summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/flt-32/s_cosf.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/flt-32/s_cosf.c')
-rw-r--r--sysdeps/ieee754/flt-32/s_cosf.c161
1 files changed, 49 insertions, 112 deletions
diff --git a/sysdeps/ieee754/flt-32/s_cosf.c b/sysdeps/ieee754/flt-32/s_cosf.c
index 061264d259..13b5ffead8 100644
--- a/sysdeps/ieee754/flt-32/s_cosf.c
+++ b/sysdeps/ieee754/flt-32/s_cosf.c
@@ -1,5 +1,5 @@
/* Compute cosine of argument.
- Copyright (C) 2017-2018 Free Software Foundation, Inc.
+ Copyright (C) 2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
@@ -16,10 +16,11 @@
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
-#include <errno.h>
+#include <stdint.h>
#include <math.h>
-#include <math_private.h>
+#include <math-barriers.h>
#include <libm-alias-float.h>
+#include "math_config.h"
#include "s_sincosf.h"
#ifndef COSF
@@ -28,121 +29,57 @@
# define COSF_FUNC COSF
#endif
+/* Fast cosf implementation. Worst-case ULP is 0.5607, maximum relative
+ error is 0.5303 * 2^-23. A single-step range reduction is used for
+ small values. Large inputs have their range reduced using fast integer
+ arithmetic.
+*/
float
-COSF_FUNC (float x)
+COSF_FUNC (float y)
{
- double theta = x;
- double abstheta = fabs (theta);
- if (isless (abstheta, M_PI_4))
+ double x = y;
+ double s;
+ int n;
+ const sincos_t *p = &__sincosf_table[0];
+
+ if (abstop12 (y) < abstop12 (pio4))
+ {
+ double x2 = x * x;
+
+ if (__glibc_unlikely (abstop12 (y) < abstop12 (0x1p-12f)))
+ return 1.0f;
+
+ return sinf_poly (x, x2, p, 1);
+ }
+ else if (__glibc_likely (abstop12 (y) < abstop12 (120.0f)))
{
- double cx;
- if (abstheta >= 0x1p-5)
- {
- const double theta2 = theta * theta;
- /* Chebyshev polynomial of the form for cos:
- * 1 + x^2 (C0 + x^2 (C1 + x^2 (C2 + x^2 (C3 + x^2 * C4)))). */
- cx = C3 + theta2 * C4;
- cx = C2 + theta2 * cx;
- cx = C1 + theta2 * cx;
- cx = C0 + theta2 * cx;
- cx = 1. + theta2 * cx;
- return cx;
- }
- else if (abstheta >= 0x1p-27)
- {
- /* A simpler Chebyshev approximation is close enough for this range:
- * 1 + x^2 (CC0 + x^3 * CC1). */
- const double theta2 = theta * theta;
- cx = CC0 + theta * theta2 * CC1;
- cx = 1.0 + theta2 * cx;
- return cx;
- }
- else
- {
- /* For small enough |theta|, this is close enough. */
- return 1.0 - abstheta;
- }
+ x = reduce_fast (x, p, &n);
+
+ /* Setup the signs for sin and cos. */
+ s = p->sign[n & 3];
+
+ if (n & 2)
+ p = &__sincosf_table[1];
+
+ return sinf_poly (x * s, x * x, p, n ^ 1);
}
- else /* |theta| >= Pi/4. */
+ else if (abstop12 (y) < abstop12 (INFINITY))
{
- if (isless (abstheta, 9 * M_PI_4))
- {
- /* There are cases where FE_UPWARD rounding mode can
- produce a result of abstheta * inv_PI_4 == 9,
- where abstheta < 9pi/4, so the domain for
- pio2_table must go to 5 (9 / 2 + 1). */
- unsigned int n = (abstheta * inv_PI_4) + 1;
- theta = abstheta - pio2_table[n / 2];
- return reduced_cos (theta, n);
- }
- else if (isless (abstheta, INFINITY))
- {
- if (abstheta < 0x1p+23)
- {
- unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
- double x = n / 2;
- theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
- /* Argument reduction needed. */
- return reduced_cos (theta, n);
- }
- else /* |theta| >= 2^23. */
- {
- x = fabsf (x);
- int exponent;
- GET_FLOAT_WORD (exponent, x);
- exponent = (exponent >> FLOAT_EXPONENT_SHIFT)
- - FLOAT_EXPONENT_BIAS;
- exponent += 3;
- exponent /= 28;
- double a = invpio4_table[exponent] * x;
- double b = invpio4_table[exponent + 1] * x;
- double c = invpio4_table[exponent + 2] * x;
- double d = invpio4_table[exponent + 3] * x;
- uint64_t l = a;
- l &= ~0x7;
- a -= l;
- double e = a + b;
- l = e;
- e = a - l;
- if (l & 1)
- {
- e -= 1.0;
- e += b;
- e += c;
- e += d;
- e *= M_PI_4;
- return reduced_cos (e, l + 1);
- }
- else
- {
- e += b;
- e += c;
- e += d;
- if (e <= 1.0)
- {
- e *= M_PI_4;
- return reduced_cos (e, l + 1);
- }
- else
- {
- l++;
- e -= 2.0;
- e *= M_PI_4;
- return reduced_cos (e, l + 1);
- }
- }
- }
- }
- else
- {
- int32_t ix;
- GET_FLOAT_WORD (ix, abstheta);
- /* cos(Inf or NaN) is NaN. */
- if (ix == 0x7f800000) /* Inf. */
- __set_errno (EDOM);
- return x - x;
- }
+ uint32_t xi = asuint (y);
+ int sign = xi >> 31;
+
+ x = reduce_large (xi, &n);
+
+ /* Setup signs for sin and cos - include original sign. */
+ s = p->sign[(n + sign) & 3];
+
+ if ((n + sign) & 2)
+ p = &__sincosf_table[1];
+
+ return sinf_poly (x * s, x * x, p, n ^ 1);
}
+ else
+ return __math_invalidf (y);
}
#ifndef COSF