summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64')
-rw-r--r--sysdeps/ieee754/dbl-64/Dist1
-rw-r--r--sysdeps/ieee754/dbl-64/dbl2mpn.c107
-rw-r--r--sysdeps/ieee754/dbl-64/e_acos.c144
-rw-r--r--sysdeps/ieee754/dbl-64/e_acosh.c69
-rw-r--r--sysdeps/ieee754/dbl-64/e_asin.c143
-rw-r--r--sysdeps/ieee754/dbl-64/e_atan2.c130
-rw-r--r--sysdeps/ieee754/dbl-64/e_atanh.c74
-rw-r--r--sysdeps/ieee754/dbl-64/e_cosh.c92
-rw-r--r--sysdeps/ieee754/dbl-64/e_exp.c162
-rw-r--r--sysdeps/ieee754/dbl-64/e_fmod.c140
-rw-r--r--sysdeps/ieee754/dbl-64/e_gamma_r.c51
-rw-r--r--sysdeps/ieee754/dbl-64/e_hypot.c128
-rw-r--r--sysdeps/ieee754/dbl-64/e_j0.c531
-rw-r--r--sysdeps/ieee754/dbl-64/e_j1.c532
-rw-r--r--sysdeps/ieee754/dbl-64/e_jn.c281
-rw-r--r--sysdeps/ieee754/dbl-64/e_lgamma_r.c314
-rw-r--r--sysdeps/ieee754/dbl-64/e_log.c165
-rw-r--r--sysdeps/ieee754/dbl-64/e_log10.c98
-rw-r--r--sysdeps/ieee754/dbl-64/e_pow.c352
-rw-r--r--sysdeps/ieee754/dbl-64/e_rem_pio2.c183
-rw-r--r--sysdeps/ieee754/dbl-64/e_remainder.c80
-rw-r--r--sysdeps/ieee754/dbl-64/e_sinh.c86
-rw-r--r--sysdeps/ieee754/dbl-64/e_sqrt.c452
-rw-r--r--sysdeps/ieee754/dbl-64/k_cos.c107
-rw-r--r--sysdeps/ieee754/dbl-64/k_rem_pio2.c320
-rw-r--r--sysdeps/ieee754/dbl-64/k_sin.c91
-rw-r--r--sysdeps/ieee754/dbl-64/k_tan.c145
-rw-r--r--sysdeps/ieee754/dbl-64/mpn2dbl.c46
-rw-r--r--sysdeps/ieee754/dbl-64/s_asinh.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_atan.c163
-rw-r--r--sysdeps/ieee754/dbl-64/s_cbrt.c76
-rw-r--r--sysdeps/ieee754/dbl-64/s_ceil.c85
-rw-r--r--sysdeps/ieee754/dbl-64/s_copysign.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_cos.c87
-rw-r--r--sysdeps/ieee754/dbl-64/s_erf.c431
-rw-r--r--sysdeps/ieee754/dbl-64/s_exp2.c129
-rw-r--r--sysdeps/ieee754/dbl-64/s_expm1.c243
-rw-r--r--sysdeps/ieee754/dbl-64/s_fabs.c40
-rw-r--r--sysdeps/ieee754/dbl-64/s_finite.c40
-rw-r--r--sysdeps/ieee754/dbl-64/s_floor.c86
-rw-r--r--sysdeps/ieee754/dbl-64/s_fpclassify.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_frexp.c64
-rw-r--r--sysdeps/ieee754/dbl-64/s_ilogb.c56
-rw-r--r--sysdeps/ieee754/dbl-64/s_isinf.c32
-rw-r--r--sysdeps/ieee754/dbl-64/s_isnan.c43
-rw-r--r--sysdeps/ieee754/dbl-64/s_llrint.c95
-rw-r--r--sysdeps/ieee754/dbl-64/s_llround.c81
-rw-r--r--sysdeps/ieee754/dbl-64/s_log1p.c191
-rw-r--r--sysdeps/ieee754/dbl-64/s_log2.c136
-rw-r--r--sysdeps/ieee754/dbl-64/s_logb.c47
-rw-r--r--sysdeps/ieee754/dbl-64/s_lrint.c95
-rw-r--r--sysdeps/ieee754/dbl-64/s_lround.c78
-rw-r--r--sysdeps/ieee754/dbl-64/s_modf.c85
-rw-r--r--sysdeps/ieee754/dbl-64/s_nearbyint.c98
-rw-r--r--sysdeps/ieee754/dbl-64/s_nexttoward.c1
-rw-r--r--sysdeps/ieee754/dbl-64/s_remquo.c113
-rw-r--r--sysdeps/ieee754/dbl-64/s_rint.c91
-rw-r--r--sysdeps/ieee754/dbl-64/s_round.c97
-rw-r--r--sysdeps/ieee754/dbl-64/s_scalbln.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_scalbn.c70
-rw-r--r--sysdeps/ieee754/dbl-64/s_signbit.c32
-rw-r--r--sysdeps/ieee754/dbl-64/s_sin.c87
-rw-r--r--sysdeps/ieee754/dbl-64/s_sincos.c78
-rw-r--r--sysdeps/ieee754/dbl-64/s_tan.c81
-rw-r--r--sysdeps/ieee754/dbl-64/s_tanh.c93
-rw-r--r--sysdeps/ieee754/dbl-64/s_trunc.c61
-rw-r--r--sysdeps/ieee754/dbl-64/t_exp.c436
-rw-r--r--sysdeps/ieee754/dbl-64/t_exp2.h585
-rw-r--r--sysdeps/ieee754/dbl-64/w_exp.c58
69 files changed, 9614 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/Dist b/sysdeps/ieee754/dbl-64/Dist
new file mode 100644
index 0000000000..1bb7be3537
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/Dist
@@ -0,0 +1 @@
+t_exp2.h
diff --git a/sysdeps/ieee754/dbl-64/dbl2mpn.c b/sysdeps/ieee754/dbl-64/dbl2mpn.c
new file mode 100644
index 0000000000..f7dead4936
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/dbl2mpn.c
@@ -0,0 +1,107 @@
+/* Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+#include <ieee754.h>
+#include <float.h>
+#include <stdlib.h>
+
+/* Convert a `double' in IEEE754 standard double-precision format to a
+ multi-precision integer representing the significand scaled up by its
+ number of bits (52 for double) and an integral power of two (MPN frexp). */
+
+mp_size_t
+__mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
+ int *expt, int *is_neg,
+ double value)
+{
+ union ieee754_double u;
+ u.d = value;
+
+ *is_neg = u.ieee.negative;
+ *expt = (int) u.ieee.exponent - IEEE754_DOUBLE_BIAS;
+
+#if BITS_PER_MP_LIMB == 32
+ res_ptr[0] = u.ieee.mantissa1; /* Low-order 32 bits of fraction. */
+ res_ptr[1] = u.ieee.mantissa0; /* High-order 20 bits. */
+ #define N 2
+#elif BITS_PER_MP_LIMB == 64
+ /* Hopefully the compiler will combine the two bitfield extracts
+ and this composition into just the original quadword extract. */
+ res_ptr[0] = ((unsigned long int) u.ieee.mantissa0 << 32) | u.ieee.mantissa1;
+ #define N 1
+#else
+ #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
+#endif
+/* The format does not fill the last limb. There are some zeros. */
+#define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \
+ - (DBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB)))
+
+ if (u.ieee.exponent == 0)
+ {
+ /* A biased exponent of zero is a special case.
+ Either it is a zero or it is a denormal number. */
+ if (res_ptr[0] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=2. */
+ /* It's zero. */
+ *expt = 0;
+ else
+ {
+ /* It is a denormal number, meaning it has no implicit leading
+ one bit, and its exponent is in fact the format minimum. */
+ int cnt;
+
+ if (res_ptr[N - 1] != 0)
+ {
+ count_leading_zeros (cnt, res_ptr[N - 1]);
+ cnt -= NUM_LEADING_ZEROS;
+#if N == 2
+ res_ptr[N - 1] = res_ptr[1] << cnt
+ | (N - 1)
+ * (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt));
+ res_ptr[0] <<= cnt;
+#else
+ res_ptr[N - 1] <<= cnt;
+#endif
+ *expt = DBL_MIN_EXP - 1 - cnt;
+ }
+ else
+ {
+ count_leading_zeros (cnt, res_ptr[0]);
+ if (cnt >= NUM_LEADING_ZEROS)
+ {
+ res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS);
+ res_ptr[0] = 0;
+ }
+ else
+ {
+ res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt);
+ res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt);
+ }
+ *expt = DBL_MIN_EXP - 1
+ - (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt;
+ }
+ }
+ }
+ else
+ /* Add the implicit leading one bit for a normalized number. */
+ res_ptr[N - 1] |= 1L << (DBL_MANT_DIG - 1 - ((N - 1) * BITS_PER_MP_LIMB));
+
+ return N;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_acos.c b/sysdeps/ieee754/dbl-64/e_acos.c
new file mode 100644
index 0000000000..eb4080a8b8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_acos.c
@@ -0,0 +1,144 @@
+/* @(#)e_acos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acos.c,v 1.9 1995/05/12 04:57:13 jtc Exp $";
+#endif
+
+/* __ieee754_acos(x)
+ * Method :
+ * acos(x) = pi/2 - asin(x)
+ * acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
+ * For x>0.5
+ * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ * = 2asin(sqrt((1-x)/2))
+ * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
+ * = 2f + (2c + 2s*z*R(z))
+ * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ * for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: __ieee754_sqrt
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define one qS[0]
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+ -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+ 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+ -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+ 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+ 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
+qS[] ={1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+ 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+ -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+ 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
+
+#ifdef __STDC__
+ double __ieee754_acos(double x)
+#else
+ double __ieee754_acos(x)
+ double x;
+#endif
+{
+ double z,p,q,r,w,s,c,df,p1,p2,p3,q1,q2,z2,z4,z6;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x3ff00000) { /* |x| >= 1 */
+ u_int32_t lx;
+ GET_LOW_WORD(lx,x);
+ if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
+ if(hx>0) return 0.0; /* acos(1) = 0 */
+ else return pi+2.0*pio2_lo; /* acos(-1)= pi */
+ }
+ return (x-x)/(x-x); /* acos(|x|>1) is NaN */
+ }
+ if(ix<0x3fe00000) { /* |x| < 0.5 */
+ if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+ p1 = z*pS[0]; z2=z*z;
+ p2 = pS[1]+z*pS[2]; z4=z2*z2;
+ p3 = pS[3]+z*pS[4]; z6=z4*z2;
+ q1 = one+z*qS[1];
+ q2 = qS[2]+z*qS[3];
+ p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ q = q1 + z2*q2 + z4*qS[4];
+#endif
+ r = p/q;
+ return pio2_hi - (x - (pio2_lo-x*r));
+ } else if (hx<0) { /* x < -0.5 */
+ z = (one+x)*0.5;
+#ifdef DO_NOT_USE_THIS
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+ p1 = z*pS[0]; z2=z*z;
+ p2 = pS[1]+z*pS[2]; z4=z2*z2;
+ p3 = pS[3]+z*pS[4]; z6=z4*z2;
+ q1 = one+z*qS[1];
+ q2 = qS[2]+z*qS[3];
+ p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ q = q1 + z2*q2 + z4*qS[4];
+#endif
+ s = __ieee754_sqrt(z);
+ r = p/q;
+ w = r*s-pio2_lo;
+ return pi - 2.0*(s+w);
+ } else { /* x > 0.5 */
+ z = (one-x)*0.5;
+ s = __ieee754_sqrt(z);
+ df = s;
+ SET_LOW_WORD(df,0);
+ c = (z-df*df)/(s+df);
+#ifdef DO_NOT_USE_THIS
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+#else
+ p1 = z*pS[0]; z2=z*z;
+ p2 = pS[1]+z*pS[2]; z4=z2*z2;
+ p3 = pS[3]+z*pS[4]; z6=z4*z2;
+ q1 = one+z*qS[1];
+ q2 = qS[2]+z*qS[3];
+ p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ q = q1 + z2*q2 + z4*qS[4];
+#endif
+ r = p/q;
+ w = r*s+c;
+ return 2.0*(df+w);
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/e_acosh.c b/sysdeps/ieee754/dbl-64/e_acosh.c
new file mode 100644
index 0000000000..27c29cd8c9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_acosh.c
@@ -0,0 +1,69 @@
+/* @(#)e_acosh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_acosh.c,v 1.9 1995/05/12 04:57:18 jtc Exp $";
+#endif
+
+/* __ieee754_acosh(x)
+ * Method :
+ * Based on
+ * acosh(x) = log [ x + sqrt(x*x-1) ]
+ * we have
+ * acosh(x) := log(x)+ln2, if x is large; else
+ * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+ * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ * acosh(x) is NaN with signal if x<1.
+ * acosh(NaN) is NaN without signal.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one = 1.0,
+ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
+
+#ifdef __STDC__
+ double __ieee754_acosh(double x)
+#else
+ double __ieee754_acosh(x)
+ double x;
+#endif
+{
+ double t;
+ int32_t hx;
+ u_int32_t lx;
+ EXTRACT_WORDS(hx,lx,x);
+ if(hx<0x3ff00000) { /* x < 1 */
+ return (x-x)/(x-x);
+ } else if(hx >=0x41b00000) { /* x > 2**28 */
+ if(hx >=0x7ff00000) { /* x is inf of NaN */
+ return x+x;
+ } else
+ return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
+ } else if(((hx-0x3ff00000)|lx)==0) {
+ return 0.0; /* acosh(1) = 0 */
+ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
+ t=x*x;
+ return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
+ } else { /* 1<x<2 */
+ t = x-one;
+ return __log1p(t+__sqrt(2.0*t+t*t));
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/e_asin.c b/sysdeps/ieee754/dbl-64/e_asin.c
new file mode 100644
index 0000000000..aa19598848
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_asin.c
@@ -0,0 +1,143 @@
+/* @(#)e_asin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_asin.c,v 1.9 1995/05/12 04:57:22 jtc Exp $";
+#endif
+
+/* __ieee754_asin(x)
+ * Method :
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ * we approximate asin(x) on [0,0.5] by
+ * asin(x) = x + x*x^2*R(x^2)
+ * where
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ * and its remez error is bounded by
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ * For x in [0.5,1]
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ * then for x>0.98
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then
+ * f = hi part of s;
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
+ * and
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+
+#include "math.h"
+#include "math_private.h"
+#define one qS[0]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge = 1.000e+300,
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+ /* coefficient for R(x^2) */
+pS[] = {1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+ -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+ 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+ -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+ 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+ 3.47933107596021167570e-05}, /* 0x3F023DE1, 0x0DFDF709 */
+qS[] = {1.0, -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+ 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+ -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+ 7.70381505559019352791e-02}; /* 0x3FB3B8C5, 0xB12E9282 */
+
+#ifdef __STDC__
+ double __ieee754_asin(double x)
+#else
+ double __ieee754_asin(x)
+ double x;
+#endif
+{
+ double t,w,p,q,c,r,s,p1,p2,p3,q1,q2,z2,z4,z6;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>= 0x3ff00000) { /* |x|>= 1 */
+ u_int32_t lx;
+ GET_LOW_WORD(lx,x);
+ if(((ix-0x3ff00000)|lx)==0)
+ /* asin(1)=+-pi/2 with inexact */
+ return x*pio2_hi+x*pio2_lo;
+ return (x-x)/(x-x); /* asin(|x|>1) is NaN */
+ } else if (ix<0x3fe00000) { /* |x|<0.5 */
+ if(ix<0x3e400000) { /* if |x| < 2**-27 */
+ if(huge+x>one) return x;/* return x with inexact if x!=0*/
+ } else {
+ t = x*x;
+#ifdef DO_NOT_USE_THIS
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+#else
+ p1 = t*pS[0]; z2=t*t;
+ p2 = pS[1]+t*pS[2]; z4=z2*z2;
+ p3 = pS[3]+t*pS[4]; z6=z4*z2;
+ q1 = one+t*qS[1];
+ q2 = qS[2]+t*qS[3];
+ p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ q = q1 + z2*q2 + z4*qS[4];
+#endif
+ w = p/q;
+ return x+x*w;
+ }
+ }
+ /* 1> |x|>= 0.5 */
+ w = one-fabs(x);
+ t = w*0.5;
+#ifdef DO_NOT_USE_THIS
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+#else
+ p1 = t*pS[0]; z2=t*t;
+ p2 = pS[1]+t*pS[2]; z4=z2*z2;
+ p3 = pS[3]+t*pS[4]; z6=z4*z2;
+ q1 = one+t*qS[1];
+ q2 = qS[2]+t*qS[3];
+ p = p1 + z2*p2 + z4*p3 + z6*pS[5];
+ q = q1 + z2*q2 + z4*qS[4];
+#endif
+ s = __ieee754_sqrt(t);
+ if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
+ w = p/q;
+ t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
+ } else {
+ w = s;
+ SET_LOW_WORD(w,0);
+ c = (t-w*w)/(s+w);
+ r = p/q;
+ p = 2.0*s*r-(pio2_lo-2.0*c);
+ q = pio4_hi-2.0*w;
+ t = pio4_hi-(p-q);
+ }
+ if(hx>0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_atan2.c b/sysdeps/ieee754/dbl-64/e_atan2.c
new file mode 100644
index 0000000000..ae7d759a9f
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_atan2.c
@@ -0,0 +1,130 @@
+/* @(#)e_atan2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atan2.c,v 1.8 1995/05/10 20:44:51 jtc Exp $";
+#endif
+
+/* __ieee754_atan2(y,x)
+ * Method :
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ * 2. Reduce x to positive by (if x and y are unexceptional):
+ * ARG (x+iy) = arctan(y/x) ... if x > 0,
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
+ *
+ * Special cases:
+ *
+ * ATAN2((anything), NaN ) is NaN;
+ * ATAN2(NAN , (anything) ) is NaN;
+ * ATAN2(+-0, +(anything but NaN)) is +-0 ;
+ * ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ * ATAN2(+-INF,+INF ) is +-pi/4 ;
+ * ATAN2(+-INF,-INF ) is +-3pi/4;
+ * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+tiny = 1.0e-300,
+zero = 0.0,
+pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
+pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
+pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
+pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+#ifdef __STDC__
+ double __ieee754_atan2(double y, double x)
+#else
+ double __ieee754_atan2(y,x)
+ double y,x;
+#endif
+{
+ double z;
+ int32_t k,m,hx,hy,ix,iy;
+ u_int32_t lx,ly;
+
+ EXTRACT_WORDS(hx,lx,x);
+ ix = hx&0x7fffffff;
+ EXTRACT_WORDS(hy,ly,y);
+ iy = hy&0x7fffffff;
+ if(((ix|((lx|-lx)>>31))>0x7ff00000)||
+ ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
+ return x+y;
+ if(((hx-0x3ff00000)|lx)==0) return __atan(y); /* x=1.0 */
+ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
+
+ /* when y = 0 */
+ if((iy|ly)==0) {
+ switch(m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return pi+tiny;/* atan(+0,-anything) = pi */
+ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+ }
+ }
+ /* when x = 0 */
+ if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* when x is INF */
+ if(ix==0x7ff00000) {
+ if(iy==0x7ff00000) {
+ switch(m) {
+ case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
+ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+ case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+ case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+ }
+ } else {
+ switch(m) {
+ case 0: return zero ; /* atan(+...,+INF) */
+ case 1: return -zero ; /* atan(-...,+INF) */
+ case 2: return pi+tiny ; /* atan(+...,-INF) */
+ case 3: return -pi-tiny ; /* atan(-...,-INF) */
+ }
+ }
+ }
+ /* when y is INF */
+ if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* compute y/x */
+ k = (iy-ix)>>20;
+ if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
+ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
+ else z=__atan(fabs(y/x)); /* safe to do y/x */
+ switch (m) {
+ case 0: return z ; /* atan(+,+) */
+ case 1: {
+ u_int32_t zh;
+ GET_HIGH_WORD(zh,z);
+ SET_HIGH_WORD(z,zh ^ 0x80000000);
+ }
+ return z ; /* atan(-,+) */
+ case 2: return pi-(z-pi_lo);/* atan(+,-) */
+ default: /* case 3 */
+ return (z-pi_lo)-pi;/* atan(-,-) */
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/e_atanh.c b/sysdeps/ieee754/dbl-64/e_atanh.c
new file mode 100644
index 0000000000..fa4fe675c9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_atanh.c
@@ -0,0 +1,74 @@
+/* @(#)e_atanh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_atanh.c,v 1.8 1995/05/10 20:44:55 jtc Exp $";
+#endif
+
+/* __ieee754_atanh(x)
+ * Method :
+ * 1.Reduced x to positive by atanh(-x) = -atanh(x)
+ * 2.For x>=0.5
+ * 1 2x x
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ * 2 1 - x 1 - x
+ *
+ * For x<0.5
+ * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
+ *
+ * Special cases:
+ * atanh(x) is NaN if |x| > 1 with signal;
+ * atanh(NaN) is that NaN with no signal;
+ * atanh(+-1) is +-INF with signal.
