(-3.19791885005480924937758467594051927e-36), /* bf89100c815c339d9061ac896f60c7dc */ - -/* x = 3.59375000000000000000000000000000000e-01 3ffd7000000000000000000000000000 */ -/* cos(x) = 0.efa559f5ec3aec3a4eb03319278a2d41fcf9189462261125fe6147b078f1daa0b06750a1654 */ - L(9.36116812267055290294237411019508588e-01), /* 3ffedf4ab3ebd875d8749d6066324f14 */ - L(3.40481591236710658435409862439032162e-35), /* 3f8c6a0fe7c8c4a31130892ff30a3d84 */ -/* sin(x) = 0.5a084e28e35fda2776dfdbbb5531d74ced2b5d17c0b1afc4647529d50c295e36d8ceec126c1 */ - L(3.51689228994814059222584896955547016e-01), /* 3ffd682138a38d7f689ddb7f6eed54c7 */ - L(1.75293433418270210567525412802083294e-35), /* 3f8b74ced2b5d17c0b1afc4647529d51 */ - -/* x = 3.67187500000000000000000000000000000e-01 3ffd7800000000000000000000000000 */ -/* cos(x) = 0.eeef6a879146af0bf9b95ea2ea0ac0d3e2e4d7e15d93f48cbd41bf8e4fded40bef69e19eafa */ - L(9.33340700242548435655299229469995527e-01), /* 3ffeddded50f228d5e17f372bd45d416 */ -L(-4.75255707251679831124800898831382223e-35), /* bf8cf960e8d940f513605b9a15f2038e */ -/* sin(x) = 0.5be6e38ce8095542bc14ee9da0d36483e6734bcab2e07624188af5653f114eeb46738fa899d */ - L(3.58991834546065053677710299152868941e-01), /* 3ffd6f9b8e33a025550af053ba76834e */ -L(-2.06772389262723368139416970257112089e-35), /* bf8bb7c198cb4354d1f89dbe7750a9ac */ - -/* x = 3.75000000000000000000000000000000000e-01 3ffd8000000000000000000000000000 */ -/* cos(x) = 0.ee35bf5ccac89052cd91ddb734d3a47e262e3b609db604e217053803be0091e76daf28a89b7 */ - L(9.30507621912314291149476792229555481e-01), /* 3ffedc6b7eb9959120a59b23bb6e69a7 */ - L(2.74541088551732982573335285685416092e-35), /* 3f8c23f13171db04edb02710b829c01e */ -/* sin(x) = 0.5dc40955d9084f48a94675a2498de5d851320ff5528a6afb3f2e24de240fce6cbed1ba0ccd6 */ - L(3.66272529086047561372909351716264177e-01), /* 3ffd7710255764213d22a519d6892638 */ -L(-1.96768433534936592675897818253108989e-35), /* bf8ba27aecdf00aad759504c0d1db21e */ - -/* x = 3.82812500000000000000000000000000000e-01 3ffd8800000000000000000000000000 */ -/* cos(x) = 0.ed785b5c44741b4493c56bcb9d338a151c6f6b85d8f8aca658b28572c162b199680eb9304da */ - L(9.27617750192851909628030798799961350e-01), /* 3ffedaf0b6b888e83689278ad7973a67 */ - L(7.58520371916345756281201167126854712e-36), /* 3f8a42a38ded70bb1f1594cb1650ae58 */ -/* sin(x) = 0.5f9fb80f21b53649c432540a50e22c53057ff42ae0fdf1307760dc0093f99c8efeb2fbd7073 */ - L(3.73530868238692946416839752660848112e-01), /* 3ffd7e7ee03c86d4d92710c950294389 */ -L(-1.48023494778986556048879113411517128e-35), /* bf8b3acfa800bd51f020ecf889f23ff7 */ - -/* x = 3.90625000000000000000000000000000000e-01 3ffd9000000000000000000000000000 */ -/* cos(x) = 0.ecb7417b8d4ee3fec37aba4073aa48f1f14666006fb431d9671303c8100d10190ec8179c41d */ - L(9.24671261467036098502113014560138771e-01), /* 3ffed96e82f71a9dc7fd86f57480e755 */ -L(-4.14187124860031825108649347251175815e-35), /* bf8cb87075cccffc825e7134c767e1bf */ -/* sin(x) = 0.6179e84a09a5258a40e9b5face03e525f8b5753cd0105d93fe6298010c3458e84d75fe420e9 */ - L(3.80766408992390192057200703388896675e-01), /* 3ffd85e7a1282694962903a6d7eb3810 */ -L(-2.02009541175208636336924533372496107e-35), /* bf8bada074a8ac32fefa26c019d67fef */ - -/* x = 3.98437500000000000000000000000000000e-01 3ffd9800000000000000000000000000 */ -/* cos(x) = 0.ebf274bf0bda4f62447e56a093626798d3013b5942b1abfd155aacc9dc5c6d0806a20d6b9c1 */ - L(9.21668335573351918175411368202712714e-01), /* 3ffed7e4e97e17b49ec488fcad4126c5 */ -L(-1.83587995433957622948710263541479322e-35), /* bf8b8672cfec4a6bd4e5402eaa553362 */ -/* sin(x) = 0.6352929dd264bd44a02ea766325d8aa8bd9695fc8def3caefba5b94c9a3c873f7b2d3776ead */ - L(3.87978709727025046051079690813741960e-01), /* 3ffd8d4a4a774992f51280ba9d98c976 */ - L(8.01904783870935075844443278617586301e-36), /* 3f8a5517b2d2bf91bde795df74b72993 */ - -/* x = 4.06250000000000000000000000000000000e-01 3ffda000000000000000000000000000 */ -/* cos(x) = 0.eb29f839f201fd13b93796827916a78f15c85230a4e8ea4b21558265a14367e1abb4c30695a */ - L(9.18609155794918267837824977718549863e-01), /* 3ffed653f073e403fa27726f2d04f22d */ - L(2.97608282778274433460057745798409849e-35), /* 3f8c3c78ae429185274752590aac132d */ -/* sin(x) = 0.6529afa7d51b129631ec197c0a840a11d7dc5368b0a47956feb285caa8371c4637ef17ef01b */ - L(3.95167330240934236244832640419653657e-01), /* 3ffd94a6be9f546c4a58c7b065f02a10 */ - L(7.57560031388312550940040194042627704e-36), /* 3f8a423afb8a6d16148f2adfd650b955 */ - -/* x = 4.14062500000000000000000000000000000e-01 3ffda800000000000000000000000000 */ -/* cos(x) = 0.ea5dcf0e30cf03e6976ef0b1ec26515fba47383855c3b4055a99b5e86824b2cd1a691fdca7b */ - L(9.15493908848301228563917732180221882e-01), /* 3ffed4bb9e1c619e07cd2edde163d84d */ -L(-3.50775517955306954815090901168305659e-35), /* bf8c75022dc63e3d51e25fd52b3250bd */ -/* sin(x) = 0.66ff380ba0144109e39a320b0a3fa5fd65ea0585bcbf9b1a769a9b0334576c658139e1a1cbe */ - L(4.02331831777773111217105598880982387e-01), /* 3ffd9bfce02e805104278e68c82c28ff */ -L(-1.95678722882848174723569916504871563e-35), /* bf8ba029a15fa7a434064e5896564fcd */ - -/* x = 4.21875000000000000000000000000000000e-01 3ffdb000000000000000000000000000 */ -/* cos(x) = 0.e98dfc6c6be031e60dd3089cbdd18a75b1f6b2c1e97f79225202f03dbea45b07a5ec4efc062 */ - L(9.12322784872117846492029542047341734e-01), /* 3ffed31bf8d8d7c063cc1ba611397ba3 */ - L(7.86903886556373674267948132178845568e-36), /* 3f8a4eb63ed6583d2fef244a405e07b8 */ -/* sin(x) = 0.68d32473143327973bc712bcc4ccddc47630d755850c0655243b205934dc49ffed8eb76adcb */ - L(4.09471777053295066122694027011452236e-01), /* 3ffda34c91cc50cc9e5cef1c4af31333 */ - L(2.23945241468457597921655785729821354e-35), /* 3f8bdc47630d755850c0655243b20593 */ - -/* x = 4.29687500000000000000000000000000000e-01 3ffdb800000000000000000000000000 */ -/* cos(x) = 0.e8ba8393eca7821aa563d83491b6101189b3b101c3677f73d7bad7c10f9ee02b7ab4009739a */ - L(9.09095977415431051650381735684476417e-01), /* 3ffed1750727d94f04354ac7b069236c */ - L(1.20886014028444155733776025085677953e-35), /* 3f8b01189b3b101c3677f73d7bad7c11 */ -/* sin(x) = 0.6aa56d8e8249db4eb60a761fe3f9e559be456b9e13349ca99b0bfb787f22b95db3b70179615 */ - L(4.16586730282041119259112448831069657e-01), /* 3ffdaa95b63a09276d3ad829d87f8fe8 */ -L(-2.00488106831998813675438269796963612e-35), /* bf8baa641ba9461eccb635664f404878 */ - -/* x = 4.37500000000000000000000000000000000e-01 3ffdc000000000000000000000000000 */ -/* cos(x) = 0.e7e367d2956cfb16b6aa11e5419cd0057f5c132a6455bf064297e6a76fe2b72bb630d6d50ff */ - L(9.05813683425936420744516660652700258e-01), /* 3ffecfc6cfa52ad9f62d6d5423ca833a */ -L(-3.60950307605941169775676563004467163e-35), /* bf8c7fd4051f66acdd5207cdeb40cac5 */ -/* sin(x) = 0.6c760c14c8585a51dbd34660ae6c52ac7036a0b40887a0b63724f8b4414348c3063a637f457 */ - L(4.23676257203938010361683988031102480e-01), /* 3ffdb1d83053216169476f4d1982b9b1 */ - L(1.40484456388654470329473096579312595e-35), /* 3f8b2ac7036a0b40887a0b63724f8b44 */ - -/* x = 4.45312500000000000000000000000000000e-01 3ffdc800000000000000000000000000 */ -/* cos(x) = 0.e708ac84d4172a3e2737662213429e14021074d7e702e77d72a8f1101a7e70410df8273e9aa */ - L(9.02476103237941504925183272675895999e-01), /* 3ffece115909a82e547c4e6ecc442685 */ - L(2.26282899501344419018306295680210602e-35), /* 3f8be14021074d7e702e77d72a8f1102 */ -/* sin(x) = 0.6e44f8c36eb10a1c752d093c00f4d47ba446ac4c215d26b0316442f168459e677d06e7249e3 */ - L(4.30739925110803197216321517850849190e-01), /* 3ffdb913e30dbac42871d4b424f003d3 */ - L(1.54096780001629398850891218396761548e-35), /* 3f8b47ba446ac4c215d26b0316442f17 */ - -/* x = 4.53125000000000000000000000000000000e-01 3ffdd000000000000000000000000000 */ -/* cos(x) = 0.e62a551594b970a770b15d41d4c0e483e47aca550111df6966f9e7ac3a94ae49e6a71eb031e */ - L(8.99083440560138456216544929209379307e-01), /* 3ffecc54aa2b2972e14ee162ba83a982 */ -L(-2.06772615490904370666670275154751976e-35), /* bf8bb7c1b8535aafeee209699061853c */ -/* sin(x) = 0.70122c5ec5028c8cff33abf4fd340ccc382e038379b09cf04f9a52692b10b72586060cbb001 */ - L(4.37777302872755132861618974702796680e-01), /* 3ffdc048b17b140a3233fcceafd3f4d0 */ - L(9.62794364503442612477117426033922467e-36), /* 3f8a998705c0706f36139e09f34a4d25 */ - -/* x = 4.60937500000000000000000000000000000e-01 3ffdd800000000000000000000000000 */ -/* cos(x) = 0.e54864fe33e8575cabf5bd0e5cf1b1a8bc7c0d5f61702450fa6b6539735820dd2603ae355d5 */ - L(8.95635902463170698900570000446256350e-01), /* 3ffeca90c9fc67d0aeb957eb7a1cb9e3 */ - L(3.73593741659866883088620495542311808e-35), /* 3f8c8d45e3e06afb0b812287d35b29cc */ -/* sin(x) = 0.71dd9fb1ff4677853acb970a9f6729c6e3aac247b1c57cea66c77413f1f98e8b9e98e49d851 */ - L(4.44787960964527211433056012529525211e-01), /* 3ffdc7767ec7fd19de14eb2e5c2a7d9d */ -L(-1.67187936511493678007508371613954899e-35), /* bf8b6391c553db84e3a831599388bec1 */ - -/* x = 4.68750000000000000000000000000000000e-01 3ffde000000000000000000000000000 */ -/* cos(x) = 0.e462dfc670d421ab3d1a15901228f146a0547011202bf5ab01f914431859aef577966bc4fa4 */ - L(8.92133699366994404723900253723788575e-01), /* 3ffec8c5bf8ce1a843567a342b202452 */ -L(-1.10771937602567314732693079264692504e-35), /* bf8ad72bf571fddbfa814a9fc0dd779d */ -/* sin(x) = 0.73a74b8f52947b681baf6928eb3fb021769bf4779bad0e3aa9b1cdb75ec60aad9fc63ff19d5 */ - L(4.51771471491683776581688750134062870e-01), /* 3ffdce9d2e3d4a51eda06ebda4a3acff */ -L(-1.19387223016472295893794387275284505e-35), /* bf8afbd12c81710c8a5e38aac9c64914 */ - -/* x = 