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, huge = 1e300;
+#else
+static double one = 1.0, huge = 1e300;
+#endif
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_atanh(double x)
+#else
+ double __ieee754_atanh(x)
+ double x;
+#endif
+{
+ double t;
+ int32_t hx,ix;
+ u_int32_t lx;
+ EXTRACT_WORDS(hx,lx,x);
+ ix = hx&0x7fffffff;
+ if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
+ return (x-x)/(x-x);
+ if(ix==0x3ff00000)
+ return x/zero;
+ if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
+ SET_HIGH_WORD(x,ix);
+ if(ix<0x3fe00000) { /* x < 0.5 */
+ t = x+x;
+ t = 0.5*__log1p(t+t*x/(one-x));
+ } else
+ t = 0.5*__log1p((x+x)/(one-x));
+ if(hx>=0) return t; else return -t;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_cosh.c b/sysdeps/ieee754/dbl-64/e_cosh.c
new file mode 100644
index 0000000000..65106b9989
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_cosh.c
@@ -0,0 +1,92 @@
+/* @(#)e_cosh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_cosh.c,v 1.7 1995/05/10 20:44:58 jtc Exp $";
+#endif
+
+/* __ieee754_cosh(x)
+ * Method :
+ * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+ * 1. Replace x by |x| (cosh(x) = cosh(-x)).
+ * 2.
+ * [ exp(x) - 1 ]^2
+ * 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
+ * 2*exp(x)
+ *
+ * exp(x) + 1/exp(x)
+ * ln2/2 <= x <= 22 : cosh(x) := -------------------
+ * 2
+ * 22 <= x <= lnovft : cosh(x) := exp(x)/2
+ * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
+ * ln2ovft < x : cosh(x) := huge*huge (overflow)
+ *
+ * Special cases:
+ * cosh(x) is |x| if x is +INF, -INF, or NaN.
+ * only cosh(0)=1 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, half=0.5, huge = 1.0e300;
+#else
+static double one = 1.0, half=0.5, huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_cosh(double x)
+#else
+ double __ieee754_cosh(x)
+ double x;
+#endif
+{
+ double t,w;
+ int32_t ix;
+ u_int32_t lx;
+
+ /* High word of |x|. */
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) return x*x;
+
+ /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+ if(ix<0x3fd62e43) {
+ t = __expm1(fabs(x));
+ w = one+t;
+ if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
+ return one+(t*t)/(w+w);
+ }
+
+ /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+ if (ix < 0x40360000) {
+ t = __ieee754_exp(fabs(x));
+ return half*t+half/t;
+ }
+
+ /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+ if (ix < 0x40862e42) return half*__ieee754_exp(fabs(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ GET_LOW_WORD(lx,x);
+ if (ix<0x408633ce || ((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d))) {
+ w = __ieee754_exp(half*fabs(x));
+ t = half*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, cosh(x) overflow */
+ return huge*huge;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c
new file mode 100644
index 0000000000..ee0b22f6ae
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_exp.c
@@ -0,0 +1,162 @@
+/* Double-precision floating point e^x.
+ Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* How this works:
+ The basic design here is from
+ Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+ Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+ 17 (1), March 1991, pp. 26-45.
+
+ The input value, x, is written as
+
+ x = n * ln(2)_0 + t/512 + delta[t] + x + n * ln(2)_1
+
+ where:
+ - n is an integer, 1024 >= n >= -1075;
+ - ln(2)_0 is the first 43 bits of ln(2), and ln(2)_1 is the remainder, so
+ that |ln(2)_1| < 2^-32;
+ - t is an integer, 177 >= t >= -177
+ - delta is based on a table entry, delta[t] < 2^-28
+ - x is whatever is left, |x| < 2^-10
+
+ Then e^x is approximated as
+
+ e^x = 2^n_1 ( 2^n_0 e^(t/512 + delta[t])
+ + ( 2^n_0 e^(t/512 + delta[t])
+ * ( p(x + n * ln(2)_1)
+ - n*ln(2)_1
+ - n*ln(2)_1 * p(x + n * ln(2)_1) ) ) )
+
+ where
+ - p(x) is a polynomial approximating e(x)-1;
+ - e^(t/512 + delta[t]) is obtained from a table;
+ - n_1 + n_0 = n, so that |n_0| < DBL_MIN_EXP-1.
+
+ If it happens that n_1 == 0 (this is the usual case), that multiplication
+ is omitted.
+ */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+extern const float __exp_deltatable[178];
+extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
+
+static const volatile double TWO1023 = 8.988465674311579539e+307;
+static const volatile double TWOM1000 = 9.3326361850321887899e-302;
+
+double
+__ieee754_exp (double x)
+{
+ static const double himark = 709.7827128933840868;
+ static const double lomark = -745.1332191019412221;
+ /* Check for usual case. */
+ if (isless (x, himark) && isgreater (x, lomark))
+ {
+ static const double THREEp42 = 13194139533312.0;
+ static const double THREEp51 = 6755399441055744.0;
+ /* 1/ln(2). */
+ static const double M_1_LN2 = 1.442695040888963387;
+ /* ln(2), part 1 */
+ static const double M_LN2_0 = .6931471805598903302;
+ /* ln(2), part 2 */
+ static const double M_LN2_1 = 5.497923018708371155e-14;
+
+ int tval, unsafe, n_i;
+ double x22, n, t, dely, result;
+ union ieee754_double ex2_u, scale_u;
+ fenv_t oldenv;
+
+ feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+ fesetround (FE_TONEAREST);
+#endif
+
+ /* Calculate n. */
+ n = x * M_1_LN2 + THREEp51;
+ n -= THREEp51;
+ x = x - n*M_LN2_0;
+
+ /* Calculate t/512. */
+ t = x + THREEp42;
+ t -= THREEp42;
+ x -= t;
+
+ /* Compute tval = t. */
+ tval = (int) (t * 512.0);
+
+ if (t >= 0)
+ x -= __exp_deltatable[tval];
+ else
+ x += __exp_deltatable[-tval];
+
+ /* Now, the variable x contains x + n*ln(2)_1. */
+ dely = n*M_LN2_1;
+
+ /* Compute ex2 = 2^n_0 e^(t/512+delta[t]). */
+ ex2_u.d = __exp_atable[tval+177];
+ n_i = (int)n;
+ /* 'unsafe' is 1 iff n_1 != 0. */
+ unsafe = abs(n_i) >= -DBL_MIN_EXP - 1;
+ ex2_u.ieee.exponent += n_i >> unsafe;
+
+ /* Compute scale = 2^n_1. */
+ scale_u.d = 1.0;
+ scale_u.ieee.exponent += n_i - (n_i >> unsafe);
+
+ /* Approximate e^x2 - 1, using a fourth-degree polynomial,
+ with maximum error in [-2^-10-2^-28,2^-10+2^-28]
+ less than 4.9e-19. */
+ x22 = (((0.04166666898464281565
+ * x + 0.1666666766008501610)
+ * x + 0.499999999999990008)
+ * x + 0.9999999999999976685) * x;
+ /* Allow for impact of dely. */
+ x22 -= dely + dely*x22;
+
+ /* Return result. */
+ fesetenv (&oldenv);
+
+ result = x22 * ex2_u.d + ex2_u.d;
+ if (!unsafe)
+ return result;
+ else
+ return result * scale_u.d;
+ }
+ /* Exceptional cases: */
+ else if (isless (x, himark))
+ {
+ if (__isinf (x))
+ /* e^-inf == 0, with no error. */
+ return 0;
+ else
+ /* Underflow */
+ return TWOM1000 * TWOM1000;
+ }
+ else
+ /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
+ return TWO1023*x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_fmod.c b/sysdeps/ieee754/dbl-64/e_fmod.c
new file mode 100644
index 0000000000..2ce613574a
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_fmod.c
@@ -0,0 +1,140 @@
+/* @(#)e_fmod.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_fmod.c,v 1.8 1995/05/10 20:45:07 jtc Exp $";
+#endif
+
+/*
+ * __ieee754_fmod(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, Zero[] = {0.0, -0.0,};
+#else
+static double one = 1.0, Zero[] = {0.0, -0.0,};
+#endif
+
+#ifdef __STDC__
+ double __ieee754_fmod(double x, double y)
+#else
+ double __ieee754_fmod(x,y)
+ double x,y ;
+#endif
+{
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+ u_int32_t lx,ly,lz;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+
+ /* purge off exception values */
+ if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
+ ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
+ return (x*y)/(x*y);
+ if(hx<=hy) {
+ if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
+ if(lx==ly)
+ return Zero[(u_int32_t)sx>>31]; /* |x|=|y| return x*0*/
+ }
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00100000) { /* subnormal x */
+ if(hx==0) {
+ for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
+ } else {
+ for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
+ }
+ } else ix = (hx>>20)-1023;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00100000) { /* subnormal y */
+ if(hy==0) {
+ for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
+ } else {
+ for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
+ }
+ } else iy = (hy>>20)-1023;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -1022)
+ hx = 0x00100000|(0x000fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -1022-ix;
+ if(n<=31) {
+ hx = (hx<<n)|(lx>>(32-n));
+ lx <<= n;
+ } else {
+ hx = lx<<(n-32);
+ lx = 0;
+ }
+ }
+ if(iy >= -1022)
+ hy = 0x00100000|(0x000fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -1022-iy;
+ if(n<=31) {
+ hy = (hy<<n)|(ly>>(32-n));
+ ly <<= n;
+ } else {
+ hy = ly<<(n-32);
+ ly = 0;
+ }
+ }
+
+ /* fix point fmod */
+ n = ix - iy;
+ while(n--) {
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
+ else {
+ if((hz|lz)==0) /* return sign(x)*0 */
+ return Zero[(u_int32_t)sx>>31];
+ hx = hz+hz+(lz>>31); lx = lz+lz;
+ }
+ }
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz>=0) {hx=hz;lx=lz;}
+
+ /* convert back to floating value and restore the sign */
+ if((hx|lx)==0) /* return sign(x)*0 */
+ return Zero[(u_int32_t)sx>>31];
+ while(hx<0x00100000) { /* normalize x */
+ hx = hx+hx+(lx>>31); lx = lx+lx;
+ iy -= 1;
+ }
+ if(iy>= -1022) { /* normalize output */
+ hx = ((hx-0x00100000)|((iy+1023)<<20));
+ INSERT_WORDS(x,hx|sx,lx);
+ } else { /* subnormal output */
+ n = -1022 - iy;
+ if(n<=20) {
+ lx = (lx>>n)|((u_int32_t)hx<<(32-n));
+ hx >>= n;
+ } else if (n<=31) {
+ lx = (hx<<(32-n))|(lx>>n); hx = sx;
+ } else {
+ lx = hx>>(n-32); hx = sx;
+ }
+ INSERT_WORDS(x,hx|sx,lx);
+ x *= one; /* create necessary signal */
+ }
+ return x; /* exact output */
+}
diff --git a/sysdeps/ieee754/dbl-64/e_gamma_r.c b/sysdeps/ieee754/dbl-64/e_gamma_r.c
new file mode 100644
index 0000000000..bd802c24f1
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_gamma_r.c
@@ -0,0 +1,51 @@
+/* Implementation of gamma function according to ISO C.
+ Copyright (C) 1997, 1999 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+#include <math_private.h>
+
+
+double
+__ieee754_gamma_r (double x, int *signgamp)
+{
+ /* We don't have a real gamma implementation now. We'll use lgamma
+ and the exp function. But due to the required boundary
+ conditions we must check some values separately. */
+ int32_t hx;
+ u_int32_t lx;
+
+ EXTRACT_WORDS (hx, lx, x);
+
+ if (((hx & 0x7fffffff) | lx) == 0)
+ {
+ /* Return value for x == 0 is NaN with invalid exception. */
+ *signgamp = 0;
+ return x / x;
+ }
+ if (hx < 0 && (u_int32_t) hx < 0xfff00000 && __rint (x) == x)
+ {
+ /* Return value for integer x < 0 is NaN with invalid exception. */
+ *signgamp = 0;
+ return (x - x) / (x - x);
+ }
+
+ /* XXX FIXME. */
+ return __ieee754_exp (__ieee754_lgamma_r (x, signgamp));
+}
diff --git a/sysdeps/ieee754/dbl-64/e_hypot.c b/sysdeps/ieee754/dbl-64/e_hypot.c
new file mode 100644
index 0000000000..76a77ec33a
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_hypot.c
@@ -0,0 +1,128 @@
+/* @(#)e_hypot.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_hypot.c,v 1.9 1995/05/12 04:57:27 jtc Exp $";
+#endif
+
+/* __ieee754_hypot(x,y)
+ *
+ * Method :
+ * If (assume round-to-nearest) z=x*x+y*y
+ * has error less than sqrt(2)/2 ulp, than
+ * sqrt(z) has error less than 1 ulp (exercise).
+ *
+ * So, compute sqrt(x*x+y*y) with some care as
+ * follows to get the error below 1 ulp:
+ *
+ * Assume x>y>0;
+ * (if possible, set rounding to round-to-nearest)
+ * 1. if x > 2y use
+ * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
+ * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
+ * 2. if x <= 2y use
+ * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
+ * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
+ * y1= y with lower 32 bits chopped, y2 = y-y1.
+ *
+ * NOTE: scaling may be necessary if some argument is too
+ * large or too tiny
+ *
+ * Special cases:
+ * hypot(x,y) is INF if x or y is +INF or -INF; else
+ * hypot(x,y) is NAN if x or y is NAN.
+ *
+ * Accuracy:
+ * hypot(x,y) returns sqrt(x^2+y^2) with error less
+ * than 1 ulps (units in the last place)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __ieee754_hypot(double x, double y)
+#else
+ double __ieee754_hypot(x,y)
+ double x, y;
+#endif
+{
+ double a,b,t1,t2,y1,y2,w;
+ int32_t j,k,ha,hb;
+
+ GET_HIGH_WORD(ha,x);
+ ha &= 0x7fffffff;
+ GET_HIGH_WORD(hb,y);
+ hb &= 0x7fffffff;
+ if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
+ SET_HIGH_WORD(a,ha); /* a <- |a| */
+ SET_HIGH_WORD(b,hb); /* b <- |b| */
+ if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
+ k=0;
+ if(ha > 0x5f300000) { /* a>2**500 */
+ if(ha >= 0x7ff00000) { /* Inf or NaN */
+ u_int32_t low;
+ w = a+b; /* for sNaN */
+ GET_LOW_WORD(low,a);
+ if(((ha&0xfffff)|low)==0) w = a;
+ GET_LOW_WORD(low,b);
+ if(((hb^0x7ff00000)|low)==0) w = b;
+ return w;
+ }
+ /* scale a and b by 2**-600 */
+ ha -= 0x25800000; hb -= 0x25800000; k += 600;
+ SET_HIGH_WORD(a,ha);
+ SET_HIGH_WORD(b,hb);
+ }
+ if(hb < 0x20b00000) { /* b < 2**-500 */
+ if(hb <= 0x000fffff) { /* subnormal b or 0 */
+ u_int32_t low;
+ GET_LOW_WORD(low,b);
+ if((hb|low)==0) return a;
+ t1=0;
+ SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
+ b *= t1;
+ a *= t1;
+ k -= 1022;
+ } else { /* scale a and b by 2^600 */
+ ha += 0x25800000; /* a *= 2^600 */
+ hb += 0x25800000; /* b *= 2^600 */
+ k -= 600;
+ SET_HIGH_WORD(a,ha);
+ SET_HIGH_WORD(b,hb);
+ }
+ }
+ /* medium size a and b */
+ w = a-b;
+ if (w>b) {
+ t1 = 0;
+ SET_HIGH_WORD(t1,ha);
+ t2 = a-t1;
+ w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
+ } else {
+ a = a+a;
+ y1 = 0;
+ SET_HIGH_WORD(y1,hb);
+ y2 = b - y1;
+ t1 = 0;
+ SET_HIGH_WORD(t1,ha+0x00100000);
+ t2 = a - t1;
+ w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+ }
+ if(k!=0) {
+ u_int32_t high;
+ t1 = 1.0;
+ GET_HIGH_WORD(high,t1);
+ SET_HIGH_WORD(t1,high+(k<<20));
+ return t1*w;
+ } else return w;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_j0.c b/sysdeps/ieee754/dbl-64/e_j0.c
new file mode 100644
index 0000000000..55e8294bb9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_j0.c
@@ -0,0 +1,531 @@
+/* @(#)e_j0.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j0.c,v 1.8 1995/05/10 20:45:23 jtc Exp $";
+#endif
+
+/* __ieee754_j0(x), __ieee754_y0(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j0(x):
+ * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
+ * 2. Reduce x to |x| since j0(x)=j0(-x), and
+ * for x in (0,2)
+ * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
+ * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
+ * for x in (2,inf)
+ * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * as follow:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (cos(x) + sin(x))
+ * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j0(nan)= nan
+ * j0(0) = 1
+ * j0(inf) = 0
+ *
+ * Method -- y0(x):
+ * 1. For x<2.
+ * Since
+ * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
+ * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
+ * We use the following function to approximate y0,
+ * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
+ * where
+ * U(z) = u00 + u01*z + ... + u06*z^6
+ * V(z) = 1 + v01*z + ... + v04*z^4
+ * with absolute approximation error bounded by 2**-72.
+ * Note: For tiny x, U/V = u0 and j0(x)~1, hence
+ * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
+ * 2. For x>=2.
+ * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
+ * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
+ * by the method mentioned above.
+ * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static double pzero(double), qzero(double);
+#else
+static double pzero(), qzero();
+#endif
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge = 1e300,
+one = 1.0,
+invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+ /* R0/S0 on [0, 2.00] */
+R[] = {0.0, 0.0, 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
+ -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
+ 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
+ -4.61832688532103189199e-09}, /* 0xBE33D5E7, 0x73D63FCE */
+S[] = {0.0, 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
+ 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
+ 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
+ 1.16614003333790000205e-09}; /* 0x3E1408BC, 0xF4745D8F */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_j0(double x)
+#else
+ double __ieee754_j0(x)
+ double x;
+#endif
+{
+ double z, s,c,ss,cc,r,u,v,r1,r2,s1,s2,z2,z4;
+ int32_t hx,ix;
+
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) return one/(x*x);
+ x = fabs(x);
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ s = __sin(x);
+ c = __cos(x);
+ ss = s-c;
+ cc = s+c;
+ if(ix<0x7fe00000) { /* make sure x+x not overflow */
+ z = -__cos(x+x);
+ if ((s*c)<zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
+ else {
+ u = pzero(x); v = qzero(x);
+ z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
+ }
+ return z;
+ }
+ if(ix<0x3f200000) { /* |x| < 2**-13 */
+ if(huge+x>one) { /* raise inexact if x != 0 */
+ if(ix<0x3e400000) return one; /* |x|<2**-27 */
+ else return one - 0.25*x*x;
+ }
+ }
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ r = z*(R02+z*(R03+z*(R04+z*R05)));
+ s = one+z*(S01+z*(S02+z*(S03+z*S04)));
+#else
+ r1 = z*R[2]; z2=z*z;
+ r2 = R[3]+z*R[4]; z4=z2*z2;
+ r = r1 + z2*r2 + z4*R[5];
+ s1 = one+z*S[1];
+ s2 = S[2]+z*S[3];
+ s = s1 + z2*s2 + z4*S[4];
+#endif
+ if(ix < 0x3FF00000) { /* |x| < 1.00 */
+ return one + z*(-0.25+(r/s));
+ } else {
+ u = 0.5*x;
+ return((one+u)*(one-u)+z*(r/s));
+ }
+}
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+U[] = {-7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
+ 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
+ -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
+ 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
+ -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
+ 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
+ -3.98205194132103398453e-11}, /* 0xBDC5E43D, 0x693FB3C8 */
+V[] = {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
+ 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
+ 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
+ 4.41110311332675467403e-10}; /* 0x3DFE5018, 0x3BD6D9EF */
+
+#ifdef __STDC__
+ double __ieee754_y0(double x)
+#else
+ double __ieee754_y0(x)
+ double x;
+#endif
+{
+ double z, s,c,ss,cc,u,v,z2,z4,z6,u1,u2,u3,v1,v2;
+ int32_t hx,ix,lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+ ix = 0x7fffffff&hx;
+ /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
+ if(ix>=0x7ff00000) return one/(x+x*x);
+ if((ix|lx)==0) return -one/zero;
+ if(hx<0) return zero/zero;
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
+ * where x0 = x-pi/4
+ * Better formula:
+ * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
+ * = 1/sqrt(2) * (sin(x) + cos(x))
+ * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.
+ */
+ s = __sin(x);
+ c = __cos(x);
+ ss = s-c;
+ cc = s+c;
+ /*
+ * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+ * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+ */
+ if(ix<0x7fe00000) { /* make sure x+x not overflow */
+ z = -__cos(x+x);
+ if ((s*c)<zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+ else {
+ u = pzero(x); v = qzero(x);
+ z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+ }
+ return z;
+ }
+ if(ix<=0x3e400000) { /* x < 2**-27 */
+ return(U[0] + tpi*__ieee754_log(x));
+ }
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
+ v = one+z*(v01+z*(v02+z*(v03+z*v04)));
+#else
+ u1 = U[0]+z*U[1]; z2=z*z;
+ u2 = U[2]+z*U[3]; z4=z2*z2;
+ u3 = U[4]+z*U[5]; z6=z4*z2;
+ u = u1 + z2*u2 + z4*u3 + z6*U[6];
+ v1 = one+z*V[0];
+ v2 = V[1]+z*V[2];
+ v = v1 + z2*v2 + z4*V[3];
+#endif
+ return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
+}
+
+/* The asymptotic expansions of pzero is
+ * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
+ * For x >= 2, We approximate pzero by
+ * pzero(x) = 1 + (R/S)
+ * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
+ * S = 1 + pS0*s^2 + ... + pS4*s^10
+ * and
+ * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
+ */
+#ifdef __STDC__
+static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+ -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+ -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+ -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+ -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+};
+#ifdef __STDC__
+static const double pS8[5] = {
+#else
+static double pS8[5] = {
+#endif
+ 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+ 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+ 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+ 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+ 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+};
+
+#ifdef __STDC__
+static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+ -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+ -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+ -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+ -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+ -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+};
+#ifdef __STDC__
+static const double pS5[5] = {
+#else
+static double pS5[5] = {
+#endif
+ 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+ 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+ 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+ 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+ 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+};
+
+#ifdef __STDC__
+static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+ -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+ -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+ -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+ -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+ -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+};
+#ifdef __STDC__
+static const double pS3[5] = {
+#else
+static double pS3[5] = {
+#endif
+ 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+ 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+ 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+ 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+ 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+};
+
+#ifdef __STDC__
+static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+ -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+ -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+ -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+ -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+ -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+};
+#ifdef __STDC__
+static const double pS2[5] = {
+#else
+static double pS2[5] = {
+#endif
+ 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+ 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+ 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+ 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+ 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+};
+
+#ifdef __STDC__
+ static double pzero(double x)
+#else
+ static double pzero(x)
+ double x;
+#endif
+{
+#ifdef __STDC__
+ const double *p,*q;
+#else
+ double *p,*q;
+#endif
+ double z,r,s,z2,z4,r1,r2,r3,s1,s2,s3;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x40200000) {p = pR8; q= pS8;}
+ else if(ix>=0x40122E8B){p = pR5; q= pS5;}
+ else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
+ else if(ix>=0x40000000){p = pR2; q= pS2;}
+ z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+#else
+ r1 = p[0]+z*p[1]; z2=z*z;
+ r2 = p[2]+z*p[3]; z4=z2*z2;
+ r3 = p[4]+z*p[5];
+ r = r1 + z2*r2 + z4*r3;
+ s1 = one+z*q[0];
+ s2 = q[1]+z*q[2];
+ s3 = q[3]+z*q[4];
+ s = s1 + z2*s2 + z4*s3;
+#endif
+ return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qzero is
+ * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
+ * We approximate pzero by
+ * qzero(x) = s*(-1.25 + (R/S))
+ * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
+ * S = 1 + qS0*s^2 + ... + qS5*s^12
+ * and
+ * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
+ */
+#ifdef __STDC__
+static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+ 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+ 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+ 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+ 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+};
+#ifdef __STDC__
+static const double qS8[6] = {
+#else
+static double qS8[6] = {
+#endif
+ 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
+ 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
+ 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
+ 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
+ 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
+ -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+};
+
+#ifdef __STDC__
+static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+ 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+ 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+ 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+ 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+ 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+};
+#ifdef __STDC__
+static const double qS5[6] = {
+#else
+static double qS5[6] = {
+#endif
+ 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
+ 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
+ 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
+ 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
+ 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
+ -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+};
+
+#ifdef __STDC__
+static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#else
+static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+ 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+ 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+ 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+ 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+ 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+};
+#ifdef __STDC__
+static const double qS3[6] = {
+#else
+static double qS3[6] = {
+#endif
+ 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
+ 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
+ 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
+ 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
+ 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
+ -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+};
+
+#ifdef __STDC__
+static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+ 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+ 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+ 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+ 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+ 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+};
+#ifdef __STDC__
+static const double qS2[6] = {
+#else
+static double qS2[6] = {
+#endif
+ 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
+ 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
+ 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
+ 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
+ 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
+ -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+};
+
+#ifdef __STDC__
+ static double qzero(double x)
+#else
+ static double qzero(x)
+ double x;
+#endif
+{
+#ifdef __STDC__
+ const double *p,*q;
+#else
+ double *p,*q;
+#endif
+ double s,r,z,z2,z4,z6,r1,r2,r3,s1,s2,s3;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x40200000) {p = qR8; q= qS8;}
+ else if(ix>=0x40122E8B){p = qR5; q= qS5;}
+ else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
+ else if(ix>=0x40000000){p = qR2; q= qS2;}
+ z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+#else
+ r1 = p[0]+z*p[1]; z2=z*z;
+ r2 = p[2]+z*p[3]; z4=z2*z2;
+ r3 = p[4]+z*p[5]; z6=z4*z2;
+ r= r1 + z2*r2 + z4*r3;
+ s1 = one+z*q[0];
+ s2 = q[1]+z*q[2];
+ s3 = q[3]+z*q[4];
+ s = s1 + z2*s2 + z4*s3 +z6*q[5];
+#endif
+ return (-.125 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_j1.c b/sysdeps/ieee754/dbl-64/e_j1.c
new file mode 100644
index 0000000000..daf025fdb7
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_j1.c
@@ -0,0 +1,532 @@
+/* @(#)e_j1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_j1.c,v 1.8 1995/05/10 20:45:27 jtc Exp $";
+#endif
+
+/* __ieee754_j1(x), __ieee754_y1(x)
+ * Bessel function of the first and second kinds of order zero.
+ * Method -- j1(x):
+ * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
+ * 2. Reduce x to |x| since j1(x)=-j1(-x), and
+ * for x in (0,2)
+ * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
+ * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
+ * for x in (2,inf)
+ * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * as follow:
+ * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (sin(x) + cos(x))
+ * (To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.)
+ *
+ * 3 Special cases
+ * j1(nan)= nan
+ * j1(0) = 0
+ * j1(inf) = 0
+ *
+ * Method -- y1(x):
+ * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
+ * 2. For x<2.
+ * Since
+ * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
+ * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
+ * We use the following function to approximate y1,
+ * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
+ * where for x in [0,2] (abs err less than 2**-65.89)
+ * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
+ * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
+ * Note: For tiny x, 1/x dominate y1 and hence
+ * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
+ * 3. For x>=2.
+ * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
+ * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
+ * by method mentioned above.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static double pone(double), qone(double);
+#else
+static double pone(), qone();
+#endif
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge = 1e300,
+one = 1.0,
+invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+ /* R0/S0 on [0,2] */
+R[] = {-6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
+ 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
+ -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
+ 4.96727999609584448412e-08}, /* 0x3E6AAAFA, 0x46CA0BD9 */
+S[] = {0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
+ 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
+ 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
+ 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
+ 1.23542274426137913908e-11}; /* 0x3DAB2ACF, 0xCFB97ED8 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_j1(double x)
+#else
+ double __ieee754_j1(x)
+ double x;
+#endif
+{
+ double z, s,c,ss,cc,r,u,v,y,r1,r2,s1,s2,s3,z2,z4;
+ int32_t hx,ix;
+
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) return one/x;
+ y = fabs(x);
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ s = __sin(y);
+ c = __cos(y);
+ ss = -s-c;
+ cc = s-c;
+ if(ix<0x7fe00000) { /* make sure y+y not overflow */
+ z = __cos(y+y);
+ if ((s*c)>zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /*
+ * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+ * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+ */
+ if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
+ else {
+ u = pone(y); v = qone(y);
+ z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
+ }
+ if(hx<0) return -z;
+ else return z;
+ }
+ if(ix<0x3e400000) { /* |x|<2**-27 */
+ if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
+ }
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ r = z*(r00+z*(r01+z*(r02+z*r03)));
+ s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+ r *= x;
+#else
+ r1 = z*R[0]; z2=z*z;
+ r2 = R[1]+z*R[2]; z4=z2*z2;
+ r = r1 + z2*r2 + z4*R[3];
+ r *= x;
+ s1 = one+z*S[1];
+ s2 = S[2]+z*S[3];
+ s3 = S[4]+z*S[5];
+ s = s1 + z2*s2 + z4*s3;
+#endif
+ return(x*0.5+r/s);
+}
+
+#ifdef __STDC__
+static const double U0[5] = {
+#else
+static double U0[5] = {
+#endif
+ -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+ 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
+ -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+ 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
+ -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+};
+#ifdef __STDC__
+static const double V0[5] = {
+#else
+static double V0[5] = {
+#endif
+ 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+ 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+ 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+ 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+ 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+};
+
+#ifdef __STDC__
+ double __ieee754_y1(double x)
+#else
+ double __ieee754_y1(x)
+ double x;
+#endif
+{
+ double z, s,c,ss,cc,u,v,u1,u2,v1,v2,v3,z2,z4;
+ int32_t hx,ix,lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+ ix = 0x7fffffff&hx;
+ /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
+ if(ix>=0x7ff00000) return one/(x+x*x);
+ if((ix|lx)==0) return -one/zero;
+ if(hx<0) return zero/zero;
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ s = __sin(x);
+ c = __cos(x);
+ ss = -s-c;
+ cc = s-c;
+ if(ix<0x7fe00000) { /* make sure x+x not overflow */
+ z = __cos(x+x);
+ if ((s*c)>zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+ * where x0 = x-3pi/4
+ * Better formula:
+ * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (cos(x) + sin(x))
+ * To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.
+ */
+ if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
+ else {
+ u = pone(x); v = qone(x);
+ z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
+ }
+ return z;
+ }
+ if(ix<=0x3c900000) { /* x < 2**-54 */
+ return(-tpi/x);
+ }
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+ v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+#else
+ u1 = U0[0]+z*U0[1];z2=z*z;
+ u2 = U0[2]+z*U0[3];z4=z2*z2;
+ u = u1 + z2*u2 + z4*U0[4];
+ v1 = one+z*V0[0];
+ v2 = V0[1]+z*V0[2];
+ v3 = V0[3]+z*V0[4];
+ v = v1 + z2*v2 + z4*v3;
+#endif
+ return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+#ifdef __STDC__
+static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+ 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+ 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+ 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+ 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+};
+#ifdef __STDC__
+static const double ps8[5] = {
+#else
+static double ps8[5] = {
+#endif
+ 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+ 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+ 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+ 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+ 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+};
+
+#ifdef __STDC__
+static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+ 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+ 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+ 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+ 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+ 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+};
+#ifdef __STDC__
+static const double ps5[5] = {
+#else
+static double ps5[5] = {
+#endif
+ 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+ 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+ 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+ 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+ 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+};
+
+#ifdef __STDC__
+static const double pr3[6] = {
+#else
+static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+ 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+ 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+ 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+ 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+ 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+};
+#ifdef __STDC__
+static const double ps3[5] = {
+#else
+static double ps3[5] = {
+#endif
+ 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+ 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+ 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+ 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+ 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+};
+
+#ifdef __STDC__
+static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+ 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+ 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+ 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+ 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+ 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+};
+#ifdef __STDC__
+static const double ps2[5] = {
+#else
+static double ps2[5] = {
+#endif
+ 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+ 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+ 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+ 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+ 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+};
+
+#ifdef __STDC__
+ static double pone(double x)
+#else
+ static double pone(x)
+ double x;
+#endif
+{
+#ifdef __STDC__
+ const double *p,*q;
+#else
+ double *p,*q;
+#endif
+ double z,r,s,r1,r2,r3,s1,s2,s3,z2,z4;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x40200000) {p = pr8; q= ps8;}
+ else if(ix>=0x40122E8B){p = pr5; q= ps5;}
+ else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
+ else if(ix>=0x40000000){p = pr2; q= ps2;}
+ z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+#else
+ r1 = p[0]+z*p[1]; z2=z*z;
+ r2 = p[2]+z*p[3]; z4=z2*z2;
+ r3 = p[4]+z*p[5];
+ r = r1 + z2*r2 + z4*r3;
+ s1 = one+z*q[0];
+ s2 = q[1]+z*q[2];
+ s3 = q[3]+z*q[4];
+ s = s1 + z2*s2 + z4*s3;
+#endif
+ return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+#ifdef __STDC__
+static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+ -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+ -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+ -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+ -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+ -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+};
+#ifdef __STDC__
+static const double qs8[6] = {
+#else
+static double qs8[6] = {
+#endif
+ 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
+ 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
+ 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
+ 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
+ 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
+ -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+};
+
+#ifdef __STDC__
+static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+ -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+ -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+ -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+ -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+ -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+};
+#ifdef __STDC__
+static const double qs5[6] = {
+#else
+static double qs5[6] = {
+#endif
+ 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
+ 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
+ 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
+ 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
+ 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
+ -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+};
+
+#ifdef __STDC__
+static const double qr3[6] = {
+#else
+static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+ -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+ -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+ -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+ -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+ -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+};
+#ifdef __STDC__
+static const double qs3[6] = {
+#else
+static double qs3[6] = {
+#endif
+ 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
+ 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
+ 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
+ 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
+ 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
+ -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+};
+
+#ifdef __STDC__
+static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+ -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+ -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+ -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+ -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+ -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+};
+#ifdef __STDC__
+static const double qs2[6] = {
+#else
+static double qs2[6] = {
+#endif
+ 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
+ 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
+ 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
+ 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
+ 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
+ -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+};
+
+#ifdef __STDC__
+ static double qone(double x)
+#else
+ static double qone(x)
+ double x;
+#endif
+{
+#ifdef __STDC__
+ const double *p,*q;
+#else
+ double *p,*q;
+#endif
+ double s,r,z,r1,r2,r3,s1,s2,s3,z2,z4,z6;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x40200000) {p = qr8; q= qs8;}
+ else if(ix>=0x40122E8B){p = qr5; q= qs5;}
+ else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
+ else if(ix>=0x40000000){p = qr2; q= qs2;}
+ z = one/(x*x);
+#ifdef DO_NOT_USE_THIS
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+#else
+ r1 = p[0]+z*p[1]; z2=z*z;
+ r2 = p[2]+z*p[3]; z4=z2*z2;
+ r3 = p[4]+z*p[5]; z6=z4*z2;
+ r = r1 + z2*r2 + z4*r3;
+ s1 = one+z*q[0];
+ s2 = q[1]+z*q[2];
+ s3 = q[3]+z*q[4];
+ s = s1 + z2*s2 + z4*s3 + z6*q[5];
+#endif
+ return (.375 + r/s)/x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_jn.c b/sysdeps/ieee754/dbl-64/e_jn.c
new file mode 100644
index 0000000000..d63d7688a3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_jn.c
@@ -0,0 +1,281 @@
+/* @(#)e_jn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
+#endif
+
+/*
+ * __ieee754_jn(n, x), __ieee754_yn(n, x)
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n
+ *
+ * Special cases:
+ * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ * For n=0, j0(x) is called,
+ * for n=1, j1(x) is called,
+ * for n<x, forward recursion us used starting
+ * from values of j0(x) and j1(x).
+ * for n>x, a continued fraction approximation to
+ * j(n,x)/j(n-1,x) is evaluated and then backward
+ * recursion is used starting from a supposed value
+ * for j(n,x). The resulting value of j(0,x) is
+ * compared with the actual value to correct the
+ * supposed value of j(n,x).
+ *
+ * yn(n,x) is similar in all respects, except
+ * that forward recursion is used for all
+ * values of n>1.
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
+
+#ifdef __STDC__
+static const double zero = 0.00000000000000000000e+00;
+#else
+static double zero = 0.00000000000000000000e+00;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_jn(int n, double x)
+#else
+ double __ieee754_jn(n,x)
+ int n; double x;
+#endif
+{
+ int32_t i,hx,ix,lx, sgn;
+ double a, b, temp, di;
+ double z, w;
+
+ /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+ * Thus, J(-n,x) = J(n,-x)
+ */
+ EXTRACT_WORDS(hx,lx,x);
+ ix = 0x7fffffff&hx;
+ /* if J(n,NaN) is NaN */
+ if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
+ if(n<0){
+ n = -n;
+ x = -x;
+ hx ^= 0x80000000;
+ }
+ if(n==0) return(__ieee754_j0(x));
+ if(n==1) return(__ieee754_j1(x));
+ sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
+ x = fabs(x);
+ if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
+ b = zero;
+ else if((double)n<=x) {
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+ if(ix>=0x52D00000) { /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch(n&3) {
+ case 0: temp = __cos(x)+__sin(x); break;
+ case 1: temp = -__cos(x)+__sin(x); break;
+ case 2: temp = -__cos(x)-__sin(x); break;
+ case 3: temp = __cos(x)-__sin(x); break;
+ }
+ b = invsqrtpi*temp/__sqrt(x);
+ } else {
+ a = __ieee754_j0(x);
+ b = __ieee754_j1(x);
+ for(i=1;i<n;i++){
+ temp = b;
+ b = b*((double)(i+i)/x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ } else {
+ if(ix<0x3e100000) { /* x < 2**-29 */
+ /* x is tiny, return the first Taylor expansion of J(n,x)
+ * J(n,x) = 1/n!*(x/2)^n - ...