4.76562500000000000000000000000000000e-01 3ffde800000000000000000000000000 */ -/* cos(x) = 0.e379c9045f29d517c4808aa497c2057b2b3d109e76c0dc302d4d0698b36e3f0bdbf33d8e952 */ - L(8.88577045028035543317609023116020980e-01), /* 3ffec6f39208be53aa2f890115492f84 */ - L(4.12354278954664731443813655177022170e-36), /* 3f895ecacf44279db0370c0b5341a62d */ -/* sin(x) = 0.756f28d011d98528a44a75fc29c779bd734ecdfb582fdb74b68a4c4c4be54cfd0b2d3ad292f */ - L(4.58727408216736592377295028972874773e-01), /* 3ffdd5bca340476614a29129d7f0a71e */ -L(-4.70946994194182908929251719575431779e-36), /* bf8990a32c4c8129f40922d25d6ceced */ - -/* x = 4.84375000000000000000000000000000000e-01 3ffdf000000000000000000000000000 */ -/* cos(x) = 0.e28d245c58baef72225e232abc003c4366acd9eb4fc2808c2ab7fe7676cf512ac7f945ae5fb */ - L(8.84966156526143291697296536966647926e-01), /* 3ffec51a48b8b175dee444bc46557800 */ - L(4.53370570288325630442037826313462165e-35), /* 3f8ce21b3566cf5a7e14046155bff3b4 */ -/* sin(x) = 0.77353054ca72690d4c6e171fd99e6b39fa8e1ede5f052fd2964534c75340970a3a9cd3c5c32 */ - L(4.65655346585160182681199512507546779e-01), /* 3ffddcd4c15329c9a43531b85c7f667a */ -L(-1.56282598978971872478619772155305961e-35), /* bf8b4c60571e121a0fad02d69bacb38b */ - -/* x = 4.92187500000000000000000000000000000e-01 3ffdf800000000000000000000000000 */ -/* cos(x) = 0.e19cf580eeec046aa1422fa74807ecefb2a1911c94e7b5f20a00f70022d940193691e5bd790 */ - L(8.81301254251340599140161908298100173e-01), /* 3ffec339eb01ddd808d542845f4e9010 */ -L(-1.43419192312116687783945619009629445e-35), /* bf8b3104d5e6ee36b184a0df5ff08ffe */ -/* sin(x) = 0.78f95b0560a9a3bd6df7bd981dc38c61224d08bc20631ea932e605e53b579e9e0767dfcbbcb */ - L(4.72554863751304451146551317808516942e-01), /* 3ffde3e56c1582a68ef5b7def660770e */ - L(9.31324774957768018850224267625371204e-36), /* 3f8a8c2449a117840c63d5265cc0bca7 */ - -/* x = 5.00000000000000000000000000000000000e-01 3ffe0000000000000000000000000000 */ -/* cos(x) = 0.e0a94032dbea7cedbddd9da2fafad98556566b3a89f43eabd72350af3e8b19e801204d8fe2e */ - L(8.77582561890372716116281582603829681e-01), /* 3ffec1528065b7d4f9db7bbb3b45f5f6 */ -L(-2.89484960181363924855192538540698851e-35), /* bf8c33d54d4ca62bb05e0aa146e57a86 */ -/* sin(x) = 0.7abba1d12c17bfa1d92f0d93f60ded9992f45b4fcaf13cd58b303693d2a0db47db35ae8a3a9 */ - L(4.79425538604203000273287935215571402e-01), /* 3ffdeaee8744b05efe8764bc364fd838 */ -L(-1.38426977616718318950175848639381926e-35), /* bf8b2666d0ba4b0350ec32a74cfc96c3 */ - -/* x = 5.07812500000000000000000000000000000e-01 3ffe0400000000000000000000000000 */ -/* cos(x) = 0.dfb20840f3a9b36f7ae2c515342890b5ec583b8366cc2b55029e95094d31112383f2553498b */ - L(8.73810306413054508282556837071377159e-01), /* 3ffebf641081e75366def5c58a2a6851 */ - L(1.25716864497849302237218128599994785e-35), /* 3f8b0b5ec583b8366cc2b55029e95095 */ -/* sin(x) = 0.7c7bfdaf13e5ed17212f8a7525bfb113aba6c0741b5362bb8d59282a850b63716bca0c910f0 */ - L(4.86266951793275574311011306895834993e-01), /* 3ffdf1eff6bc4f97b45c84be29d496ff */ -L(-1.12269393250914752644352376448094271e-35), /* bf8add8a8b27f17c9593a88e54dafaaf */ - -/* x = 5.15625000000000000000000000000000000e-01 3ffe0800000000000000000000000000 */ -/* cos(x) = 0.deb7518814a7a931bbcc88c109cd41c50bf8bb48f20ae8c36628d1d3d57574f7dc58f27d91c */ - L(8.69984718058417388828915599901466243e-01), /* 3ffebd6ea310294f526377991182139b */ -L(-4.68168638300575626782741319792183837e-35), /* bf8cf1d7a03a25b86fa8b9e4ceb97161 */ -/* sin(x) = 0.7e3a679daaf25c676542bcb4028d0964172961c921823a4ef0c3a9070d886dbd073f6283699 */ - L(4.93078685753923057265136552753487121e-01), /* 3ffdf8e99e76abc9719d950af2d00a34 */ - L(7.06498693112535056352301101088624950e-36), /* 3f8a2c82e52c3924304749de187520e2 */ - -/* x = 5.23437500000000000000000000000000000e-01 3ffe0c00000000000000000000000000 */ -/* cos(x) = 0.ddb91ff318799172bd2452d0a3889f5169c64a0094bcf0b8aa7dcf0d7640a2eba68955a80be */ - L(8.66106030320656714696616831654267220e-01), /* 3ffebb723fe630f322e57a48a5a14711 */ - L(2.35610597588322493119667003904687628e-35), /* 3f8bf5169c64a0094bcf0b8aa7dcf0d7 */ -/* sin(x) = 0.7ff6d8a34bd5e8fa54c97482db5159df1f24e8038419c0b448b9eea8939b5d4dfcf40900257 */ - L(4.99860324733013463819556536946425724e-01), /* 3ffdffdb628d2f57a3e95325d20b6d45 */ - L(1.94636052312235297538564591686645139e-35), /* 3f8b9df1f24e8038419c0b448b9eea89 */ - -/* x = 5.31250000000000000000000000000000000e-01 3ffe1000000000000000000000000000 */ -/* cos(x) = 0.dcb7777ac420705168f31e3eb780ce9c939ecada62843b54522f5407eb7f21e556059fcd734 */ - L(8.62174479934880504367162510253324274e-01), /* 3ffeb96eeef58840e0a2d1e63c7d6f02 */ -L(-3.71556818317533582234562471835771823e-35), /* bf8c8b1b6309a92cebde255d6e855fc1 */ -/* sin(x) = 