+ */
+ if(n>33) /* underflow */
+ b = zero;
+ else {
+ temp = x*0.5; b = temp;
+ for (a=one,i=2;i<=n;i++) {
+ a *= (double)i; /* a = n! */
+ b *= temp; /* b = (x/2)^n */
+ }
+ b = b/a;
+ }
+ } else {
+ /* use backward recurrence */
+ /* x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h=2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quadruple
+ */
+ /* determine k */
+ double t,v;
+ double q0,q1,h,tmp; int32_t k,m;
+ w = (n+n)/(double)x; h = 2.0/(double)x;
+ q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
+ while(q1<1.0e9) {
+ k += 1; z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n+n;
+ for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
+ a = t;
+ b = one;
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * Hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two/x;
+ tmp = tmp*__ieee754_log(fabs(v*tmp));
+ if(tmp<7.09782712893383973096e+02) {
+ for(i=n-1,di=(double)(i+i);i>0;i--){
+ temp = b;
+ b *= di;
+ b = b/x - a;
+ a = temp;
+ di -= two;
+ }
+ } else {
+ for(i=n-1,di=(double)(i+i);i>0;i--){
+ temp = b;
+ b *= di;
+ b = b/x - a;
+ a = temp;
+ di -= two;
+ /* scale b to avoid spurious overflow */
+ if(b>1e100) {
+ a /= b;
+ t /= b;
+ b = one;
+ }
+ }
+ }
+ b = (t*__ieee754_j0(x)/b);
+ }
+ }
+ if(sgn==1) return -b; else return b;
+}
+
+#ifdef __STDC__
+ double __ieee754_yn(int n, double x)
+#else
+ double __ieee754_yn(n,x)
+ int n; double x;
+#endif
+{
+ int32_t i,hx,ix,lx;
+ int32_t sign;
+ double a, b, temp;
+
+ EXTRACT_WORDS(hx,lx,x);
+ ix = 0x7fffffff&hx;
+ /* if Y(n,NaN) is NaN */
+ if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
+ if((ix|lx)==0) return -one/zero;
+ if(hx<0) return zero/zero;
+ sign = 1;
+ if(n<0){
+ n = -n;
+ sign = 1 - ((n&1)<<1);
+ }
+ if(n==0) return(__ieee754_y0(x));
+ if(n==1) return(sign*__ieee754_y1(x));
+ if(ix==0x7ff00000) return zero;
+ if(ix>=0x52D00000) { /* x > 2**302 */
+ /* (x >> n**2)
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch(n&3) {
+ case 0: temp = __sin(x)-__cos(x); break;
+ case 1: temp = -__sin(x)-__cos(x); break;
+ case 2: temp = -__sin(x)+__cos(x); break;
+ case 3: temp = __sin(x)+__cos(x); break;
+ }
+ b = invsqrtpi*temp/__sqrt(x);
+ } else {
+ u_int32_t high;
+ a = __ieee754_y0(x);
+ b = __ieee754_y1(x);
+ /* quit if b is -inf */
+ GET_HIGH_WORD(high,b);
+ for(i=1;i<n&&high!=0xfff00000;i++){
+ temp = b;
+ b = ((double)(i+i)/x)*b - a;
+ GET_HIGH_WORD(high,b);
+ a = temp;
+ }
+ }
+ if(sign>0) return b; else return -b;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_lgamma_r.c b/sysdeps/ieee754/dbl-64/e_lgamma_r.c
new file mode 100644
index 0000000000..92e9556568
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_lgamma_r.c
@@ -0,0 +1,314 @@
+/* @(#)er_lgamma.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $";
+#endif
+
+/* __ieee754_lgamma_r(x, signgamp)
+ * Reentrant version of the logarithm of the Gamma function
+ * with user provide pointer for the sign of Gamma(x).
+ *
+ * Method:
+ * 1. Argument Reduction for 0 < x <= 8
+ * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
+ * reduce x to a number in [1.5,2.5] by
+ * lgamma(1+s) = log(s) + lgamma(s)
+ * for example,
+ * lgamma(7.3) = log(6.3) + lgamma(6.3)
+ * = log(6.3*5.3) + lgamma(5.3)
+ * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
+ * 2. Polynomial approximation of lgamma around its
+ * minimun ymin=1.461632144968362245 to maintain monotonicity.
+ * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
+ * Let z = x-ymin;
+ * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
+ * where
+ * poly(z) is a 14 degree polynomial.
+ * 2. Rational approximation in the primary interval [2,3]
+ * We use the following approximation:
+ * s = x-2.0;
+ * lgamma(x) = 0.5*s + s*P(s)/Q(s)
+ * with accuracy
+ * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
+ * Our algorithms are based on the following observation
+ *
+ * zeta(2)-1 2 zeta(3)-1 3
+ * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
+ * 2 3
+ *
+ * where Euler = 0.5771... is the Euler constant, which is very
+ * close to 0.5.
+ *
+ * 3. For x>=8, we have
+ * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
+ * (better formula:
+ * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
+ * Let z = 1/x, then we approximation
+ * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
+ * by
+ * 3 5 11
+ * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
+ * where
+ * |w - f(z)| < 2**-58.74
+ *
+ * 4. For negative x, since (G is gamma function)
+ * -x*G(-x)*G(x) = pi/sin(pi*x),
+ * we have
+ * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
+ * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
+ * Hence, for x<0, signgam = sign(sin(pi*x)) and
+ * lgamma(x) = log(|Gamma(x)|)
+ * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
+ * Note: one should avoid compute pi*(-x) directly in the
+ * computation of sin(pi*(-x)).
+ *
+ * 5. Special Cases
+ * lgamma(2+s) ~ s*(1-Euler) for tiny s
+ * lgamma(1)=lgamma(2)=0
+ * lgamma(x) ~ -log(x) for tiny x
+ * lgamma(0) = lgamma(inf) = inf
+ * lgamma(-integer) = +-inf
+ *
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
+a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
+a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
+a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
+a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
+a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
+a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
+a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
+a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
+a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
+a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
+a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
+tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
+tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
+/* tt = -(tail of tf) */
+tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
+t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
+t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
+t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
+t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
+t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
+t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
+t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
+t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
+t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
+t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
+t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
+t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
+t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
+t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
+t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
+u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
+u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
+u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
+u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
+u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
+v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
+v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
+v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
+v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
+v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
+s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
+s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
+s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
+s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
+s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
+s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
+s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
+r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
+r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
+r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
+r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
+r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
+r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
+w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
+w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
+w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
+w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
+w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
+w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
+w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+
+#ifdef __STDC__
+static const double zero= 0.00000000000000000000e+00;
+#else
+static double zero= 0.00000000000000000000e+00;
+#endif
+
+#ifdef __STDC__
+ static double sin_pi(double x)
+#else
+ static double sin_pi(x)
+ double x;
+#endif
+{
+ double y,z;
+ int n,ix;
+
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+
+ if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
+ y = -x; /* x is assume negative */
+
+ /*
+ * argument reduction, make sure inexact flag not raised if input
+ * is an integer
+ */
+ z = __floor(y);
+ if(z!=y) { /* inexact anyway */
+ y *= 0.5;
+ y = 2.0*(y - __floor(y)); /* y = |x| mod 2.0 */
+ n = (int) (y*4.0);
+ } else {
+ if(ix>=0x43400000) {
+ y = zero; n = 0; /* y must be even */
+ } else {
+ if(ix<0x43300000) z = y+two52; /* exact */
+ GET_LOW_WORD(n,z);
+ n &= 1;
+ y = n;
+ n<<= 2;
+ }
+ }
+ switch (n) {
+ case 0: y = __kernel_sin(pi*y,zero,0); break;
+ case 1:
+ case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
+ case 3:
+ case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
+ case 5:
+ case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
+ default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
+ }
+ return -y;
+}
+
+
+#ifdef __STDC__
+ double __ieee754_lgamma_r(double x, int *signgamp)
+#else
+ double __ieee754_lgamma_r(x,signgamp)
+ double x; int *signgamp;
+#endif
+{
+ double t,y,z,nadj,p,p1,p2,p3,q,r,w;
+ int i,hx,lx,ix;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ /* purge off +-inf, NaN, +-0, and negative arguments */
+ *signgamp = 1;
+ if ((unsigned int) hx==0xfff00000&&lx==0)
+ return x-x;
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) return x*x;
+ if((ix|lx)==0) return one/fabs(x);
+ if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
+ if(hx<0) {
+ *signgamp = -1;
+ return -__ieee754_log(-x);
+ } else return -__ieee754_log(x);
+ }
+ if(hx<0) {
+ if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
+ return x/zero;
+ t = sin_pi(x);
+ if(t==zero) return one/fabsf(t); /* -integer */
+ nadj = __ieee754_log(pi/fabs(t*x));
+ if(t<zero) *signgamp = -1;
+ x = -x;
+ }
+
+ /* purge off 1 and 2 */
+ if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
+ /* for x < 2.0 */
+ else if(ix<0x40000000) {
+ if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
+ r = -__ieee754_log(x);
+ if(ix>=0x3FE76944) {y = one-x; i= 0;}
+ else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
+ else {y = x; i=2;}
+ } else {
+ r = zero;
+ if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
+ else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
+ else {y=x-one;i=2;}
+ }
+ switch(i) {
+ case 0:
+ z = y*y;
+ p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
+ p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
+ p = y*p1+p2;
+ r += (p-0.5*y); break;
+ case 1:
+ z = y*y;
+ w = z*y;
+ p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
+ p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
+ p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
+ p = z*p1-(tt-w*(p2+y*p3));
+ r += (tf + p); break;
+ case 2:
+ p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
+ p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
+ r += (-0.5*y + p1/p2);
+ }
+ }
+ else if(ix<0x40200000) { /* x < 8.0 */
+ i = (int)x;
+ t = zero;
+ y = x-(double)i;
+ p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
+ q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
+ r = half*y+p/q;
+ z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
+ switch(i) {
+ case 7: z *= (y+6.0); /* FALLTHRU */
+ case 6: z *= (y+5.0); /* FALLTHRU */
+ case 5: z *= (y+4.0); /* FALLTHRU */
+ case 4: z *= (y+3.0); /* FALLTHRU */
+ case 3: z *= (y+2.0); /* FALLTHRU */
+ r += __ieee754_log(z); break;
+ }
+ /* 8.0 <= x < 2**58 */
+ } else if (ix < 0x43900000) {
+ t = __ieee754_log(x);
+ z = one/x;
+ y = z*z;
+ w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
+ r = (x-half)*(t-one)+w;
+ } else
+ /* 2**58 <= x <= inf */
+ r = x*(__ieee754_log(x)-one);
+ if(hx<0) r = nadj - r;
+ return r;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_log.c b/sysdeps/ieee754/dbl-64/e_log.c
new file mode 100644
index 0000000000..851bd30198
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_log.c
@@ -0,0 +1,165 @@
+/* @(#)e_log.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
+#endif
+
+/* __ieee754_log(x)
+ * Return the logarithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define half Lg[8]
+#define two Lg[9]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+ Lg[] = {0.0,
+ 6.666666666666735130e-01, /* 3FE55555 55555593 */
+ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+ 2.857142874366239149e-01, /* 3FD24924 94229359 */
+ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+ 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
+ 0.5,
+ 2.0};
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_log(double x)
+#else
+ double __ieee754_log(x)
+ double x;
+#endif
+{
+ double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
+#ifdef DO_NOT_USE_THIS
+ double t1,t2;
+#endif
+ int32_t k,hx,i,j;
+ u_int32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/(x-x); /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ hx &= 0x000fffff;
+ i = (hx+0x95f64)&0x100000;
+ SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
+ k += (i>>20);
+ f = x-1.0;
+ if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
+ if(f==zero) {
+ if(k==0) return zero; else {dk=(double)k;
+ return dk*ln2_hi+dk*ln2_lo;}
+ }
+ R = f*f*(half-0.33333333333333333*f);
+ if(k==0) return f-R; else {dk=(double)k;
+ return dk*ln2_hi-((R-dk*ln2_lo)-f);}
+ }
+ s = f/(two+f);
+ dk = (double)k;
+ z = s*s;
+ i = hx-0x6147a;
+ w = z*z;
+ j = 0x6b851-hx;
+#ifdef DO_NOT_USE_THIS
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ R = t2+t1;
+#else
+ t21 = Lg[5]+w*Lg[7]; w2=w*w;
+ t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
+ t11 = Lg[4]+w*Lg[6];
+ t12 = w*Lg[2];
+ R = t12 + w2*t11 + z*t22 + zw2*t21;
+#endif
+ i |= j;
+ if(i>0) {
+ hfsq=0.5*f*f;
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+ } else {
+ if(k==0) return f-s*(f-R); else
+ return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/e_log10.c b/sysdeps/ieee754/dbl-64/e_log10.c
new file mode 100644
index 0000000000..e8a3278eaf
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_log10.c
@@ -0,0 +1,98 @@
+/* @(#)e_log10.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_log10.c,v 1.9 1995/05/10 20:45:51 jtc Exp $";
+#endif
+
+/* __ieee754_log10(x)
+ * Return the base 10 logarithm of x
+ *
+ * Method :
+ * Let log10_2hi = leading 40 bits of log10(2) and
+ * log10_2lo = log10(2) - log10_2hi,
+ * ivln10 = 1/log(10) rounded.
+ * Then
+ * n = ilogb(x),
+ * if(n<0) n = n+1;
+ * x = scalbn(x,-n);
+ * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
+ *
+ * Note 1:
+ * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
+ * mode must set to Round-to-Nearest.
+ * Note 2:
+ * [1/log(10)] rounded to 53 bits has error .198 ulps;
+ * log10 is monotonic at all binary break points.
+ *
+ * Special cases:
+ * log10(x) is NaN with signal if x < 0;
+ * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
+ * log10(NaN) is that NaN with no signal;
+ * log10(10**N) = N for N=0,1,...,22.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
+log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
+log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_log10(double x)
+#else
+ double __ieee754_log10(x)
+ double x;
+#endif
+{
+ double y,z;
+ int32_t i,k,hx;
+ u_int32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/(x-x); /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ i = ((u_int32_t)k&0x80000000)>>31;
+ hx = (hx&0x000fffff)|((0x3ff-i)<<20);
+ y = (double)(k+i);
+ SET_HIGH_WORD(x,hx);
+ z = y*log10_2lo + ivln10*__ieee754_log(x);
+ return z+y*log10_2hi;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_pow.c b/sysdeps/ieee754/dbl-64/e_pow.c
new file mode 100644
index 0000000000..1e1496f00d
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_pow.c
@@ -0,0 +1,352 @@
+/* @(#)e_pow.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
+#endif
+
+/* __ieee754_pow(x,y) return x**y
+ *
+ * n
+ * Method: Let x = 2 * (1+f)
+ * 1. Compute and return log2(x) in two pieces:
+ * log2(x) = w1 + w2,
+ * where w1 has 53-24 = 29 bit trailing zeros.
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * arithmetic, where |y'|<=0.5.
+ * 3. Return x**y = 2**n*exp(y'*log2)
+ *
+ * Special cases:
+ * 1. (anything) ** 0 is 1
+ * 2. (anything) ** 1 is itself
+ * 3. (anything) ** NAN is NAN
+ * 4. NAN ** (anything except 0) is NAN
+ * 5. +-(|x| > 1) ** +INF is +INF
+ * 6. +-(|x| > 1) ** -INF is +0
+ * 7. +-(|x| < 1) ** +INF is +0
+ * 8. +-(|x| < 1) ** -INF is +INF
+ * 9. +-1 ** +-INF is NAN
+ * 10. +0 ** (+anything except 0, NAN) is +0
+ * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+ * 12. +0 ** (-anything except 0, NAN) is +INF
+ * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
+ * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+ * 15. +INF ** (+anything except 0,NAN) is +INF
+ * 16. +INF ** (-anything except 0,NAN) is +0
+ * 17. -INF ** (anything) = -0 ** (-anything)
+ * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ * 19. (-anything except 0 and inf) ** (non-integer) is NAN
+ *
+ * Accuracy:
+ * pow(x,y) returns x**y nearly rounded. In particular
+ * pow(integer,integer)
+ * always returns the correct integer provided it is
+ * representable.
+ *
+ * Constants :
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define zero C[0]
+#define one C[1]
+#define two C[2]
+#define two53 C[3]
+#define huge C[4]
+#define tiny C[5]
+#define L1 C[6]
+#define L2 C[7]
+#define L3 C[8]
+#define L4 C[9]
+#define L5 C[10]
+#define L6 C[11]
+#define P1 C[12]
+#define P2 C[13]
+#define P3 C[14]
+#define P4 C[15]
+#define P5 C[16]
+#define lg2 C[17]
+#define lg2_h C[18]
+#define lg2_l C[19]
+#define ovt C[20]
+#define cp C[21]
+#define cp_h C[22]
+#define cp_l C[23]
+#define ivln2 C[24]
+#define ivln2_h C[25]
+#define ivln2_l C[26]
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
+dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
+C[] = {
+0.0,
+1.0,
+2.0,
+9007199254740992.0 ,
+1.0e300,
+1.0e-300,
+5.99999999999994648725e-01 ,
+4.28571428578550184252e-01 ,
+3.33333329818377432918e-01 ,
+2.72728123808534006489e-01 ,
+2.30660745775561754067e-01 ,
+2.06975017800338417784e-01 ,
+1.66666666666666019037e-01 ,
+-2.77777777770155933842e-03 ,
+6.61375632143793436117e-05 ,
+-1.65339022054652515390e-06 ,
+4.13813679705723846039e-08 ,
+6.93147180559945286227e-01 ,
+6.93147182464599609375e-01 ,
+-1.90465429995776804525e-09 ,
+8.0085662595372944372e-0017 ,
+9.61796693925975554329e-01 ,
+9.61796700954437255859e-01 ,
+-7.02846165095275826516e-09 ,
+1.44269504088896338700e+00 ,
+1.44269502162933349609e+00 ,
+1.92596299112661746887e-08 };
+
+#ifdef __STDC__
+ double __ieee754_pow(double x, double y)
+#else
+ double __ieee754_pow(x,y)
+ double x, y;
+#endif
+{
+ double z,ax,z_h,z_l,p_h,p_l;
+ double y1,t1,t2,r,s,t,u,v,w, t12,t14,r_1,r_2,r_3;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy;
+ u_int32_t lx,ly;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+
+ /* y==zero: x**0 = 1 */
+ if((iy|ly)==0) return C[1];
+
+ /* +-NaN return x+y */
+ if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return x+y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if(hx<0) {
+ if(iy>=0x43400000) yisint = 2; /* even integer y */
+ else if(iy>=0x3ff00000) {
+ k = (iy>>20)-0x3ff; /* exponent */
+ if(k>20) {
+ j = ly>>(52-k);
+ if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
+ } else if(ly==0) {
+ j = iy>>(20-k);
+ if((int32_t)(j<<(20-k))==iy) yisint = 2-(j&1);
+ }
+ }
+ }
+
+ /* special value of y */
+ if(ly==0) {
+ if (iy==0x7ff00000) { /* y is +-inf */
+ if(((ix-0x3ff00000)|lx)==0)
+ return y - y; /* inf**+-1 is NaN */
+ else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
+ return (hy>=0)? y: C[0];
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy<0)?-y: C[0];
+ }
+ if(iy==0x3ff00000) { /* y is +-1 */
+ if(hy<0) return C[1]/x; else return x;
+ }
+ if(hy==0x40000000) return x*x; /* y is 2 */
+ if(hy==0x3fe00000) { /* y is 0.5 */
+ if(hx>=0) /* x >= +0 */
+ return __ieee754_sqrt(x);
+ }
+ }
+
+ ax = fabs(x);
+ /* special value of x */
+ if(lx==0) {
+ if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(hy<0) z = C[1]/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(((ix-0x3ff00000)|yisint)==0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ }
+
+ /* (x<0)**(non-int) is NaN */
+ if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
+
+ /* |y| is huge */
+ if(iy>0x41e00000) { /* if |y| > 2**31 */
+ if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
+ if(ix<=0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
+ if(ix>=0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
+ }
+ /* over/underflow if x is not close to one */
+ if(ix<0x3fefffff) return (hy<0)? C[4]*C[4]:C[5]*C[5];
+ if(ix>0x3ff00000) return (hy>0)? C[4]*C[4]:C[5]*C[5];
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = x-1; /* t has 20 trailing zeros */
+ w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
+ u = C[25]*t; /* ivln2_h has 21 sig. bits */
+ v = t*C[26]-w*C[24];
+ t1 = u+v;
+ SET_LOW_WORD(t1,0);
+ t2 = v-(t1-u);
+ } else {
+ double s2,s_h,s_l,t_h,t_l,s22,s24,s26,r1,r2,r3;
+ n = 0;
+ /* take care subnormal number */
+ if(ix<0x00100000)
+ {ax *= C[3]; n -= 53; GET_HIGH_WORD(ix,ax); }
+ n += ((ix)>>20)-0x3ff;
+ j = ix&0x000fffff;
+ /* determine interval */
+ ix = j|0x3ff00000; /* normalize ix */
+ if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00100000;}
+ SET_HIGH_WORD(ax,ix);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = C[1]/(ax+bp[k]);
+ s = u*v;
+ s_h = s;
+ SET_LOW_WORD(s_h,0);
+ /* t_h=ax+bp[k] High */
+ t_h = C[0];
+ SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+ /* compute log(ax) */
+ s2 = s*s;
+#ifdef DO_NOT_USE_THIS
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+#else
+ r1 = C[10]+s2*C[11]; s22=s2*s2;
+ r2 = C[8]+s2*C[9]; s24=s22*s22;
+ r3 = C[6]+s2*C[7]; s26=s24*s22;
+ r = r3*s22 + r2*s24 + r1*s26;
+#endif
+ r += s_l*(s_h+s);
+ s2 = s_h*s_h;
+ t_h = 3.0+s2+r;
+ SET_LOW_WORD(t_h,0);
+ t_l = r-((t_h-3.0)-s2);
+ /* u+v = s*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u+v;
+ SET_LOW_WORD(p_h,0);
+ p_l = v-(p_h-u);
+ z_h = C[22]*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = C[23]*p_h+p_l*C[21]+dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (double)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ SET_LOW_WORD(t1,0);
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
+
+ s = C[1]; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
+ s = -C[1];/* (-ve)**(odd int) */
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ y1 = y;
+ SET_LOW_WORD(y1,0);
+ p_l = (y-y1)*t1+y*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+ EXTRACT_WORDS(j,i,z);
+ if (j>=0x40900000) { /* z >= 1024 */
+ if(((j-0x40900000)|i)!=0) /* if z > 1024 */
+ return s*C[4]*C[4]; /* overflow */
+ else {
+ if(p_l+C[20]>z-p_h) return s*C[4]*C[4]; /* overflow */
+ }
+ } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
+ if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
+ return s*C[5]*C[5]; /* underflow */
+ else {
+ if(p_l<=z-p_h) return s*C[5]*C[5]; /* underflow */
+ }
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j&0x7fffffff;
+ k = (i>>20)-0x3ff;
+ n = 0;
+ if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00100000>>(k+1));
+ k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
+ t = C[0];
+ SET_HIGH_WORD(t,n&~(0x000fffff>>k));
+ n = ((n&0x000fffff)|0x00100000)>>(20-k);
+ if(j<0) n = -n;
+ p_h -= t;
+ }
+ t = p_l+p_h;
+ SET_LOW_WORD(t,0);
+ u = t*C[18];
+ v = (p_l-(t-p_h))*C[17]+t*C[19];
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+#ifdef DO_NOT_USE_THIS
+ t1 = z - t*(C[12]+t*(C[13]+t*(C[14]+t*(C[15]+t*C[16]))));
+#else
+ r_1 = C[15]+t*C[16]; t12 = t*t;
+ r_2 = C[13]+t*C[14]; t14 = t12*t12;
+ r_3 = t*C[12];
+ t1 = z - r_3 - t12*r_2 - t14*r_1;
+#endif
+ r = (z*t1)/(t1-C[2])-(w+z*w);
+ z = C[1]-(r-z);
+ GET_HIGH_WORD(j,z);
+ j += (n<<20);
+ if((j>>20)<=0) z = __scalbn(z,n); /* subnormal output */
+ else SET_HIGH_WORD(z,j);
+ return s*z;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_rem_pio2.c b/sysdeps/ieee754/dbl-64/e_rem_pio2.c
new file mode 100644
index 0000000000..a8a8cdb2b2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_rem_pio2.c
@@ -0,0 +1,183 @@
+/* @(#)e_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_rem_pio2.c,v 1.8 1995/05/10 20:46:02 jtc Exp $";
+#endif
+
+/* __ieee754_rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2()
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+#ifdef __STDC__
+static const int32_t two_over_pi[] = {
+#else
+static int32_t two_over_pi[] = {
+#endif
+0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
+0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
+0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
+0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
+0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
+0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
+0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+};
+
+#ifdef __STDC__
+static const int32_t npio2_hw[] = {
+#else
+static int32_t npio2_hw[] = {
+#endif
+0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
+0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
+0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
+0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
+0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
+0x404858EB, 0x404921FB,
+};
+
+/*
+ * invpio2: 53 bits of 2/pi
+ * pio2_1: first 33 bit of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 33 bit of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 33 bit of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+#ifdef __STDC__
+ int32_t __ieee754_rem_pio2(double x, double *y)
+#else
+ int32_t __ieee754_rem_pio2(x,y)
+ double x,y[];
+#endif
+{
+ double z,w,t,r,fn;
+ double tx[3];
+ int32_t e0,i,j,nx,n,ix,hx;
+ u_int32_t low;
+
+ GET_HIGH_WORD(hx,x); /* high word of x */
+ ix = hx&0x7fffffff;
+ if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
+ {y[0] = x; y[1] = 0; return 0;}
+ if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
+ if(hx>0) {
+ z = x - pio2_1;
+ if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z - pio2_1t;
+ y[1] = (z-y[0])-pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z -= pio2_2;
+ y[0] = z - pio2_2t;
+ y[1] = (z-y[0])-pio2_2t;
+ }
+ return 1;
+ } else { /* negative x */
+ z = x + pio2_1;
+ if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z + pio2_1t;
+ y[1] = (z-y[0])+pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z += pio2_2;
+ y[0] = z + pio2_2t;
+ y[1] = (z-y[0])+pio2_2t;
+ }
+ return -1;
+ }
+ }
+ if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
+ t = fabs(x);
+ n = (int32_t) (t*invpio2+half);
+ fn = (double)n;
+ r = t-fn*pio2_1;
+ w = fn*pio2_1t; /* 1st round good to 85 bit */
+ if(n<32&&ix!=npio2_hw[n-1]) {
+ y[0] = r-w; /* quick check no cancellation */
+ } else {
+ u_int32_t high;
+ j = ix>>20;
+ y[0] = r-w;
+ GET_HIGH_WORD(high,y[0]);
+ i = j-((high>>20)&0x7ff);
+ if(i>16) { /* 2nd iteration needed, good to 118 */
+ t = r;
+ w = fn*pio2_2;
+ r = t-w;
+ w = fn*pio2_2t-((t-r)-w);
+ y[0] = r-w;
+ GET_HIGH_WORD(high,y[0]);
+ i = j-((high>>20)&0x7ff);
+ if(i>49) { /* 3rd iteration need, 151 bits acc */
+ t = r; /* will cover all possible cases */
+ w = fn*pio2_3;
+ r = t-w;
+ w = fn*pio2_3t-((t-r)-w);
+ y[0] = r-w;
+ }
+ }
+ }
+ y[1] = (r-y[0])-w;
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ else return n;
+ }
+ /*
+ * all other (large) arguments
+ */
+ if(ix>=0x7ff00000) { /* x is inf or NaN */
+ y[0]=y[1]=x-x; return 0;
+ }
+ /* set z = scalbn(|x|,ilogb(x)-23) */
+ GET_LOW_WORD(low,x);
+ SET_LOW_WORD(z,low);
+ e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
+ SET_HIGH_WORD(z, ix - ((int32_t)(e0<<20)));
+ for(i=0;i<2;i++) {
+ tx[i] = (double)((int32_t)(z));
+ z = (z-tx[i])*two24;
+ }
+ tx[2] = z;
+ nx = 3;
+ while(tx[nx-1]==zero) nx--; /* skip zero term */
+ n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ return n;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_remainder.c b/sysdeps/ieee754/dbl-64/e_remainder.c
new file mode 100644
index 0000000000..6418081182
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_remainder.c
@@ -0,0 +1,80 @@
+/* @(#)e_remainder.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_remainder.c,v 1.8 1995/05/10 20:46:05 jtc Exp $";
+#endif
+
+/* __ieee754_remainder(x,p)
+ * Return :
+ * returns x REM p = x - [x/p]*p as if in infinite
+ * precise arithmetic, where [x/p] is the (infinite bit)
+ * integer nearest x/p (in half way case choose the even one).
+ * Method :
+ * Based on fmod() return x-[x/p]chopped*p exactlp.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+
+#ifdef __STDC__
+ double __ieee754_remainder(double x, double p)
+#else
+ double __ieee754_remainder(x,p)
+ double x,p;
+#endif
+{
+ int32_t hx,hp;
+ u_int32_t sx,lx,lp;
+ double p_half;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hp,lp,p);
+ sx = hx&0x80000000;
+ hp &= 0x7fffffff;
+ hx &= 0x7fffffff;
+
+ /* purge off exception values */
+ if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
+ if((hx>=0x7ff00000)|| /* x not finite */
+ ((hp>=0x7ff00000)&& /* p is NaN */
+ (((hp-0x7ff00000)|lp)!=0)))
+ return (x*p)/(x*p);
+
+
+ if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
+ if (((hx-hp)|(lx-lp))==0) return zero*x;
+ x = fabs(x);
+ p = fabs(p);
+ if (hp<0x00200000) {
+ if(x+x>p) {
+ x-=p;
+ if(x+x>=p) x -= p;
+ }
+ } else {
+ p_half = 0.5*p;
+ if(x>p_half) {
+ x-=p;
+ if(x>=p_half) x -= p;
+ }
+ }
+ GET_HIGH_WORD(hx,x);
+ SET_HIGH_WORD(x,hx^sx);
+ return x;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_sinh.c b/sysdeps/ieee754/dbl-64/e_sinh.c
new file mode 100644
index 0000000000..1701b9bb67
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_sinh.c
@@ -0,0 +1,86 @@
+/* @(#)e_sinh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sinh.c,v 1.7 1995/05/10 20:46:13 jtc Exp $";
+#endif
+
+/* __ieee754_sinh(x)
+ * Method :
+ * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ * 1. Replace x by |x| (sinh(-x) = -sinh(x)).
+ * 2.
+ * E + E/(E+1)
+ * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
+ * 2
+ *
+ * 22 <= x <= lnovft : sinh(x) := exp(x)/2
+ * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
+ * ln2ovft < x : sinh(x) := x*shuge (overflow)
+ *
+ * Special cases:
+ * sinh(x) is |x| if x is +INF, -INF, or NaN.
+ * only sinh(0)=0 is exact for finite x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, shuge = 1.0e307;
+#else
+static double one = 1.0, shuge = 1.0e307;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_sinh(double x)
+#else
+ double __ieee754_sinh(x)
+ double x;
+#endif
+{
+ double t,w,h;
+ int32_t ix,jx;
+ u_int32_t lx;
+
+ /* High word of |x|. */
+ GET_HIGH_WORD(jx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) return x+x;
+
+ h = 0.5;
+ if (jx<0) h = -h;
+ /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+ if (ix < 0x40360000) { /* |x|<22 */
+ if (ix<0x3e300000) /* |x|<2**-28 */
+ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+ t = __expm1(fabs(x));
+ if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
+ return h*(t+t/(t+one));
+ }
+
+ /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+ if (ix < 0x40862e42) return h*__ieee754_exp(fabs(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ GET_LOW_WORD(lx,x);
+ if (ix<0x408633ce || ((ix==0x408633ce)&&(lx<=(u_int32_t)0x8fb9f87d))) {
+ w = __ieee754_exp(0.5*fabs(x));
+ t = h*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, sinh(x) overflow */
+ return x*shuge;
+}
diff --git a/sysdeps/ieee754/dbl-64/e_sqrt.c b/sysdeps/ieee754/dbl-64/e_sqrt.c
new file mode 100644
index 0000000000..67da5455f9
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/e_sqrt.c
@@ -0,0 +1,452 @@
+/* @(#)e_sqrt.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
+#endif
+
+/* __ieee754_sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebraic manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ *
+ * Other methods : see the appended file at the end of the program below.
+ *---------------
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0, tiny=1.0e-300;
+#else
+static double one = 1.0, tiny=1.0e-300;
+#endif
+
+#ifdef __STDC__
+ double __ieee754_sqrt(double x)
+#else
+ double __ieee754_sqrt(x)
+ double x;
+#endif
+{
+ double z;
+ int32_t sign = (int)0x80000000;
+ int32_t ix0,s0,q,m,t,i;
+ u_int32_t r,t1,s1,ix1,q1;
+
+ EXTRACT_WORDS(ix0,ix1,x);
+
+ /* take care of Inf and NaN */
+ if((ix0&0x7ff00000)==0x7ff00000) {
+ return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
+ sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if(ix0<=0) {
+ if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
+ else if(ix0<0)
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
+ }
+ /* normalize x */
+ m = (ix0>>20);
+ if(m==0) { /* subnormal x */
+ while(ix0==0) {
+ m -= 21;
+ ix0 |= (ix1>>11); ix1 <<= 21;
+ }
+ for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
+ m -= i-1;
+ ix0 |= (ix1>>(32-i));
+ ix1 <<= i;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0&0x000fffff)|0x00100000;
+ if(m&1){ /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
+ r = 0x00200000; /* r = moving bit from right to left */
+
+ while(r!=0) {
+ t = s0+r;
+ if(t<=ix0) {
+ s0 = t+r;
+ ix0 -= t;
+ q += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r>>=1;
+ }
+
+ r = sign;
+ while(r!=0) {
+ t1 = s1+r;
+ t = s0;
+ if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
+ s1 = t1+r;
+ if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
+ ix0 -= t;
+ if (ix1 < t1) ix0 -= 1;
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r>>=1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if((ix0|ix1)!=0) {
+ z = one-tiny; /* trigger inexact flag */
+ if (z>=one) {
+ z = one+tiny;
+ if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
+ else if (z>one) {
+ if (q1==(u_int32_t)0xfffffffe) q+=1;
+ q1+=2;
+ } else
+ q1 += (q1&1);
+ }
+ }
+ ix0 = (q>>1)+0x3fe00000;
+ ix1 = q1>>1;
+ if ((q&1)==1) ix1 |= sign;
+ ix0 += (m <<20);
+ INSERT_WORDS(z,ix0,ix1);
+ return z;
+}
+
+/*
+Other methods (use floating-point arithmetic)
+-------------
+(This is a copy of a drafted paper by Prof W. Kahan
+and K.C. Ng, written in May, 1986)
+
+ Two algorithms are given here to implement sqrt(x)
+ (IEEE double precision arithmetic) in software.
+ Both supply sqrt(x) correctly rounded. The first algorithm (in
+ Section A) uses newton iterations and involves four divisions.
+ The second one uses reciproot iterations to avoid division, but
+ requires more multiplications. Both algorithms need the ability
+ to chop results of arithmetic operations instead of round them,
+ and the INEXACT flag to indicate when an arithmetic operation
+ is executed exactly with no roundoff error, all part of the
+ standard (IEEE 754-1985). The ability to perform shift, add,
+ subtract and logical AND operations upon 32-bit words is needed
+ too, though not part of the standard.
+
+A. sqrt(x) by Newton Iteration
+
+ (1) Initial approximation
+
+ Let x0 and x1 be the leading and the trailing 32-bit words of
+ a floating point number x (in IEEE double format) respectively
+
+ 1 11 52 ...widths
+ ------------------------------------------------------
+ x: |s| e | f |
+ ------------------------------------------------------
+ msb lsb msb lsb ...order
+
+
+ ------------------------ ------------------------
+ x0: |s| e | f1 | x1: | f2 |
+ ------------------------ ------------------------
+
+ By performing shifts and subtracts on x0 and x1 (both regarded
+ as integers), we obtain an 8-bit approximation of sqrt(x) as
+ follows.
+
+ k := (x0>>1) + 0x1ff80000;
+ y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
+ Here k is a 32-bit integer and T1[] is an integer array containing
+ correction terms. Now magically the floating value of y (y's
+ leading 32-bit word is y0, the value of its trailing word is 0)
+ approximates sqrt(x) to almost 8-bit.
+
+ Value of T1:
+ static int T1[32]= {
+ 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
+ 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
+ 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
+ 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
+
+ (2) Iterative refinement
+
+ Apply Heron's rule three times to y, we have y approximates
+ sqrt(x) to within 1 ulp (Unit in the Last Place):
+
+ y := (y+x/y)/2 ... almost 17 sig. bits
+ y := (y+x/y)/2 ... almost 35 sig. bits
+ y := y-(y-x/y)/2 ... within 1 ulp
+
+
+ Remark 1.
+ Another way to improve y to within 1 ulp is:
+
+ y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
+ y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
+
+ 2
+ (x-y )*y
+ y := y + 2* ---------- ...within 1 ulp
+ 2
+ 3y + x
+
+
+ This formula has one division fewer than the one above; however,
+ it requires more multiplications and additions. Also x must be
+ scaled in advance to avoid spurious overflow in evaluating the
+ expression 3y*y+x. Hence it is not recommended uless division
+ is slow. If division is very slow, then one should use the
+ reciproot algorithm given in section B.
+
+ (3) Final adjustment
+
+ By twiddling y's last bit it is possible to force y to be
+ correctly rounded according to the prevailing rounding mode
+ as follows. Let r and i be copies of the rounding mode and
+ inexact flag before entering the square root program. Also we
+ use the expression y+-ulp for the next representable floating
+ numbers (up and down) of y. Note that y+-ulp = either fixed
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+ mode.
+
+ I := FALSE; ... reset INEXACT flag I
+ R := RZ; ... set rounding mode to round-toward-zero
+ z := x/y; ... chopped quotient, possibly inexact
+ If(not I) then { ... if the quotient is exact
+ if(z=y) {
+ I := i; ... restore inexact flag
+ R := r; ... restore rounded mode
+ return sqrt(x):=y.
+ } else {
+ z := z - ulp; ... special rounding
+ }
+ }
+ i := TRUE; ... sqrt(x) is inexact
+ If (r=RN) then z=z+ulp ... rounded-to-nearest
+ If (r=RP) then { ... round-toward-+inf
+ y = y+ulp; z=z+ulp;
+ }
+ y := y+z; ... chopped sum
+ y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
+ I := i; ... restore inexact flag
+ R := r; ... restore rounded mode
+ return sqrt(x):=y.
+
+ (4) Special cases
+
+ Square root of +inf, +-0, or NaN is itself;
+ Square root of a negative number is NaN with invalid signal.
+
+
+B. sqrt(x) by Reciproot Iteration
+
+ (1) Initial approximation
+
+ Let x0 and x1 be the leading and the trailing 32-bit words of
+ a floating point number x (in IEEE double format) respectively
+ (see section A). By performing shifs and subtracts on x0 and y0,
+ we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
+
+ k := 0x5fe80000 - (x0>>1);
+ y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
+
+ Here k is a 32-bit integer and T2[] is an integer array
+ containing correction terms. Now magically the floating
+ value of y (y's leading 32-bit word is y0, the value of
+ its trailing word y1 is set to zero) approximates 1/sqrt(x)
+ to almost 7.8-bit.
+
+ Value of T2:
+ static int T2[64]= {
+ 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
+ 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
+ 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
+ 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
+ 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
+ 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
+ 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
+ 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
+
+ (2) Iterative refinement
+
+ Apply Reciproot iteration three times to y and multiply the
+ result by x to get an approximation z that matches sqrt(x)
+ to about 1 ulp. To be exact, we will have
+ -1ulp < sqrt(x)-z<1.0625ulp.
+
+ ... set rounding mode to Round-to-nearest
+ y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
+ y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
+ ... special arrangement for better accuracy
+ z := x*y ... 29 bits to sqrt(x), with z*y<1
+ z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
+
+ Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
+ (a) the term z*y in the final iteration is always less than 1;
+ (b) the error in the final result is biased upward so that
+ -1 ulp < sqrt(x) - z < 1.0625 ulp
+ instead of |sqrt(x)-z|<1.03125ulp.
+
+ (3) Final adjustment
+
+ By twiddling y's last bit it is possible to force y to be
+ correctly rounded according to the prevailing rounding mode
+ as follows. Let r and i be copies of the rounding mode and
+ inexact flag before entering the square root program. Also we
+ use the expression y+-ulp for the next representable floating
+ numbers (up and down) of y. Note that y+-ulp = either fixed
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+ mode.
+
+ R := RZ; ... set rounding mode to round-toward-zero
+ switch(r) {
+ case RN: ... round-to-nearest
+ if(x<= z*(z-ulp)...chopped) z = z - ulp; else
+ if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
+ break;
+ case RZ:case RM: ... round-to-zero or round-to--inf
+ R:=RP; ... reset rounding mod to round-to-+inf
+ if(x<z*z ... rounded up) z = z - ulp; else
+ if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
+ break;
+ case RP: ... round-to-+inf
+ if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
+ if(x>z*z ...chopped) z = z+ulp;
+ break;
+ }
+
+ Remark 3. The above comparisons can be done in fixed point. For
+ example, to compare x and w=z*z chopped, it suffices to compare
+ x1 and w1 (the trailing parts of x and w), regarding them as
+ two's complement integers.
+
+ ...Is z an exact square root?
+ To determine whether z is an exact square root of x, let z1 be the
+ trailing part of z, and also let x0 and x1 be the leading and
+ trailing parts of x.
+
+ If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
+ I := 1; ... Raise Inexact flag: z is not exact
+ else {
+ j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
+ k := z1 >> 26; ... get z's 25-th and 26-th
+ fraction bits
+ I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
+ }
+ R:= r ... restore rounded mode
+ return sqrt(x):=z.
+
+ If multiplication is cheaper then the foregoing red tape, the
+ Inexact flag can be evaluated by
+
+ I := i;
+ I := (z*z!=x) or I.