0.81b149ce34caa5a4e650f8d09fd4d6aa74206c32ca951a93074c83b2d294d25dbb0f7fdfad2 */ - L(5.06611454814257367642296000893867192e-01), /* 3ffe0362939c69954b49cca1f1a13faa */ -L(-3.10963699824274155702706043065967062e-35), /* bf8c4aac5efc9e69ab572b67c59be269 */ - -/* x = 5.39062500000000000000000000000000000e-01 3ffe1400000000000000000000000000 */ -/* cos(x) = 0.dbb25c25b8260c14f6e7bc98ec991b70c65335198b0ab628bad20cc7b229d4dd62183cfa055 */ - L(8.58190306862660347046629564970494649e-01), /* 3ffeb764b84b704c1829edcf7931d932 */ - L(2.06439574601190798155563653000684861e-35), /* 3f8bb70c65335198b0ab628bad20cc7b */ -/* sin(x) = 0.8369b434a372da7eb5c8a71fe36ce1e0b2b493f6f5cb2e38bcaec2a556b3678c401940d1c3c */ - L(5.13331663943471218288801270215706878e-01), /* 3ffe06d3686946e5b4fd6b914e3fc6da */ -L(-2.26614796466671970772244932848067224e-35), /* bf8be1f4d4b6c090a34d1c743513d5ab */ - -/* x = 5.46875000000000000000000000000000000e-01 3ffe1800000000000000000000000000 */ -/* cos(x) = 0.daa9d20860827063fde51c09e855e9932e1b17143e7244fd267a899d41ae1f3bc6a0ec42e27 */ - L(8.54153754277385385143451785105103176e-01), /* 3ffeb553a410c104e0c7fbca3813d0ac */ -L(-1.68707534013095152873222061722573172e-35), /* bf8b66cd1e4e8ebc18dbb02d9857662c */ -/* sin(x) = 0.852010f4f0800521378bd8dd614753d080c2e9e0775ffc609947b9132f5357404f464f06a58 */ - L(5.20020541953727004760213699874674730e-01), /* 3ffe0a4021e9e1000a426f17b1bac28f */ -L(-3.32415021330884924833711842866896734e-35), /* bf8c617bf9e8b0fc45001cfb35c23767 */ - -/* x = 5.54687500000000000000000000000000000e-01 3ffe1c00000000000000000000000000 */ -/* cos(x) = 0.d99ddd44e44a43d4d4a3a3ed95204106fd54d78e8c7684545c0da0b7c2c72be7a89b7c182ad */ - L(8.50065068549420263957072899177793617e-01), /* 3ffeb33bba89c89487a9a94747db2a41 */ -L(-4.73753917078785974356016104842568442e-35), /* bf8cf7c81559438b9c4bdd5d1f92fa42 */ -/* sin(x) = 0.86d45935ab396cb4e421e822dee54f3562dfcefeaa782184c23401d231f5ad981a1cc195b18 */ - L(5.26677680590386730710789410624833901e-01), /* 3ffe0da8b26b5672d969c843d045bdcb */ -L(-3.67066148195515214077582496518566735e-35), /* bf8c8654e901880aac3ef3d9ee5ff16e */ - -/* x = 5.62500000000000000000000000000000000e-01 3ffe2000000000000000000000000000 */ -/* cos(x) = 0.d88e820b1526311dd561efbc0c1a9a5375eb26f65d246c5744b13ca26a7e0fd42556da843c8 */ - L(8.45924499231067954459723078597493262e-01), /* 3ffeb11d04162a4c623baac3df781835 */ - L(1.98054947141989878179164342925274053e-35), /* 3f8ba5375eb26f65d246c5744b13ca27 */ -/* sin(x) = 0.88868625b4e1dbb2313310133022527200c143a5cb16637cb7daf8ade82459ff2e98511f40f */ - L(5.33302673536020173329131103308161529e-01), /* 3ffe110d0c4b69c3b764626620266045 */ -L(-3.42715291319551615996993795226755157e-35), /* bf8c6c6ff9f5e2d1a74ce41a41283a91 */ - -/* x = 5.70312500000000000000000000000000000e-01 3ffe2400000000000000000000000000 */ -/* cos(x) = 0.d77bc4985e93a607c9d868b906bbc6bbe3a04258814acb0358468b826fc91bd4d814827f65e */ - L(8.41732299041338366963111794309701085e-01), /* 3ffeaef78930bd274c0f93b0d1720d78 */ -L(-4.30821936750410026005408345400225948e-35), /* bf8cca20e2fded3bf5a9a7e53dcba3ed */ -/* sin(x) = 0.8a3690fc5bfc11bf9535e2739a8512f448a41251514bbed7fc18d530f9b4650fcbb2861b0aa */ - L(5.39895116435204405041660709903993340e-01), /* 3ffe146d21f8b7f8237f2a6bc4e7350a */ - L(1.42595803521626714477253741404712093e-35), /* 3f8b2f448a41251514bbed7fc18d5310 */ - -/* x = 5.78125000000000000000000000000000000e-01 3ffe2800000000000000000000000000 */ -/* cos(x) = 0.d665a937b4ef2b1f6d51bad6d988a4419c1d7051faf31a9efa151d7631117efac03713f950a */ - L(8.37488723850523685315353348917240617e-01), /* 3ffeaccb526f69de563edaa375adb311 */ - L(2.72761997872084533045777718677326179e-35), /* 3f8c220ce0eb828fd798d4f7d0a8ebb2 */ -/* sin(x) = 0.8be472f9776d809af2b88171243d63d66dfceeeb739cc894e023fbc165a0e3f26ff729c5d57 */ - L(5.46454606919203564403349553749411001e-01), /* 3ffe17c8e5f2eedb0135e57102e2487b */ -L(-2.11870230730160315420936523771864858e-35), /* bf8bc29920311148c63376b1fdc043ea */ - -/* x = 5.85937500000000000000000000000000000e-01 3ffe2c00000000000000000000000000 */ -/* cos(x) = 0.d54c3441844897fc8f853f0655f1ba695eba9fbfd7439dbb1171d862d9d9146ca5136f825ac */ - L(8.33194032664581363070224042208032321e-01), /* 3ffeaa98688308912ff91f0a7e0cabe3 */ - L(4.39440050052045486567668031751259899e-35), /* 3f8cd34af5d4fdfeba1cedd88b8ec317 */ -/* sin(x) = 0.8d902565817ee7839bce3cd128060119492cd36d42d82ada30d7f8bde91324808377ddbf5d4 */ - L(5.52980744630527369849695082681623667e-01), /* 3ffe1b204acb02fdcf07379c79a2500c */ - L(8.26624790417342895897164123189984127e-37), /* 3f8719492cd36d42d82ada30d7f8bde9 */ - -/* x = 5.93750000000000000000000000000000000e-01 3ffe3000000000000000000000000000 */ -/* cos(x) = 0.d42f6a1b9f0168cdf031c2f63c8d9304d86f8d34cb1d5fccb68ca0f2241427fc18d1fd5bbdf */ - L(8.28848487609325734810171790119116638e-01), /* 3ffea85ed4373e02d19be06385ec791b */ - L(1.43082508100496581719048175506239770e-35), /* 3f8b304d86f8d34cb1d5fccb68ca0f22 */ -/* sin(x) = 0.8f39a191b2ba6122a3fa4f41d5a3ffd421417d46f19a22230a14f7fcc8fce5c75b4b28b29d1 */ - L(5.59473131247366877384844006003116688e-01), /* 3ffe1e7343236574c24547f49e83ab48 */ -L(-1.28922620524163922306886952100992796e-37), /* bf845ef5f415c8732eeee7af584019b8 */ - -/* x = 6.01562500000000000000000000000000000e-01 3ffe3400000000000000000000000000 */ -/* cos(x) = 0.d30f4f392c357ab0661c5fa8a7d9b26627846fef214b1d19a22379ff9eddba087cf410eb097 */ - L(8.24452353914429207485643598212356053e-01), /* 3ffea61e9e72586af560cc38bf514fb3 */ - L(3.79160239225080026987031418939026741e-35), /* 3f8c93313c237f790a58e8cd111bcffd */ -/* sin(x) = 0.90e0e0d81ca678796cc92c8ea8c2815bc72ca78abe571bfa8576aacc571e096a33237e0e830 */ - L(5.65931370507905990773159095689276114e-01), /* 3ffe21c1c1b0394cf0f2d992591d5185 */ - L(1.02202775968053982310991962521535027e-36), /* 3f875bc72ca78abe571bfa8576aacc57 */ - -/* x = 6.09375000000000000000000000000000000e-01 3ffe3800000000000000000000000000 */ -/* cos(x) = 0.d1ebe81a95ee752e48a26bcd32d6e922d7eb44b8ad2232f6930795e84b56317269b9dd1dfa6 */ - L(8.20005899897234008255550633876556043e-01), /* 3ffea3d7d0352bdcea5c9144d79a65ae */ -L(-1.72008811955230823416724332297991247e-35), /* bf8b6dd2814bb4752ddcd096cf86a17b */ -/* sin(x) = 0.9285dc9bc45dd9ea3d02457bcce59c4175aab6ff7929a8d287195525fdace200dba032874fb */ - L(5.72355068234507240384953706824503608e-01), /* 3ffe250bb93788bbb3d47a048af799cb */ - L(2.12572273479933123944580199464514529e-35), /* 3f8bc4175aab6ff7929a8d2871955260 */ - -/* x = 6.17187500000000000000000000000000000e-01 3ffe3c00000000000000000000000000 */ -/* cos(x) = 0.d0c5394d772228195e25736c03574707de0af1ca344b13bd3914bfe27518e9e426f5deff1e1 */ - L(8.15509396946375476876345384201386217e-01), /* 3ffea18a729aee445032bc4ae6d806af */ -L(-4.28589138410712954051679139949341961e-35), /* bf8cc7c10fa871ae5da76216375a00ec */ -/* sin(x) = 0.94288e48bd0335fc41c4cbd2920497a8f5d1d8185c99fa0081f90c27e2a53ffdd208a0dbe69 */ - L(5.78743832357770354521111378581385347e-01), /* 3ffe28511c917a066bf8838997a52409 */ - L(1.77998063432551282609698670002456093e-35), /* 3f8b7a8f5d1d8185c99fa0081f90c27e */ - -/* x = 6.25000000000000000000000000000000000e-01 3ffe4000000000000000000000000000 */ -/* cos(x) = 0.cf9b476c897c25c5bfe750dd3f308eaf7bcc1ed00179a256870f4200445043dcdb1974b5878 */ - L(8.10963119505217902189534803941080724e-01), /* 3ffe9f368ed912f84b8b7fcea1ba7e61 */ - L(1.10481292856794436426051402418804358e-35), /* 3f8ad5ef7983da002f344ad0e1e84009 */ -/* sin(x) = 0.95c8ef544210ec0b91c49bd2aa09e8515fa61a156ebb10f5f8c232a6445b61ebf3c2ec268f9 */ - L(5.85097272940462154805399314150080459e-01), /* 3ffe2b91dea88421d817238937a55414 */ -L(-1.78164576278056195136525335403380464e-35), /* bf8b7aea059e5ea9144ef0a073dcd59c */ - -/* x = 6.32812500000000000000000000000000000e-01 3ffe4400000000000000000000000000 */ -/* cos(x) = 0.ce6e171f92f2e27f32225327ec440ddaefae248413efc0e58ceee1ae369aabe73f88c87ed1a */ - L(8.06367345055103913698795406077297399e-01), /* 3ffe9cdc2e3f25e5c4fe6444a64fd888 */ - L(1.04235088143133625463876245029180850e-35), /* 3f8abb5df5c490827df81cb19ddc35c7 */ -/* sin(x) = 0.9766f93cd18413a6aafc1cfc6fc28abb6817bf94ce349901ae3f48c3215d3eb60acc5f78903 */ - L(5.91415002201316315087000225758031236e-01), /* 3ffe2ecdf279a308274d55f839f8df85 */ - L(8.07390238063560077355762466502569603e-36), /* 3f8a576d02f7f299c6932035c7e91864 */ - -/* x = 6.40625000000000000000000000000000000e-01 3ffe4800000000000000000000000000 */ -/* cos(x) = 0.cd3dad1b5328a2e459f993f4f5108819faccbc4eeba9604e81c7adad51cc8a2561631a06826 */ - L(8.01722354098418450607492605652964208e-01), /* 3ffe9a7b5a36a65145c8b3f327e9ea21 */ - L(6.09487851305233089325627939458963741e-36), /* 3f8a033f599789dd752c09d038f5b5aa */ -/* sin(x) = 0.9902a58a45e27bed68412b426b675ed503f54d14c8172e0d373f42cadf04daf67319a7f94be */ - L(5.97696634538701531238647618967334337e-01), /* 3ffe32054b148bc4f7dad0825684d6cf */ -L(-2.49527608940873714527427941350461554e-35), /* bf8c0957e0559759bf468f964605e9a9 */ - -/* x = 6.48437500000000000000000000000000000e-01 3ffe4c00000000000000000000000000 */ -/* cos(x) = 0.cc0a0e21709883a3ff00911e11a07ee3bd7ea2b04e081be99be0264791170761ae64b8b744a */ - L(7.97028430141468342004642741431945296e-01), /* 3ffe98141c42e1310747fe01223c2341 */ -L(-8.35364432831812599727083251866305534e-37), /* bf871c42815d4fb1f7e416641fd9b86f */ -/* sin(x) = 0.9a9bedcdf01b38d993f3d7820781de292033ead73b89e28f39313dbe3a6e463f845b5fa8490 */ - L(6.03941786554156657267270287527367726e-01), /* 