+
+ Note that z*z can overwrite I; this value must be sensed if it is
+ True.
+
+ Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
+ zero.
+
+ --------------------
+ z1: | f2 |
+ --------------------
+ bit 31 bit 0
+
+ Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
+ or even of logb(x) have the following relations:
+
+ -------------------------------------------------
+ bit 27,26 of z1 bit 1,0 of x1 logb(x)
+ -------------------------------------------------
+ 00 00 odd and even
+ 01 01 even
+ 10 10 odd
+ 10 00 even
+ 11 01 even
+ -------------------------------------------------
+
+ (4) Special cases (see (4) of Section A).
+
+ */
diff --git a/sysdeps/ieee754/dbl-64/k_cos.c b/sysdeps/ieee754/dbl-64/k_cos.c
new file mode 100644
index 0000000000..7e38ef7915
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_cos.c
@@ -0,0 +1,107 @@
+/* @(#)k_cos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
+#endif
+
+/*
+ * __kernel_cos( x, y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ * 3. cos(x) is approximated by a polynomial of degree 14 on
+ * [0,pi/4]
+ * 4 14
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ * where the remez error is
+ *
+ * | 2 4 6 8 10 12 14 | -58
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+ * | |
+ *
+ * 4 6 8 10 12 14
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+ * cos(x) = 1 - x*x/2 + r
+ * since cos(x+y) ~ cos(x) - sin(x)*y
+ * ~ cos(x) - x*y,
+ * a correction term is necessary in cos(x) and hence
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ * For better accuracy when x > 0.3, let qx = |x|/4 with
+ * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ * Then
+ * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ * magnitude of the latter is at least a quarter of x*x/2,
+ * thus, reducing the rounding error in the subtraction.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+C[] = {
+ 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+ 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+ -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+ 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+ -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+ 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+ -1.13596475577881948265e-11}; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+#ifdef __STDC__
+ double __kernel_cos(double x, double y)
+#else
+ double __kernel_cos(x, y)
+ double x,y;
+#endif
+{
+ double a,hz,z,r,qx,r1,r2,r3,z1,z2,z3;
+ int32_t ix;
+ z = x*x;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/
+ if(ix<0x3e400000) { /* if x < 2**27 */
+ if(((int)x)==0) return C[0]; /* generate inexact */
+ }
+#ifdef DO_NOT_USE_THIS
+ r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+#else
+ r1=z*C[6];r1=r1+C[5];z1=z*z;
+ r2=z*C[4];r2=r2+C[3];z2=z1*z;
+ r3=z*C[2];r3=r3+C[1];z3=z2*z1;
+ r=z3*r1+z2*r2+z*r3;
+#endif
+ if(ix < 0x3FD33333) /* if |x| < 0.3 */
+ return C[0] - (0.5*z - (z*r - x*y));
+ else {
+ if(ix > 0x3fe90000) { /* x > 0.78125 */
+ qx = 0.28125;
+ } else {
+ INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
+ }
+ hz = 0.5*z-qx;
+ a = C[0]-qx;
+ return a - (hz - (z*r-x*y));
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/k_rem_pio2.c b/sysdeps/ieee754/dbl-64/k_rem_pio2.c
new file mode 100644
index 0000000000..ccf1633bd4
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_rem_pio2.c
@@ -0,0 +1,320 @@
+/* @(#)k_rem_pio2.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
+#endif
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ * y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * x[] The input value (must be positive) is broken into nx
+ * pieces of 24-bit integers in double precision format.
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * match x's up to 24 bits.
+ *
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ * e0 = ilogb(z)-23
+ * z = scalbn(z,-e0)
+ * for i = 0,1,2
+ * x[i] = floor(z)
+ * z = (z-x[i])*2**24
+ *
+ *
+ * y[] ouput result in an array of double precision numbers.
+ * The dimension of y[] is:
+ * 24-bit precision 1
+ * 53-bit precision 2
+ * 64-bit precision 2
+ * 113-bit precision 3
+ * The actual value is the sum of them. Thus for 113-bit
+ * precision, one may have to do something like:
+ *
+ * long double t,w,r_head, r_tail;
+ * t = (long double)y[2] + (long double)y[1];
+ * w = (long double)y[0];
+ * r_head = t+w;
+ * r_tail = w - (r_head - t);
+ *
+ * e0 The exponent of x[0]
+ *
+ * nx dimension of x[]
+ *
+ * prec an integer indicating the precision:
+ * 0 24 bits (single)
+ * 1 53 bits (double)
+ * 2 64 bits (extended)
+ * 3 113 bits (quad)
+ *
+ * ipio2[]
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
+ * floating value is
+ *
+ * ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ * double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * jk jk+1 is the initial number of terms of ipio2[] needed
+ * in the computation. The recommended value is 2,3,4,
+ * 6 for single, double, extended,and quad.
+ *
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
+ *
+ * jx nx - 1
+ *
+ * jv index for pointing to the suitable ipio2[] for the
+ * computation. In general, we want
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ * is an integer. Thus
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ * Hence jv = max(0,(e0-3)/24).
+ *
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * q[] double array with integral value, representing the
+ * 24-bits chunk of the product of x and 2/pi.
+ *
+ * q0 the corresponding exponent of q[0]. Note that the
+ * exponent for q[i] would be q0-24*i.
+ *
+ * PIo2[] double precision array, obtained by cutting pi/2
+ * into 24 bits chunks.
+ *
+ * f[] ipio2[] in floating point
+ *
+ * iq[] integer array by breaking up q[] in 24-bits chunk.
+ *
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence
+ * it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
+#else
+static int init_jk[] = {2,3,4,6};
+#endif
+
+#ifdef __STDC__
+static const double PIo2[] = {
+#else
+static double PIo2[] = {
+#endif
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+zero = 0.0,
+one = 1.0,
+two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+#ifdef __STDC__
+ int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
+#else
+ int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ double x[], y[]; int e0,nx,prec; int32_t ipio2[];
+#endif
+{
+ int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+ double z,fw,f[20],fq[20],q[20];
+
+ /* initialize jk*/
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx-1;
+ jv = (e0-3)/24; if(jv<0) jv=0;
+ q0 = e0-24*(jv+1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv-jx; m = jx+jk;
+ for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i=0;i<=jk;i++) {
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+ }
+
+ jz = jk;
+recompute:
+ /* distill q[] into iq[] reversingly */
+ for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+ fw = (double)((int32_t)(twon24* z));
+ iq[i] = (int32_t)(z-two24*fw);
+ z = q[j-1]+fw;
+ }
+
+ /* compute n */
+ z = __scalbn(z,q0); /* actual value of z */
+ z -= 8.0*__floor(z*0.125); /* trim off integer >= 8 */
+ n = (int32_t) z;
+ z -= (double)n;
+ ih = 0;
+ if(q0>0) { /* need iq[jz-1] to determine n */
+ i = (iq[jz-1]>>(24-q0)); n += i;
+ iq[jz-1] -= i<<(24-q0);
+ ih = iq[jz-1]>>(23-q0);
+ }
+ else if(q0==0) ih = iq[jz-1]>>23;
+ else if(z>=0.5) ih=2;
+
+ if(ih>0) { /* q > 0.5 */
+ n += 1; carry = 0;
+ for(i=0;i<jz ;i++) { /* compute 1-q */
+ j = iq[i];
+ if(carry==0) {
+ if(j!=0) {
+ carry = 1; iq[i] = 0x1000000- j;
+ }
+ } else iq[i] = 0xffffff - j;
+ }
+ if(q0>0) { /* rare case: chance is 1 in 12 */
+ switch(q0) {
+ case 1:
+ iq[jz-1] &= 0x7fffff; break;
+ case 2:
+ iq[jz-1] &= 0x3fffff; break;
+ }
+ }
+ if(ih==2) {
+ z = one - z;
+ if(carry!=0) z -= __scalbn(one,q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if(z==zero) {
+ j = 0;
+ for (i=jz-1;i>=jk;i--) j |= iq[i];
+ if(j==0) { /* need recomputation */
+ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
+
+ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx+i] = (double) ipio2[jv+i];
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if(z==0.0) {
+ jz -= 1; q0 -= 24;
+ while(iq[jz]==0) { jz--; q0-=24;}
+ } else { /* break z into 24-bit if necessary */
+ z = __scalbn(z,-q0);
+ if(z>=two24) {
+ fw = (double)((int32_t)(twon24*z));
+ iq[jz] = (int32_t)(z-two24*fw);
+ jz += 1; q0 += 24;
+ iq[jz] = (int32_t) fw;
+ } else iq[jz] = (int32_t) z ;
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = __scalbn(one,q0);
+ for(i=jz;i>=0;i--) {
+ q[i] = fw*(double)iq[i]; fw*=twon24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for(i=jz;i>=0;i--) {
+ for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+ fq[jz-i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch(prec) {
+ case 0:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ fw = fq[0]-fw;
+ for (i=1;i<=jz;i++) fw += fq[i];
+ y[1] = (ih==0)? fw: -fw;
+ break;
+ case 3: /* painful */
+ for (i=jz;i>0;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (i=jz;i>1;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+ if(ih==0) {
+ y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
+ } else {
+ y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+ }
+ }
+ return n&7;
+}
diff --git a/sysdeps/ieee754/dbl-64/k_sin.c b/sysdeps/ieee754/dbl-64/k_sin.c
new file mode 100644
index 0000000000..49c59228e0
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_sin.c
@@ -0,0 +1,91 @@
+/* @(#)k_sin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
+#endif
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ * 3. sin(x) is approximated by a polynomial of degree 13 on
+ * [0,pi/4]
+ * 3 13
+ * sin(x) ~ x + S1*x + ... + S6*x
+ * where
+ *
+ * |sin(x) 2 4 6 8 10 12 | -58
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+ * | x |
+ *
+ * 4. sin(x+y) = sin(x) + sin'(x')*y
+ * ~ sin(x) + (1-x*x/2)*y
+ * For better accuracy, let
+ * 3 2 2 2 2
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ * then 3 2
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+S[] = {
+ 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+ -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+ 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+ -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+ 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+ -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+ 1.58969099521155010221e-10}; /* 0x3DE5D93A, 0x5ACFD57C */
+
+#ifdef __STDC__
+ double __kernel_sin(double x, double y, int iy)
+#else
+ double __kernel_sin(x, y, iy)
+ double x,y; int iy; /* iy=0 if y is zero */
+#endif
+{
+ double z,r,v,z1,r1,r2;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff; /* high word of x */
+ if(ix<0x3e400000) /* |x| < 2**-27 */
+ {if((int)x==0) return x;} /* generate inexact */
+ z = x*x;
+ v = z*x;
+#ifdef DO_NOT_USE_THIS
+ r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
+ if(iy==0) return x+v*(S1+z*r);
+ else return x-((z*(half*y-v*r)-y)-v*S1);
+#else
+ r1 = S[5]+z*S[6]; z1 = z*z*z;
+ r2 = S[3]+z*S[4];
+ r = S[2] + z*r2 + z1*r1;
+ if(iy==0) return x+v*(S[1]+z*r);
+ else return x-((z*(S[0]*y-v*r)-y)-v*S[1]);
+#endif
+}
diff --git a/sysdeps/ieee754/dbl-64/k_tan.c b/sysdeps/ieee754/dbl-64/k_tan.c
new file mode 100644
index 0000000000..55dafb8ebc
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/k_tan.c
@@ -0,0 +1,145 @@
+/* @(#)k_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $";
+#endif
+
+/* __kernel_tan( x, y, k )
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input k indicates whether tan (if k=1) or
+ * -1/tan (if k= -1) is returned.
+ *
+ * Algorithm
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on
+ * [0,0.67434]
+ * 3 27
+ * tan(x) ~ x + T1*x + ... + T13*x
+ * where
+ *
+ * |tan(x) 2 4 26 | -59.2
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+ * | x |
+ *
+ * Note: tan(x+y) = tan(x) + tan'(x)*y
+ * ~ tan(x) + (1+x*x)*y
+ * Therefore, for better accuracy in computing tan(x+y), let
+ * 3 2 2 2 2
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ * then
+ * 3 2
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include "math.h"
+#include "math_private.h"
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
+T[] = {
+ 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
+ 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
+ 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
+ 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
+ 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
+ 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
+ 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
+ 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
+ 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
+ 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
+ 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
+ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
+ 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
+};
+
+#ifdef __STDC__
+ double __kernel_tan(double x, double y, int iy)
+#else
+ double __kernel_tan(x, y, iy)
+ double x,y; int iy;
+#endif
+{
+ double z,r,v,w,s,r1,r2,r3,v1,v2,v3,w2,w4;
+ int32_t ix,hx;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff; /* high word of |x| */
+ if(ix<0x3e300000) /* x < 2**-28 */
+ {if((int)x==0) { /* generate inexact */
+ u_int32_t low;
+ GET_LOW_WORD(low,x);
+ if(((ix|low)|(iy+1))==0) return one/fabs(x);
+ else return (iy==1)? x: -one/x;
+ }
+ }
+ if(ix>=0x3FE59428) { /* |x|>=0.6744 */
+ if(hx<0) {x = -x; y = -y;}
+ z = pio4-x;
+ w = pio4lo-y;
+ x = z+w; y = 0.0;
+ }
+ z = x*x;
+ w = z*z;
+ /* Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+#ifdef DO_NOT_USE_THIS
+ r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
+ v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
+#else
+ v1 = T[10]+w*T[12]; w2=w*w;
+ v2 = T[6]+w*T[8]; w4=w2*w2;
+ v3 = T[2]+w*T[4]; v1=z*v1;
+ r1 = T[9]+w*T[11]; v2=z*v2;
+ r2 = T[5]+w*T[7]; v3=z*v3;
+ r3 = T[1]+w*T[3];
+ v = v3 + w2*v2 + w4*v1;
+ r = r3 + w2*r2 + w4*r1;
+#endif
+ s = z*x;
+ r = y + z*(s*(r+v)+y);
+ r += T[0]*s;
+ w = x+r;
+ if(ix>=0x3FE59428) {
+ v = (double)iy;
+ return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
+ }
+ if(iy==1) return w;
+ else { /* if allow error up to 2 ulp,
+ simply return -1.0/(x+r) here */
+ /* compute -1.0/(x+r) accurately */
+ double a,t;
+ z = w;
+ SET_LOW_WORD(z,0);
+ v = r-(z - x); /* z+v = r+x */
+ t = a = -1.0/w; /* a = -1.0/w */
+ SET_LOW_WORD(t,0);
+ s = 1.0+t*z;
+ return t+a*(s+t*v);
+ }
+}
diff --git a/sysdeps/ieee754/dbl-64/mpn2dbl.c b/sysdeps/ieee754/dbl-64/mpn2dbl.c
new file mode 100644
index 0000000000..8145eb9c3d
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/mpn2dbl.c
@@ -0,0 +1,46 @@
+/* Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include <ieee754.h>
+#include <float.h>
+
+/* Convert a multi-precision integer of the needed number of bits (53 for
+ double) and an integral power of two to a `double' in IEEE754 double-
+ precision format. */
+
+double
+__mpn_construct_double (mp_srcptr frac_ptr, int expt, int negative)
+{
+ union ieee754_double u;
+
+ u.ieee.negative = negative;
+ u.ieee.exponent = expt + IEEE754_DOUBLE_BIAS;
+#if BITS_PER_MP_LIMB == 32
+ u.ieee.mantissa1 = frac_ptr[0];
+ u.ieee.mantissa0 = frac_ptr[1] & ((1 << (DBL_MANT_DIG - 32)) - 1);
+#elif BITS_PER_MP_LIMB == 64
+ u.ieee.mantissa1 = frac_ptr[0] & ((1L << 32) - 1);
+ u.ieee.mantissa0 = (frac_ptr[0] >> 32) & ((1 << (DBL_MANT_DIG - 32)) - 1);
+#else
+ #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for"
+#endif
+
+ return u.d;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_asinh.c b/sysdeps/ieee754/dbl-64/s_asinh.c
new file mode 100644
index 0000000000..985cfe32e1
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_asinh.c
@@ -0,0 +1,70 @@
+/* @(#)s_asinh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_asinh.c,v 1.9 1995/05/12 04:57:37 jtc Exp $";
+#endif
+
+/* asinh(x)
+ * Method :
+ * Based on
+ * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ * we have
+ * asinh(x) := x if 1+x*x=1,
+ * := sign(x)*(log(x)+ln2)) for large |x|, else
+ * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+ * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
+huge= 1.00000000000000000000e+300;
+
+#ifdef __STDC__
+ double __asinh(double x)
+#else
+ double __asinh(x)
+ double x;
+#endif
+{
+ double t,w;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
+ if(ix< 0x3e300000) { /* |x|<2**-28 */
+ if(huge+x>one) return x; /* return x inexact except 0 */
+ }
+ if(ix>0x41b00000) { /* |x| > 2**28 */
+ w = __ieee754_log(fabs(x))+ln2;
+ } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
+ t = fabs(x);
+ w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
+ } else { /* 2.0 > |x| > 2**-28 */
+ t = x*x;
+ w =__log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
+ }
+ if(hx>0) return w; else return -w;
+}
+weak_alias (__asinh, asinh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__asinh, __asinhl)
+weak_alias (__asinh, asinhl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_atan.c b/sysdeps/ieee754/dbl-64/s_atan.c
new file mode 100644
index 0000000000..cad3ba12a8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_atan.c
@@ -0,0 +1,163 @@
+/* @(#)s_atan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_atan.c,v 1.8 1995/05/10 20:46:45 jtc Exp $";
+#endif
+
+/* atan(x)
+ * Method
+ * 1. Reduce x to positive by atan(x) = -atan(-x).
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of t is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double atanhi[] = {
+#else
+static double atanhi[] = {
+#endif
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+};
+
+#ifdef __STDC__
+static const double atanlo[] = {
+#else
+static double atanlo[] = {
+#endif
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+};
+
+#ifdef __STDC__
+static const double aT[] = {
+#else
+static double aT[] = {
+#endif
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+};
+
+#ifdef __STDC__
+ static const double
+#else
+ static double
+#endif
+one = 1.0,
+huge = 1.0e300;
+
+#ifdef __STDC__
+ double __atan(double x)
+#else
+ double __atan(x)
+ double x;
+#endif
+{
+ double w,s1,z,s,w2,w4,s11,s12,s13,s21,s22,s23;
+ int32_t ix,hx,id;
+
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x44100000) { /* if |x| >= 2^66 */
+ u_int32_t low;
+ GET_LOW_WORD(low,x);
+ if(ix>0x7ff00000||
+ (ix==0x7ff00000&&(low!=0)))
+ return x+x; /* NaN */
+ if(hx>0) return atanhi[3]+atanlo[3];
+ else return -atanhi[3]-atanlo[3];
+ } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
+ if (ix < 0x3e200000) { /* |x| < 2^-29 */
+ if(huge+x>one) return x; /* raise inexact */
+ }
+ id = -1;
+ } else {
+ x = fabs(x);
+ if (ix < 0x3ff30000) { /* |x| < 1.1875 */
+ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
+ id = 0; x = (2.0*x-one)/(2.0+x);
+ } else { /* 11/16<=|x|< 19/16 */
+ id = 1; x = (x-one)/(x+one);
+ }
+ } else {
+ if (ix < 0x40038000) { /* |x| < 2.4375 */
+ id = 2; x = (x-1.5)/(one+1.5*x);
+ } else { /* 2.4375 <= |x| < 2^66 */
+ id = 3; x = -1.0/x;
+ }
+ }}
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+#ifdef DO_NOT_USE_THIS
+ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+ s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+ if (id<0) return x - x*(s1+s2);
+ else {
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return (hx<0)? -z:z;
+ }
+#else
+ s11 = aT[8]+w*aT[10]; w2=w*w;
+ s12 = aT[4]+w*aT[6]; w4=w2*w2;
+ s13 = aT[0]+w*aT[2];
+ s21 = aT[7]+w*aT[9];
+ s22 = aT[3]+w*aT[5];
+ s23 = w*aT[1];
+ s1 = s13 + w2*s12 + w4*s11;
+ s = s23 + w2*s22 + w4*s21 + z*s1;
+ if (id<0) return x - x*(s);
+ else {
+ z = atanhi[id] - ((x*(s) - atanlo[id]) - x);
+ return (hx<0)? -z:z;
+ }
+#endif
+}
+weak_alias (__atan, atan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__atan, __atanl)
+weak_alias (__atan, atanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_cbrt.c b/sysdeps/ieee754/dbl-64/s_cbrt.c
new file mode 100644
index 0000000000..753049d375
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_cbrt.c
@@ -0,0 +1,76 @@
+/* Compute cubic root of double value.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Dirk Alboth <dirka@uni-paderborn.de> and
+ Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "math.h"
+#include "math_private.h"
+
+
+#define CBRT2 1.2599210498948731648 /* 2^(1/3) */
+#define SQR_CBRT2 1.5874010519681994748 /* 2^(2/3) */
+
+static const double factor[5] =
+{
+ 1.0 / SQR_CBRT2,
+ 1.0 / CBRT2,
+ 1.0,
+ CBRT2,
+ SQR_CBRT2
+};
+
+
+double
+__cbrt (double x)
+{
+ double xm, ym, u, t2;
+ int xe;
+
+ /* Reduce X. XM now is an range 1.0 to 0.5. */
+ xm = __frexp (fabs (x), &xe);
+
+ /* If X is not finite or is null return it (with raising exceptions
+ if necessary.
+ Note: *Our* version of `frexp' sets XE to zero if the argument is
+ Inf or NaN. This is not portable but faster. */
+ if (xe == 0 && fpclassify (x) <= FP_ZERO)
+ return x + x;
+
+ u = (0.354895765043919860
+ + ((1.50819193781584896
+ + ((-2.11499494167371287
+ + ((2.44693122563534430
+ + ((-1.83469277483613086
+ + (0.784932344976639262 - 0.145263899385486377 * xm) * xm)
+ * xm))
+ * xm))
+ * xm))
+ * xm));
+
+ t2 = u * u * u;
+
+ ym = u * (t2 + 2.0 * xm) / (2.0 * t2 + xm) * factor[2 + xe % 3];
+
+ return __ldexp (x > 0.0 ? ym : -ym, xe / 3);
+}
+weak_alias (__cbrt, cbrt)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__cbrt, __cbrtl)
+weak_alias (__cbrt, cbrtl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_ceil.c b/sysdeps/ieee754/dbl-64/s_ceil.c
new file mode 100644
index 0000000000..1b352a679e
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_ceil.c
@@ -0,0 +1,85 @@
+/* @(#)s_ceil.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ceil.c,v 1.8 1995/05/10 20:46:53 jtc Exp $";
+#endif
+
+/*
+ * ceil(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to ceil(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double huge = 1.0e300;
+#else
+static double huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+ double __ceil(double x)
+#else
+ double __ceil(x)
+ double x;
+#endif
+{
+ int32_t i0,i1,j0;
+ u_int32_t i,j;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0<0) {i0=0x80000000;i1=0;}
+ else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
+ }
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0>0) i0 += (0x00100000)>>j0;
+ i0 &= (~i); i1=0;
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((u_int32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0>0) {
+ if(j0==20) i0+=1;
+ else {
+ j = i1 + (1<<(52-j0));
+ if(j<i1) i0+=1; /* got a carry */
+ i1 = j;
+ }
+ }
+ i1 &= (~i);
+ }
+ }
+ INSERT_WORDS(x,i0,i1);
+ return x;
+}
+weak_alias (__ceil, ceil)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ceil, __ceill)
+weak_alias (__ceil, ceill)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_copysign.c b/sysdeps/ieee754/dbl-64/s_copysign.c
new file mode 100644
index 0000000000..5e35e6943c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_copysign.c
@@ -0,0 +1,43 @@
+/* @(#)s_copysign.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_copysign.c,v 1.8 1995/05/10 20:46:57 jtc Exp $";
+#endif
+
+/*
+ * copysign(double x, double y)
+ * copysign(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __copysign(double x, double y)
+#else
+ double __copysign(x,y)
+ double x,y;
+#endif
+{
+ u_int32_t hx,hy;
+ GET_HIGH_WORD(hx,x);
+ GET_HIGH_WORD(hy,y);
+ SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
+ return x;
+}
+weak_alias (__copysign, copysign)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__copysign, __copysignl)
+weak_alias (__copysign, copysignl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_cos.c b/sysdeps/ieee754/dbl-64/s_cos.c
new file mode 100644
index 0000000000..7edb5deafe
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_cos.c
@@ -0,0 +1,87 @@
+/* @(#)s_cos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $";
+#endif
+
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cosine function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __cos(double x)
+#else
+ double __cos(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
+
+ /* cos(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_cos(y[0],y[1]);
+ case 1: return -__kernel_sin(y[0],y[1],1);
+ case 2: return -__kernel_cos(y[0],y[1]);
+ default:
+ return __kernel_sin(y[0],y[1],1);
+ }
+ }
+}
+weak_alias (__cos, cos)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__cos, __cosl)
+weak_alias (__cos, cosl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_erf.c b/sysdeps/ieee754/dbl-64/s_erf.c
new file mode 100644
index 0000000000..d8b6629a72
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_erf.c
@@ -0,0 +1,431 @@
+/* @(#)s_erf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
+#endif
+
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. For |x| in [0, 0.84375]
+ * erf(x) = x + x*R(x^2)
+ * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+ * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+ * where R = P/Q where P is an odd poly of degree 8 and
+ * Q is an odd poly of degree 10.
+ * -57.90
+ * | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fix
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = sign(x) * (c + P1(s)/Q1(s))
+ * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+ * 1+(c+P1(s)/Q1(s)) if x < 0
+ * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * That is, we use rational approximation to approximate
+ * erf(1+s) - (c = (single)0.84506291151)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ * where
+ * P1(s) = degree 6 poly in s
+ * Q1(s) = degree 6 poly in s
+ *
+ * 3. For x in [1.25,1/0.35(~2.857143)],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ * erf(x) = 1 - erfc(x)
+ * where
+ * R1(z) = degree 7 poly in z, (z=1/x^2)
+ * S1(z) = degree 8 poly in z
+ *
+ * 4. For x in [1/0.35,28]
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ * = 2.0 - tiny (if x <= -6)
+ * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ * erf(x) = sign(x)*(1.0 - tiny)
+ * where
+ * R2(z) = degree 6 poly in z, (z=1/x^2)
+ * S2(z) = degree 7 poly in z
+ *
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ * We use rational approximation to approximate
+ * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ * Here is the error bound for R1/S1 and R2/S2
+ * |R1/S1 - f(x)| < 2**(-62.57)
+ * |R2/S2 - f(x)| < 2**(-61.52)
+ *
+ * 5. For inf > x >= 28
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+tiny = 1e-300,
+half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+ /* c = (float)0.84506291151 */
+erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
+efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+pp[] = {1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+ -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+ -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+ -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+ -2.37630166566501626084e-05}, /* 0xBEF8EAD6, 0x120016AC */
+qq[] = {0.0, 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+ 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+ 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+ 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+ -3.96022827877536812320e-06}, /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa[] = {-2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+ 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+ -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+ 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+ -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+ 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+ -2.16637559486879084300e-03}, /* 0xBF61BF38, 0x0A96073F */
+qa[] = {0.0, 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+ 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+ 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+ 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+ 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+ 1.19844998467991074170e-02}, /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+ra[] = {-9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+ -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+ -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+ -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+ -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+ -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+ -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+ -9.81432934416914548592e+00}, /* 0xC023A0EF, 0xC69AC25C */
+sa[] = {0.0,1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+ 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+ 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+ 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+ 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+ 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+ 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+ -6.04244152148580987438e-02}, /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb[] = {-9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+ -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+ -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+ -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+ -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+ -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+ -4.83519191608651397019e+02}, /* 0xC07E384E, 0x9BDC383F */
+sb[] = {0.0,3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+ 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+ 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+ 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+ 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+ 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+ -2.24409524465858183362e+01}; /* 0xC03670E2, 0x42712D62 */
+
+#ifdef __STDC__
+ double __erf(double x)
+#else
+ double __erf(x)
+ double x;
+#endif
+{
+ int32_t hx,ix,i;
+ double R,S,P,Q,s,y,z,r;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) { /* erf(nan)=nan */
+ i = ((u_int32_t)hx>>31)<<1;
+ return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
+ }
+
+ if(ix < 0x3feb0000) { /* |x|<0.84375 */
+ double r1,r2,s1,s2,s3,z2,z4;
+ if(ix < 0x3e300000) { /* |x|<2**-28 */
+ if (ix < 0x00800000)
+ return 0.125*(8.0*x+efx8*x); /*avoid underflow */
+ return x + efx*x;
+ }
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+#else
+ r1 = pp[0]+z*pp[1]; z2=z*z;
+ r2 = pp[2]+z*pp[3]; z4=z2*z2;
+ s1 = one+z*qq[1];
+ s2 = qq[2]+z*qq[3];
+ s3 = qq[4]+z*qq[5];
+ r = r1 + z2*r2 + z4*pp[4];
+ s = s1 + z2*s2 + z4*s3;
+#endif
+ y = r/s;
+ return x + x*y;
+ }
+ if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
+ double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
+ s = fabs(x)-one;
+#ifdef DO_NOT_USE_THIS
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+#else
+ P1 = pa[0]+s*pa[1]; s2=s*s;
+ Q1 = one+s*qa[1]; s4=s2*s2;
+ P2 = pa[2]+s*pa[3]; s6=s4*s2;
+ Q2 = qa[2]+s*qa[3];
+ P3 = pa[4]+s*pa[5];
+ Q3 = qa[4]+s*qa[5];
+ P4 = s6*pa[6];
+ Q4 = s6*qa[6];
+ P = P1 + s2*P2 + s4*P3 + s6*P4;
+ Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
+#endif
+ if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+ }
+ if (ix >= 0x40180000) { /* inf>|x|>=6 */
+ if(hx>=0) return one-tiny; else return tiny-one;
+ }
+ x = fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
+#ifdef DO_NOT_USE_THIS
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+#else
+ double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
+ R1 = ra[0]+s*ra[1];s2 = s*s;
+ S1 = one+s*sa[1]; s4 = s2*s2;
+ R2 = ra[2]+s*ra[3];s6 = s4*s2;
+ S2 = sa[2]+s*sa[3];s8 = s4*s4;
+ R3 = ra[4]+s*ra[5];
+ S3 = sa[4]+s*sa[5];
+ R4 = ra[6]+s*ra[7];
+ S4 = sa[6]+s*sa[7];
+ R = R1 + s2*R2 + s4*R3 + s6*R4;
+ S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
+#endif
+ } else { /* |x| >= 1/0.35 */
+#ifdef DO_NOT_USE_THIS
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+#else
+ double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
+ R1 = rb[0]+s*rb[1];s2 = s*s;
+ S1 = one+s*sb[1]; s4 = s2*s2;
+ R2 = rb[2]+s*rb[3];s6 = s4*s2;
+ S2 = sb[2]+s*sb[3];
+ R3 = rb[4]+s*rb[5];
+ S3 = sb[4]+s*sb[5];
+ S4 = sb[6]+s*sb[7];
+ R = R1 + s2*R2 + s4*R3 + s6*rb[6];
+ S = S1 + s2*S2 + s4*S3 + s6*S4;
+#endif
+ }
+ z = x;
+ SET_LOW_WORD(z,0);
+ r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
+ if(hx>=0) return one-r/x; else return r/x-one;
+}
+weak_alias (__erf, erf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__erf, __erfl)
+weak_alias (__erf, erfl)
+#endif
+
+#ifdef __STDC__
+ double __erfc(double x)
+#else
+ double __erfc(x)
+ double x;
+#endif
+{
+ int32_t hx,ix;
+ double R,S,P,Q,s,y,z,r;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) { /* erfc(nan)=nan */
+ /* erfc(+-inf)=0,2 */
+ return (double)(((u_int32_t)hx>>31)<<1)+one/x;
+ }
+
+ if(ix < 0x3feb0000) { /* |x|<0.84375 */
+ double r1,r2,s1,s2,s3,z2,z4;
+ if(ix < 0x3c700000) /* |x|<2**-56 */
+ return one-x;
+ z = x*x;
+#ifdef DO_NOT_USE_THIS
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+#else
+ r1 = pp[0]+z*pp[1]; z2=z*z;
+ r2 = pp[2]+z*pp[3]; z4=z2*z2;
+ s1 = one+z*qq[1];
+ s2 = qq[2]+z*qq[3];
+ s3 = qq[4]+z*qq[5];
+ r = r1 + z2*r2 + z4*pp[4];
+ s = s1 + z2*s2 + z4*s3;
+#endif
+ y = r/s;
+ if(hx < 0x3fd00000) { /* x<1/4 */
+ return one-(x+x*y);
+ } else {
+ r = x*y;
+ r += (x-half);
+ return half - r ;
+ }
+ }
+ if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
+ double s2,s4,s6,P1,P2,P3,P4,Q1,Q2,Q3,Q4;
+ s = fabs(x)-one;
+#ifdef DO_NOT_USE_THIS
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+#else
+ P1 = pa[0]+s*pa[1]; s2=s*s;
+ Q1 = one+s*qa[1]; s4=s2*s2;
+ P2 = pa[2]+s*pa[3]; s6=s4*s2;
+ Q2 = qa[2]+s*qa[3];
+ P3 = pa[4]+s*pa[5];
+ Q3 = qa[4]+s*qa[5];
+ P4 = s6*pa[6];
+ Q4 = s6*qa[6];
+ P = P1 + s2*P2 + s4*P3 + s6*P4;
+ Q = Q1 + s2*Q2 + s4*Q3 + s6*Q4;
+#endif
+ if(hx>=0) {
+ z = one-erx; return z - P/Q;
+ } else {
+ z = erx+P/Q; return one+z;
+ }
+ }
+ if (ix < 0x403c0000) { /* |x|<28 */
+ x = fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
+#ifdef DO_NOT_USE_THIS
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+#else
+ double R1,R2,R3,R4,S1,S2,S3,S4,s2,s4,s6,s8;
+ R1 = ra[0]+s*ra[1];s2 = s*s;
+ S1 = one+s*sa[1]; s4 = s2*s2;
+ R2 = ra[2]+s*ra[3];s6 = s4*s2;
+ S2 = sa[2]+s*sa[3];s8 = s4*s4;
+ R3 = ra[4]+s*ra[5];
+ S3 = sa[4]+s*sa[5];
+ R4 = ra[6]+s*ra[7];
+ S4 = sa[6]+s*sa[7];
+ R = R1 + s2*R2 + s4*R3 + s6*R4;
+ S = S1 + s2*S2 + s4*S3 + s6*S4 + s8*sa[8];
+#endif
+ } else { /* |x| >= 1/.35 ~ 2.857143 */
+ double R1,R2,R3,S1,S2,S3,S4,s2,s4,s6;
+ if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
+#ifdef DO_NOT_USE_THIS
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+#else
+ R1 = rb[0]+s*rb[1];s2 = s*s;
+ S1 = one+s*sb[1]; s4 = s2*s2;
+ R2 = rb[2]+s*rb[3];s6 = s4*s2;
+ S2 = sb[2]+s*sb[3];
+ R3 = rb[4]+s*rb[5];
+ S3 = sb[4]+s*sb[5];
+ S4 = sb[6]+s*sb[7];
+ R = R1 + s2*R2 + s4*R3 + s6*rb[6];
+ S = S1 + s2*S2 + s4*S3 + s6*S4;
+#endif
+ }
+ z = x;
+ SET_LOW_WORD(z,0);
+ r = __ieee754_exp(-z*z-0.5625)*
+ __ieee754_exp((z-x)*(z+x)+R/S);
+ if(hx>0) return r/x; else return two-r/x;
+ } else {
+ if(hx>0) return tiny*tiny; else return two-tiny;
+ }
+}
+weak_alias (__erfc, erfc)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__erfc, __erfcl)
+weak_alias (__erfc, erfcl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_exp2.c b/sysdeps/ieee754/dbl-64/s_exp2.c
new file mode 100644
index 0000000000..875d4d6f2c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_exp2.c
@@ -0,0 +1,129 @@
+/* Double-precision floating point 2^x.
+ Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* The basic design here is from
+ Shmuel Gal and Boris Bachelis, "An Accurate Elementary Mathematical
+ Library for the IEEE Floating Point Standard", ACM Trans. Math. Soft.,
+ 17 (1), March 1991, pp. 26-45.
+ It has been slightly modified to compute 2^x instead of e^x.
+ */
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#include <float.h>
+#include <ieee754.h>
+#include <math.h>
+#include <fenv.h>
+#include <inttypes.h>
+#include <math_private.h>
+
+#include "t_exp2.h"
+
+static const volatile double TWO1023 = 8.988465674311579539e+307;
+static const volatile double TWOM1000 = 9.3326361850321887899e-302;
+
+double
+__ieee754_exp2 (double x)
+{
+ static const double himark = (double) DBL_MAX_EXP;
+ static const double lomark = (double) (DBL_MIN_EXP - DBL_MANT_DIG - 1) - 1.0;
+
+ /* Check for usual case. */
+ if (isless (x, himark) && isgreater (x, lomark))
+ {
+ static const double THREEp42 = 13194139533312.0;
+ int tval, unsafe;
+ double rx, x22, result;
+ union ieee754_double ex2_u, scale_u;
+ fenv_t oldenv;
+
+ feholdexcept (&oldenv);
+#ifdef FE_TONEAREST
+ /* If we don't have this, it's too bad. */
+ fesetround (FE_TONEAREST);
+#endif
+
+ /* 1. Argument reduction.
+ Choose integers ex, -256 <= t < 256, and some real
+ -1/1024 <= x1 <= 1024 so that
+ x = ex + t/512 + x1.
+
+ First, calculate rx = ex + t/512. */
+ rx = x + THREEp42;
+ rx -= THREEp42;
+ x -= rx; /* Compute x=x1. */
+ /* Compute tval = (ex*512 + t)+256.
+ Now, t = (tval mod 512)-256 and ex=tval/512 [that's mod, NOT %; and
+ /-round-to-nearest not the usual c integer /]. */
+ tval = (int) (rx * 512.0 + 256.0);
+
+ /* 2. Adjust for accurate table entry.
+ Find e so that
+ x = ex + t/512 + e + x2
+ where -1e6 < e < 1e6, and
+ (double)(2^(t/512+e))
+ is accurate to one part in 2^-64. */
+
+ /* 'tval & 511' is the same as 'tval%512' except that it's always
+ positive.
+ Compute x = x2. */
+ x -= exp2_deltatable[tval & 511];
+
+ /* 3. Compute ex2 = 2^(t/512+e+ex). */
+ ex2_u.d = exp2_accuratetable[tval & 511];
+ tval >>= 9;
+ unsafe = abs(tval) >= -DBL_MIN_EXP - 1;
+ ex2_u.ieee.exponent += tval >> unsafe;
+ scale_u.d = 1.0;
+ scale_u.ieee.exponent += tval - (tval >> unsafe);
+
+ /* 4. Approximate 2^x2 - 1, using a fourth-degree polynomial,
+ with maximum error in [-2^-10-2^-30,2^-10+2^-30]
+ less than 10^-19. */
+
+ x22 = (((.0096181293647031180
+ * x + .055504110254308625)
+ * x + .240226506959100583)
+ * x + .69314718055994495) * ex2_u.d;
+
+ /* 5. Return (2^x2-1) * 2^(t/512+e+ex) + 2^(t/512+e+ex). */
+ fesetenv (&oldenv);
+
+ result = x22 * x + ex2_u.d;
+
+ if (!unsafe)
+ return result;
+ else
+ return result * scale_u.d;
+ }
+ /* Exceptional cases: */
+ else if (isless (x, himark))
+ {
+ if (__isinf (x))
+ /* e^-inf == 0, with no error. */
+ return 0;
+ else
+ /* Underflow */
+ return TWOM1000 * TWOM1000;
+ }
+ else
+ /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
+ return TWO1023*x;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_expm1.c b/sysdeps/ieee754/dbl-64/s_expm1.c
new file mode 100644
index 0000000000..bfd15b2e31
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_expm1.c
@@ -0,0 +1,243 @@
+/* @(#)s_expm1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_expm1.c,v 1.8 1995/05/10 20:47:09 jtc Exp $";
+#endif
+
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+ *
+ * Here a correction term c will be computed to compensate
+ * the error in r when rounded to a floating-point number.