3ffe3537db9be03671b327e7af040f04 */ -L(-2.54578992328947177770363936132309779e-35), /* bf8c0eb6fe60a94623b0eb863676120e */ - -/* x = 6.56250000000000000000000000000000000e-01 3ffe5000000000000000000000000000 */ -/* cos(x) = 0.cad33f00658fe5e8204bbc0f3a66a0e6a773f87987a780b243d7be83b3db1448ca0e0e62787 */ - L(7.92285859677178543141501323781709399e-01), /* 3ffe95a67e00cb1fcbd04097781e74cd */ - L(2.47519558228473167879248891673807645e-35), /* 3f8c07353b9fc3cc3d3c05921ebdf41e */ -/* sin(x) = 0.9c32cba2b14156ef05256c4f857991ca6a547cd7ceb1ac8a8e62a282bd7b9183648a462bd04 */ - L(6.10150077075791371273742393566183220e-01), /* 3ffe386597456282adde0a4ad89f0af3 */ - L(1.33842237929938963780969418369150532e-35), /* 3f8b1ca6a547cd7ceb1ac8a8e62a282c */ - -/* x = 6.64062500000000000000000000000000000e-01 3ffe5400000000000000000000000000 */ -/* cos(x) = 0.c99944936cf48c8911ff93fe64b3ddb7981e414bdaf6aae1203577de44878c62bc3bc9cf7b9 */ - L(7.87494932167606083931328295965533034e-01), /* 3ffe93328926d9e9191223ff27fcc968 */ -L(-2.57915385618070637156514241185180920e-35), /* bf8c12433f0df5a1284aa8f6fe54410e */ -/* sin(x) = 0.9dc738ad14204e689ac582d0f85826590feece34886cfefe2e08cf2bb8488d55424dc9d3525 */ - L(6.16321127181550943005700433761731837e-01), /* 3ffe3b8e715a28409cd1358b05a1f0b0 */ - L(2.88497530050197716298085892460478666e-35), /* 3f8c32c87f7671a44367f7f17046795e */ - -/* x = 6.71875000000000000000000000000000000e-01 3ffe5800000000000000000000000000 */ -/* cos(x) = 0.c85c23c26ed7b6f014ef546c47929682122876bfbf157de0aff3c4247d820c746e32cd4174f */ - L(7.82655940026272796930787447428139026e-01), /* 3ffe90b84784ddaf6de029dea8d88f25 */ - L(1.69332045679237919427807771288506254e-35), /* 3f8b682122876bfbf157de0aff3c4248 */ -/* sin(x) = 0.9f592e9b66a9cf906a3c7aa3c10199849040c45ec3f0a747597311038101780c5f266059dbf */ - L(6.22454560222343683041926705090443330e-01), /* 3ffe3eb25d36cd539f20d478f5478203 */ - L(1.91974786921147072717621236192269859e-35), /* 3f8b9849040c45ec3f0a747597311038 */ - -/* x = 6.79687500000000000000000000000000000e-01 3ffe5c00000000000000000000000000 */ -/* cos(x) = 0.c71be181ecd6875ce2da5615a03cca207d9adcb9dfb0a1d6c40a4f0056437f1a59ccddd06ee */ - L(7.77769178600317903122203513685412863e-01), /* 3ffe8e37c303d9ad0eb9c5b4ac2b407a */ -L(-4.05296033424632846931240580239929672e-35), /* bf8caefc13291a31027af149dfad87fd */ -/* sin(x) = 0.a0e8a725d33c828c11fa50fd9e9a15ffecfad43f3e534358076b9b0f6865694842b1e8c67dc */ - L(6.28550001845029662028004327939032867e-01), /* 3ffe41d14e4ba679051823f4a1fb3d34 */ - L(1.65507421184028099672784511397428852e-35), /* 3f8b5ffecfad43f3e534358076b9b0f7 */ - -/* x = 6.87500000000000000000000000000000000e-01 3ffe6000000000000000000000000000 */ -/* cos(x) = 0.c5d882d2ee48030c7c07d28e981e34804f82ed4cf93655d2365389b716de6ad44676a1cc5da */ - L(7.72834946152471544810851845913425178e-01), /* 3ffe8bb105a5dc900618f80fa51d303c */ - L(3.94975229341211664237241534741146939e-35), /* 3f8ca4027c176a67c9b2ae91b29c4db9 */ -/* sin(x) = 0.a2759c0e79c35582527c32b55f5405c182c66160cb1d9eb7bb0b7cdf4ad66f317bda4332914 */ - L(6.34607080015269296850309914203671436e-01), /* 3ffe44eb381cf386ab04a4f8656abea8 */ - L(4.33025916939968369326060156455927002e-36), /* 3f897060b1985832c767adeec2df37d3 */ - -/* x = 6.95312500000000000000000000000000000e-01 3ffe6400000000000000000000000000 */ -/* cos(x) = 0.c4920cc2ec38fb891b38827db08884fc66371ac4c2052ca8885b981bbcfd3bb7b093ee31515 */ - L(7.67853543842850365879920759114193964e-01), /* 3ffe89241985d871f712367104fb6111 */ - L(3.75100035267325597157244776081706979e-36), /* 3f893f198dc6b130814b2a2216e606ef */ -/* sin(x) = 0.a400072188acf49cd6b173825e038346f105e1301afe642bcc364cea455e21e506e3e927ed8 */ - L(6.40625425040230409188409779413961021e-01), /* 3ffe48000e431159e939ad62e704bc07 */ - L(2.46542747294664049615806500747173281e-36), /* 3f88a37882f0980d7f3215e61b267523 */ - -/* x = 7.03125000000000000000000000000000000e-01 3ffe6800000000000000000000000000 */ -/* cos(x) = 0.c348846bbd3631338ffe2bfe9dd1381a35b4e9c0c51b4c13fe376bad1bf5caacc4542be0aa9 */ - L(7.62825275710576250507098753625429792e-01), /* 3ffe869108d77a6c62671ffc57fd3ba2 */ - L(4.22067411888601505004748939382325080e-35), /* 3f8cc0d1ada74e0628da609ff1bb5d69 */ -/* sin(x) = 0.a587e23555bb08086d02b9c662cdd29316c3e9bd08d93793634a21b1810cce73bdb97a99b9e */ - L(6.46604669591152370524042159882800763e-01), /* 3ffe4b0fc46aab761010da05738cc59c */ -L(-3.41742981816219412415674365946079826e-35), /* bf8c6b6749e0b217b9364364e5aef274 */ - -/* x = 7.10937500000000000000000000000000000e-01 3ffe6c00000000000000000000000000 */ -/* cos(x) = 0.c1fbeef380e4ffdd5a613ec8722f643ffe814ec2343e53adb549627224fdc9f2a7b77d3d69f */ - L(7.57750448655219342240234832230493361e-01), /* 3ffe83f7dde701c9ffbab4c27d90e45f */ -L(-2.08767968311222650582659938787920125e-35), /* bf8bbc0017eb13dcbc1ac524ab69d8de */ -/* sin(x) = 0.a70d272a76a8d4b6da0ec90712bb748b96dabf88c3079246f3db7eea6e58ead4ed0e2843303 */ - L(6.52544448725765956407573982284767763e-01), /* 3ffe4e1a4e54ed51a96db41d920e2577 */ -L(-8.61758060284379660697102362141557170e-36), /* bf8a6e8d24a80ee79f0db721849022b2 */ - -/* x = 7.18750000000000000000000000000000000e-01 3ffe7000000000000000000000000000 */ -/* cos(x) = 0.c0ac518c8b6ae710ba37a3eeb90cb15aebcb8bed4356fb507a48a6e97de9aa6d9660116b436 */ - L(7.52629372418066476054541324847143116e-01), /* 3ffe8158a31916d5ce21746f47dd7219 */ - L(3.71306958657663189665450864311104571e-35), /* 3f8c8ad75e5c5f6a1ab7da83d245374c */ -/* sin(x) = 0.a88fcfebd9a8dd47e2f3c76ef9e2439920f7e7fbe735f8bcc985491ec6f12a2d4214f8cfa99 */ - L(6.58444399910567541589583954884041989e-01), /* 3ffe511f9fd7b351ba8fc5e78eddf3c5 */ -L(-4.54412944084300330523721391865787219e-35), /* bf8ce336f840c020c6503a19b3d5b70a */ - -/* x = 7.26562500000000000000000000000000000e-01 3ffe7400000000000000000000000000 */ -/* cos(x) = 0.bf59b17550a4406875969296567cf3e3b4e483061877c02811c6cae85fad5a6c3da58f49292 */ - L(7.47462359563216166669700384714767552e-01), /* 3ffe7eb362eaa14880d0eb2d252cacfa */ -L(-9.11094340926220027288083639048016945e-36), /* bf8a8389636f9f3cf107fafdc726a2f4 */ -/* sin(x) = 0.aa0fd66eddb921232c28520d3911b8a03193b47f187f1471ac216fbcd5bb81029294d3a73f1 */ - L(6.64304163042946276515506587432846246e-01), /* 3ffe541facddbb7242465850a41a7223 */ - L(4.26004843895378210155889028714676019e-35), /* 3f8cc5018c9da3f8c3f8a38d610b7de7 */ - -/* x = 7.34375000000000000000000000000000000e-01 3ffe7800000000000000000000000000 */ -/* cos(x) = 0.be0413f84f2a771c614946a88cbf4da1d75a5560243de8f2283fefa0ea4a48468a52d51d8b3 */ - L(7.42249725458501306991347253449610537e-01), /* 3ffe7c0827f09e54ee38c2928d51197f */ -L(-3.78925270049800913539923473871287550e-35), /* bf8c92f1452d54fede10b86ebe0082f9 */ -/* sin(x) = 0.ab8d34b36acd987210ed343ec65d7e3adc2e7109fce43d55c8d57dfdf55b9e01d2cc1f1b9ec */ - L(6.70123380473162894654531583500648495e-01), /* 3ffe571a6966d59b30e421da687d8cbb */ -L(-1.33165852952743729897634069393684656e-36), /* bf87c523d18ef6031bc2aa372a82020b */ - -/* x = 7.42187500000000000000000000000000000e-01 3ffe7c00000000000000000000000000 */ -/* cos(x) = 0.bcab7e6bfb2a14a9b122c574a376bec98ab14808c64a4e731b34047e217611013ac99c0f25d */ - L(7.36991788256240741057089385586450844e-01), /* 3ffe7956fcd7f654295362458ae946ed */ - L(4.72358938637974850573747497460125519e-35), /* 3f8cf64c558a404632527398d9a023f1 */ -/* sin(x) = 0.ad07e4c409d08c4fa3a9057bb0ac24b8636e74e76f51e09bd6b2319707cbd9f5e254643897a */ - L(6.75901697026178809189642203142423973e-01), /* 3ffe5a0fc98813a1189f47520af76158 */ - L(2.76252586616364878801928456702948857e-35), /* 3f8c25c31b73a73b7a8f04deb5918cb8 */ - -/* x = 7.50000000000000000000000000000000000e-01 3ffe8000000000000000000000000000 */ -/* cos(x) = 0.bb4ff632a908f73ec151839cb9d993b4e0bfb8f20e7e44e6e4aee845e35575c3106dbe6fd06 */ - L(7.31688868873820886311838753000084529e-01), /* 3ffe769fec655211ee7d82a3073973b3 */ - L(1.48255637548931697184991710293198620e-35), /* 3f8b3b4e0bfb8f20e7e44e6e4aee845e */ -/* sin(x) = 0.ae7fe0b5fc786b2d966e1d6af140a488476747c2646425fc7533f532cd044cb10a971a49a6a */ - L(6.81638760023334166733241952779893908e-01), /* 3ffe5cffc16bf8f0d65b2cdc3ad5e281 */ - L(2.74838775935027549024224114338667371e-35), /* 3f8c24423b3a3e1323212fe3a99fa996 */ - -/* x = 7.57812500000000000000000000000000000e-01 3ffe8400000000000000000000000000 */ -/* cos(x) = 0.b9f180ba77dd0751628e135a9508299012230f14becacdd14c3f8862d122de5b56d55b53360 */ - L(7.26341290974108590410147630237598973e-01), /* 3ffe73e30174efba0ea2c51c26b52a10 */ - L(3.12683579338351123545814364980658990e-35), /* 3f8c4c80911878a5f6566e8a61fc4317 */ -/* sin(x) = 0.aff522a954f2ba16d9defdc416e33f5e9a5dfd5a6c228e0abc4d521327ff6e2517a7b3851dd */ - L(6.87334219303873534951703613035647220e-01), /* 3ffe5fea4552a9e5742db3bdfb882dc6 */ - L(4.76739454455410744997012795035529128e-35), /* 3f8cfaf4d2efead361147055e26a9099 */ - -/* x = 7.65625000000000000000000000000000000e-01 3ffe8800000000000000000000000000 */ -/* cos(x) = 0.b890237d3bb3c284b614a0539016bfa1053730bbdf940fa895e185f8e58884d3dda15e63371 */ - L(7.20949380945696418043812784148447688e-01), /* 3ffe712046fa776785096c2940a7202d */ - L(4.78691285733673379499536326050811832e-35), /* 3f8cfd0829b985defca07d44af0c2fc7 */ -/* sin(x) = 0.b167a4c90d63c4244cf5493b7cc23bd3c3c1225e078baa0c53d6d400b926281f537a1a260e6 */ - L(6.92987727246317910281815490823048210e-01), /* 3ffe62cf49921ac7884899ea9276f984 */ - L(4.50089871077663557180849219529189918e-35), /* 3f8cde9e1e0912f03c5d50629eb6a006 */ - -/* x = 7.73437500000000000000000000000000000e-01 3ffe8c00000000000000000000000000 */ -/* cos(x) = 0.b72be40067aaf2c050dbdb7a14c3d7d4f203f6b3f0224a4afe55d6ec8e92b508fd5c5984b3b */ - L(7.15513467882981573520620561289896903e-01), /* 3ffe6e57c800cf55e580a1b7b6f42988 */ -L(-3.02191815581445336509438104625489192e-35), /* bf8c41586fe04a607eedada80d51489c */ -/* sin(x) = 0.b2d7614b1f3aaa24df2d6e20a77e1ca3e6d838c03e29c1bcb026e6733324815fadc9eb89674 */ - L(6.98598938789681741301929277107891591e-01), /* 3ffe65aec2963e755449be5adc414efc */ - L(2.15465226809256290914423429408722521e-35), /* 3f8bca3e6d838c03e29c1bcb026e6733 */ - -/* x = 7.81250000000000000000000000000000000e-01 3ffe9000000000000000000000000000 */ -/* cos(x) = 0.b5c4c7d4f7dae915ac786ccf4b1a498d3e73b6e5e74fe7519d9c53ee6d6b90e881bddfc33e1 */ - L(7.10033883566079674974121643959490219e-01), /* 3ffe6b898fa9efb5d22b58f0d99e9635 */ -L(-4.09623224763692443220896752907902465e-35), /* bf8cb3960c6248d0c580c573131d608d */ -/* sin(x) = 0.b44452709a59752905913765434a59d111f0433eb2b133f7d103207e2aeb4aae111ddc385b3 */ - L(7.04167511454533672780059509973942844e-01), /* 3ffe6888a4e134b2ea520b226eca8695 */ -L(-2.87259372740393348676633610275598640e-35), /* bf8c3177707de60a6a76604177e6fc0f */ - -/* x = 7.89062500000000000000000000000000000e-01 3ffe9400000000000000000000000000 */ -/* cos(x) = 0.b45ad4975b1294cadca4cf40ec8f22a68cd14b175835239a37e63acb85e8e9505215df18140 */ - L(7.04510962440574606164129481545916976e-01), /* 3ffe68b5a92eb6252995b9499e81d91e */ - L(2.60682037357042658395360726992048803e-35), /* 3f8c1534668a58bac1a91cd1bf31d65c */ -/* sin(x) = 0.b5ae7285bc10cf515753847e8f8b7a30e0a580d929d770103509880680f7b8b0e8ad23b65d8 */ - L(7.09693105363899724959669028139035515e-01), /* 3ffe6b5ce50b78219ea2aea708fd1f17 */ -L(-4.37026016974122945368562319136420097e-36), /* bf8973c7d69fc9b58a23fbf2bd9dfe60 */ -}; diff --git a/sysdeps/ieee754/ldbl-128/w_expl_compat.c b/sysdeps/ieee754/ldbl-128/w_expl_compat.c deleted file mode 100644 index c32616e504..0000000000 --- a/sysdeps/ieee754/ldbl-128/w_expl_compat.c +++ /dev/null @@ -1,42 +0,0 @@ -/* w_expl.c -- long double version of w_exp.c. - * Conversion to long double by Ulrich Drepper, - * Cygnus Support, drepper@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#if defined(LIBM_SCCS) && !defined(lint) -static char rcsid[] = "$NetBSD: $"; -#endif - -/* - * wrapper expl(x) - */ - -#include <math.h> -#include <math_private.h> - -long double __expl(long double x) /* wrapper exp */ -{ -#ifdef _IEEE_LIBM - return __ieee754_expl(x); -#else - long double z = __ieee754_expl (x); - if (__glibc_unlikely (!isfinite (z) || z == 0) - && isfinite (x) && _LIB_VERSION != _IEEE_) - return __kernel_standard_l (x, x, 206 + !!signbit (x)); - - return z; -#endif -} -hidden_def (__expl) -weak_alias (__expl, expl) diff --git a/sysdeps/ieee754/ldbl-128/x2y2m1l.c b/sysdeps/ieee754/ldbl-128/x2y2m1l.c deleted file mode 100644 index d3f88331b5..0000000000 --- a/sysdeps/ieee754/ldbl-128/x2y2m1l.c +++ /dev/null @@ -1,76 +0,0 @@ -/* Compute x^2 + y^2 - 1, without large cancellation error. - Copyright (C) 2012-2017 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <math.h> -#include <math_private.h> -#include <mul_splitl.h> -#include <stdlib.h> - - -/* Calculate X + Y exactly and store the result in *HI + *LO. It is - given that |X| >= |Y| and the values are small enough that no - overflow occurs. */ - -static inline void -add_split (_Float128 *hi, _Float128 *lo, _Float128 x, _Float128 y) -{ - /* Apply Dekker's algorithm. */ - *hi = x + y; - *lo = (x - *hi) + y; -} - -/* Compare absolute values of floating-point values pointed to by P - and Q for qsort. */ - -static int -compare (const void *p, const void *q) -{ - _Float128 pld = fabsl (*(const _Float128 *) p); - _Float128 qld = fabsl (*(const _Float128 *) q); - if (pld < qld) - return -1; - else if (pld == qld) - return 0; - else - return 1; -} - -/* Return X^2 + Y^2 - 1, computed without large cancellation error. - It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >= - 0.5. */ - -_Float128 -__x2y2m1l (_Float128 x, _Float128 y) -{ - _Float128 vals[5]; - SET_RESTORE_ROUNDL (FE_TONEAREST); - mul_splitl (&vals[1], &vals[0], x, x); - mul_splitl (&vals[3], &vals[2], y, y); - vals[4] = -1; - qsort (vals, 5, sizeof (_Float128), compare); - /* Add up the values so that each element of VALS has absolute value - at most equal to the last set bit of the next nonzero - element. */ - for (size_t i = 0; i <= 3; i++) - { - add_split (&vals[i + 1], &vals[i], vals[i + 1], vals[i]); - qsort (vals + i + 1, 4 - i, sizeof (_Float128), compare); - } - /* Now any error from this addition will be small. */ - return vals[4] + vals[3] + vals[2] + vals[1] + vals[0]; -} |