+ *
+ * 2. Approximating expm1(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Since
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ * we define R1(r*r) by
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ * That is,
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ * We use a special Reme algorithm on [0,0.347] to generate
+ * a polynomial of degree 5 in r*r to approximate R1. The
+ * maximum error of this polynomial approximation is bounded
+ * by 2**-61. In other words,
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ * where Q1 = -1.6666666666666567384E-2,
+ * Q2 = 3.9682539681370365873E-4,
+ * Q3 = -9.9206344733435987357E-6,
+ * Q4 = 2.5051361420808517002E-7,
+ * Q5 = -6.2843505682382617102E-9;
+ * (where z=r*r, and the values of Q1 to Q5 are listed below)
+ * with error bounded by
+ * | 5 | -61
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ * | |
+ *
+ * expm1(r) = exp(r)-1 is then computed by the following
+ * specific way which minimize the accumulation rounding error:
+ * 2 3
+ * r r [ 3 - (R1 + R1*r/2) ]
+ * expm1(r) = r + --- + --- * [--------------------]
+ * 2 2 [ 6 - r*(3 - R1*r/2) ]
+ *
+ * To compensate the error in the argument reduction, we use
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c
+ * ~ expm1(r) + c + r*c
+ * Thus c+r*c will be added in as the correction terms for
+ * expm1(r+c). Now rearrange the term to avoid optimization
+ * screw up:
+ * ( 2 2 )
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ * ( )
+ *
+ * = r - E
+ * 3. Scale back to obtain expm1(x):
+ * From step 1, we have
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1
+ * = or 2^k*[expm1(r) + (1-2^-k)]
+ * 4. Implementation notes:
+ * (A). To save one multiplication, we scale the coefficient Qi
+ * to Qi*2^i, and replace z by (x^2)/2.
+ * (B). To achieve maximum accuracy, we compute expm1(x) by
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ * (ii) if k=0, return r-E
+ * (iii) if k=-1, return 0.5*(r-E)-0.5
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ * else return 1.0+2.0*(r-E);
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ * (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ * expm1(INF) is INF, expm1(NaN) is NaN;
+ * expm1(-INF) is -1, and
+ * for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+#define one Q[0]
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+huge = 1.0e+300,
+tiny = 1.0e-300,
+o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
+ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
+ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
+ /* scaled coefficients related to expm1 */
+Q[] = {1.0, -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+ -2.01099218183624371326e-07}; /* BE8AFDB7 6E09C32D */
+
+#ifdef __STDC__
+ double __expm1(double x)
+#else
+ double __expm1(x)
+ double x;
+#endif
+{
+ double y,hi,lo,c,t,e,hxs,hfx,r1,h2,h4,R1,R2,R3;
+ int32_t k,xsb;
+ u_int32_t hx;
+
+ GET_HIGH_WORD(hx,x);
+ xsb = hx&0x80000000; /* sign bit of x */
+ if(xsb==0) y=x; else y= -x; /* y = |x| */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out huge and non-finite argument */
+ if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
+ if(hx >= 0x40862E42) { /* if |x|>=709.78... */
+ if(hx>=0x7ff00000) {
+ u_int32_t low;
+ GET_LOW_WORD(low,x);
+ if(((hx&0xfffff)|low)!=0)
+ return x+x; /* NaN */
+ else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+ }
+ if(x > o_threshold) return huge*huge; /* overflow */
+ }
+ if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
+ if(x+tiny<0.0) /* raise inexact */
+ return tiny-one; /* return -1 */
+ }
+ }
+
+ /* argument reduction */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if(xsb==0)
+ {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
+ else
+ {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
+ } else {
+ k = invln2*x+((xsb==0)?0.5:-0.5);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi-x)-lo;
+ }
+ else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
+ t = huge+x; /* return x with inexact flags when x!=0 */
+ return x - (t-(huge+x));
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5*x;
+ hxs = x*hfx;
+#ifdef DO_NOT_USE_THIS
+ r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+#else
+ R1 = one+hxs*Q[1]; h2 = hxs*hxs;
+ R2 = Q[2]+hxs*Q[3]; h4 = h2*h2;
+ R3 = Q[4]+hxs*Q[5];
+ r1 = R1 + h2*R2 + h4*R3;
+#endif
+ t = 3.0-r1*hfx;
+ e = hxs*((r1-t)/(6.0 - x*t));
+ if(k==0) return x - (x*e-hxs); /* c is 0 */
+ else {
+ e = (x*(e-c)-c);
+ e -= hxs;
+ if(k== -1) return 0.5*(x-e)-0.5;
+ if(k==1) {
+ if(x < -0.25) return -2.0*(e-(x+0.5));
+ else return one+2.0*(x-e);
+ }
+ if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
+ u_int32_t high;
+ y = one-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ return y-one;
+ }
+ t = one;
+ if(k<20) {
+ u_int32_t high;
+ SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
+ y = t-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ } else {
+ u_int32_t high;
+ SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
+ y = x-(e+t);
+ y += one;
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ }
+ }
+ return y;
+}
+weak_alias (__expm1, expm1)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__expm1, __expm1l)
+weak_alias (__expm1, expm1l)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_fabs.c b/sysdeps/ieee754/dbl-64/s_fabs.c
new file mode 100644
index 0000000000..1abe9432a3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_fabs.c
@@ -0,0 +1,40 @@
+/* @(#)s_fabs.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_fabs.c,v 1.7 1995/05/10 20:47:13 jtc Exp $";
+#endif
+
+/*
+ * fabs(x) returns the absolute value of x.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __fabs(double x)
+#else
+ double __fabs(x)
+ double x;
+#endif
+{
+ u_int32_t high;
+ GET_HIGH_WORD(high,x);
+ SET_HIGH_WORD(x,high&0x7fffffff);
+ return x;
+}
+weak_alias (__fabs, fabs)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__fabs, __fabsl)
+weak_alias (__fabs, fabsl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_finite.c b/sysdeps/ieee754/dbl-64/s_finite.c
new file mode 100644
index 0000000000..b12ff42360
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_finite.c
@@ -0,0 +1,40 @@
+/* @(#)s_finite.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_finite.c,v 1.8 1995/05/10 20:47:17 jtc Exp $";
+#endif
+
+/*
+ * finite(x) returns 1 is x is finite, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ int __finite(double x)
+#else
+ int __finite(x)
+ double x;
+#endif
+{
+ int32_t hx;
+ GET_HIGH_WORD(hx,x);
+ return (int)((u_int32_t)((hx&0x7fffffff)-0x7ff00000)>>31);
+}
+weak_alias (__finite, finite)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__finite, __finitel)
+weak_alias (__finite, finitel)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_floor.c b/sysdeps/ieee754/dbl-64/s_floor.c
new file mode 100644
index 0000000000..77db9ef392
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_floor.c
@@ -0,0 +1,86 @@
+/* @(#)s_floor.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_floor.c,v 1.8 1995/05/10 20:47:20 jtc Exp $";
+#endif
+
+/*
+ * floor(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to floor(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double huge = 1.0e300;
+#else
+static double huge = 1.0e300;
+#endif
+
+#ifdef __STDC__
+ double __floor(double x)
+#else
+ double __floor(x)
+ double x;
+#endif
+{
+ int32_t i0,i1,j0;
+ u_int32_t i,j;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0>=0) {i0=i1=0;}
+ else if(((i0&0x7fffffff)|i1)!=0)
+ { i0=0xbff00000;i1=0;}
+ }
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0<0) i0 += (0x00100000)>>j0;
+ i0 &= (~i); i1=0;
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((u_int32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0<0) {
+ if(j0==20) i0+=1;
+ else {
+ j = i1+(1<<(52-j0));
+ if(j<i1) i0 +=1 ; /* got a carry */
+ i1=j;
+ }
+ }
+ i1 &= (~i);
+ }
+ }
+ INSERT_WORDS(x,i0,i1);
+ return x;
+}
+weak_alias (__floor, floor)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__floor, __floorl)
+weak_alias (__floor, floorl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_fpclassify.c b/sysdeps/ieee754/dbl-64/s_fpclassify.c
new file mode 100644
index 0000000000..72a15369b5
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_fpclassify.c
@@ -0,0 +1,43 @@
+/* Return classification value corresponding to argument.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+int
+__fpclassify (double x)
+{
+ u_int32_t hx, lx;
+ int retval = FP_NORMAL;
+
+ EXTRACT_WORDS (hx, lx, x);
+ lx |= hx & 0xfffff;
+ hx &= 0x7ff00000;
+ if ((hx | lx) == 0)
+ retval = FP_ZERO;
+ else if (hx == 0)
+ retval = FP_SUBNORMAL;
+ else if (hx == 0x7ff00000)
+ retval = lx != 0 ? FP_NAN : FP_INFINITE;
+
+ return retval;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_frexp.c b/sysdeps/ieee754/dbl-64/s_frexp.c
new file mode 100644
index 0000000000..7dbddfde06
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_frexp.c
@@ -0,0 +1,64 @@
+/* @(#)s_frexp.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_frexp.c,v 1.9 1995/05/10 20:47:24 jtc Exp $";
+#endif
+
+/*
+ * for non-zero x
+ * x = frexp(arg,&exp);
+ * return a double fp quantity x such that 0.5 <= |x| <1.0
+ * and the corresponding binary exponent "exp". That is
+ * arg = x*2^exp.
+ * If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
+ * with *exp=0.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
+
+#ifdef __STDC__
+ double __frexp(double x, int *eptr)
+#else
+ double __frexp(x, eptr)
+ double x; int *eptr;
+#endif
+{
+ int32_t hx, ix, lx;
+ EXTRACT_WORDS(hx,lx,x);
+ ix = 0x7fffffff&hx;
+ *eptr = 0;
+ if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */
+ if (ix<0x00100000) { /* subnormal */
+ x *= two54;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ *eptr = -54;
+ }
+ *eptr += (ix>>20)-1022;
+ hx = (hx&0x800fffff)|0x3fe00000;
+ SET_HIGH_WORD(x,hx);
+ return x;
+}
+weak_alias (__frexp, frexp)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__frexp, __frexpl)
+weak_alias (__frexp, frexpl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_ilogb.c b/sysdeps/ieee754/dbl-64/s_ilogb.c
new file mode 100644
index 0000000000..820f01c9b2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_ilogb.c
@@ -0,0 +1,56 @@
+/* @(#)s_ilogb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_ilogb.c,v 1.9 1995/05/10 20:47:28 jtc Exp $";
+#endif
+
+/* ilogb(double x)
+ * return the binary exponent of non-zero x
+ * ilogb(0) = 0x80000001
+ * ilogb(inf/NaN) = 0x7fffffff (no signal is raised)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ int __ilogb(double x)
+#else
+ int __ilogb(x)
+ double x;
+#endif
+{
+ int32_t hx,lx,ix;
+
+ GET_HIGH_WORD(hx,x);
+ hx &= 0x7fffffff;
+ if(hx<0x00100000) {
+ GET_LOW_WORD(lx,x);
+ if((hx|lx)==0)
+ return FP_ILOGB0; /* ilogb(0) = FP_ILOGB0 */
+ else /* subnormal x */
+ if(hx==0) {
+ for (ix = -1043; lx>0; lx<<=1) ix -=1;
+ } else {
+ for (ix = -1022,hx<<=11; hx>0; hx<<=1) ix -=1;
+ }
+ return ix;
+ }
+ else if (hx<0x7ff00000) return (hx>>20)-1023;
+ else return FP_ILOGBNAN;
+}
+weak_alias (__ilogb, ilogb)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__ilogb, __ilogbl)
+weak_alias (__ilogb, ilogbl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_isinf.c b/sysdeps/ieee754/dbl-64/s_isinf.c
new file mode 100644
index 0000000000..4f063d09c5
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_isinf.c
@@ -0,0 +1,32 @@
+/*
+ * Written by J.T. Conklin <jtc@netbsd.org>.
+ * Changed to return -1 for -Inf by Ulrich Drepper <drepper@cygnus.com>.
+ * Public domain.
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isinf.c,v 1.3 1995/05/11 23:20:14 jtc Exp $";
+#endif
+
+/*
+ * isinf(x) returns 1 is x is inf, -1 if x is -inf, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+int
+__isinf (double x)
+{
+ int32_t hx,lx;
+ EXTRACT_WORDS(hx,lx,x);
+ lx |= (hx & 0x7fffffff) ^ 0x7ff00000;
+ lx |= -lx;
+ return ~(lx >> 31) & (hx >> 30);
+}
+weak_alias (__isinf, isinf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__isinf, __isinfl)
+weak_alias (__isinf, isinfl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_isnan.c b/sysdeps/ieee754/dbl-64/s_isnan.c
new file mode 100644
index 0000000000..86301e1531
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_isnan.c
@@ -0,0 +1,43 @@
+/* @(#)s_isnan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_isnan.c,v 1.8 1995/05/10 20:47:36 jtc Exp $";
+#endif
+
+/*
+ * isnan(x) returns 1 is x is nan, else 0;
+ * no branching!
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ int __isnan(double x)
+#else
+ int __isnan(x)
+ double x;
+#endif
+{
+ int32_t hx,lx;
+ EXTRACT_WORDS(hx,lx,x);
+ hx &= 0x7fffffff;
+ hx |= (u_int32_t)(lx|(-lx))>>31;
+ hx = 0x7ff00000 - hx;
+ return (int)(((u_int32_t)hx)>>31);
+}
+weak_alias (__isnan, isnan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__isnan, __isnanl)
+weak_alias (__isnan, isnanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_llrint.c b/sysdeps/ieee754/dbl-64/s_llrint.c
new file mode 100644
index 0000000000..8e70bcff36
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_llrint.c
@@ -0,0 +1,95 @@
+/* Round argument to nearest integral value according to current rounding
+ direction.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const long double two52[2] =
+{
+ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+
+long long int
+__llrint (double x)
+{
+ int32_t j0;
+ u_int32_t i1, i0;
+ long long int result;
+ volatile double w;
+ double t;
+ int sx;
+
+ EXTRACT_WORDS (i0, i1, x);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ sx = i0 >> 31;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ if (j0 < 20)
+ {
+ if (j0 < -1)
+ return 0;
+ else
+ {
+ w = two52[sx] + x;
+ t = w - two52[sx];
+ EXTRACT_WORDS (i0, i1, t);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ result = i0 >> (20 - j0);
+ }
+ }
+ else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+ {
+ if (j0 >= 52)
+ result = (((long long int) i0 << 32) | i1) << (j0 - 52);
+ else
+ {
+ w = two52[sx] + x;
+ t = w - two52[sx];
+ EXTRACT_WORDS (i0, i1, t);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ result = ((long long int) i0 << (j0 - 20)) | (i1 >> (52 - j0));
+ }
+ }
+ else
+ {
+ /* The number is too large. It is left implementation defined
+ what happens. */
+ return (long long int) x;
+ }
+
+ return sx ? -result : result;
+}
+
+weak_alias (__llrint, llrint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__llrint, __llrintl)
+weak_alias (__llrint, llrintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_llround.c b/sysdeps/ieee754/dbl-64/s_llround.c
new file mode 100644
index 0000000000..92ce10fc42
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_llround.c
@@ -0,0 +1,81 @@
+/* Round double value to long long int.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long long int
+__llround (double x)
+{
+ int32_t j0;
+ u_int32_t i1, i0;
+ long long int result;
+ int sign;
+
+ EXTRACT_WORDS (i0, i1, x);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ sign = (i0 & 0x80000000) != 0 ? -1 : 1;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ if (j0 < 20)
+ {
+ if (j0 < 0)
+ return j0 < -1 ? 0 : sign;
+ else
+ {
+ i0 += 0x80000 >> j0;
+
+ result = i0 >> (20 - j0);
+ }
+ }
+ else if (j0 < (int32_t) (8 * sizeof (long long int)) - 1)
+ {
+ if (j0 >= 52)
+ result = (((long long int) i0 << 32) | i1) << (j0 - 52);
+ else
+ {
+ u_int32_t j = i1 + (0x80000000 >> (j0 - 20));
+ if (j < i1)
+ ++i0;
+
+ if (j0 == 20)
+ result = (long long int) i0;
+ else
+ result = ((long long int) i0 << (j0 - 20)) | (j >> (52 - j0));
+ }
+ }
+ else
+ {
+ /* The number is too large. It is left implementation defined
+ what happens. */
+ return (long long int) x;
+ }
+
+ return sign * result;
+}
+
+weak_alias (__llround, llround)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__llround, __llroundl)
+weak_alias (__llround, llroundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_log1p.c b/sysdeps/ieee754/dbl-64/s_log1p.c
new file mode 100644
index 0000000000..0a9801a931
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_log1p.c
@@ -0,0 +1,191 @@
+/* @(#)s_log1p.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
+ for performance improvement on pipelined processors.
+*/
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $";
+#endif
+
+/* double log1p(double x)
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log1p(f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+ * (the values of Lp1 to Lp7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lp[] = {0.0, 6.666666666666735130e-01, /* 3FE55555 55555593 */
+ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+ 2.857142874366239149e-01, /* 3FD24924 94229359 */
+ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+ 1.479819860511658591e-01}; /* 3FC2F112 DF3E5244 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __log1p(double x)
+#else
+ double __log1p(x)
+ double x;
+#endif
+{
+ double hfsq,f,c,s,z,R,u,z2,z4,z6,R1,R2,R3,R4;
+ int32_t k,hx,hu,ax;
+
+ GET_HIGH_WORD(hx,x);
+ ax = hx&0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3FDA827A) { /* x < 0.41422 */
+ if(ax>=0x3ff00000) { /* x <= -1.0 */
+ if(x==-1.0) return -two54/(x-x);/* log1p(-1)=+inf */
+ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ }
+ if(ax<0x3e200000) { /* |x| < 2**-29 */
+ if(two54+x>zero /* raise inexact */
+ &&ax<0x3c900000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x*x*0.5;
+ }
+ if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
+ k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ if(k!=0) {
+ if(hx<0x43400000) {
+ u = 1.0+x;
+ GET_HIGH_WORD(hu,u);
+ k = (hu>>20)-1023;
+ c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
+ c /= u;
+ } else {
+ u = x;
+ GET_HIGH_WORD(hu,u);
+ k = (hu>>20)-1023;
+ c = 0;
+ }
+ hu &= 0x000fffff;
+ if(hu<0x6a09e) {
+ SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
+ } else {
+ k += 1;
+ SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
+ hu = (0x00100000-hu)>>2;
+ }
+ f = u-1.0;
+ }
+ hfsq=0.5*f*f;
+ if(hu==0) { /* |f| < 2**-20 */
+ if(f==zero) {
+ if(k==0) return zero;
+ else {c += k*ln2_lo; return k*ln2_hi+c;}
+ }
+ R = hfsq*(1.0-0.66666666666666666*f);
+ if(k==0) return f-R; else
+ return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+ }
+ s = f/(2.0+f);
+ z = s*s;
+#ifdef DO_NOT_USE_THIS
+ R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+#else
+ R1 = z*Lp[1]; z2=z*z;
+ R2 = Lp[2]+z*Lp[3]; z4=z2*z2;
+ R3 = Lp[4]+z*Lp[5]; z6=z4*z2;
+ R4 = Lp[6]+z*Lp[7];
+ R = R1 + z2*R2 + z4*R3 + z6*R4;
+#endif
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
+weak_alias (__log1p, log1p)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__log1p, __log1pl)
+weak_alias (__log1p, log1pl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_log2.c b/sysdeps/ieee754/dbl-64/s_log2.c
new file mode 100644
index 0000000000..7379ce85e7
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_log2.c
@@ -0,0 +1,136 @@
+/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __log2(x)
+ * Return the logarithm to base 2 of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k + log(1+f).
+ * = k+(f-(hfsq-(s*(hfsq+R))))
+ *
+ * Special cases:
+ * log2(x) is NaN with signal if x < 0 (including -INF) ;
+ * log2(+INF) is +INF; log(0) is -INF with signal;
+ * log2(NaN) is that NaN with no signal.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+ln2 = 0.69314718055994530942,
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+#ifdef __STDC__
+static const double zero = 0.0;
+#else
+static double zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ double __log2(double x)
+#else
+ double __log2(x)
+ double x;
+#endif
+{
+ double hfsq,f,s,z,R,w,t1,t2,dk;
+ int32_t k,hx,i,j;
+ u_int32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/(x-x); /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ hx &= 0x000fffff;
+ i = (hx+0x95f64)&0x100000;
+ SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
+ k += (i>>20);
+ dk = (double) k;
+ f = x-1.0;
+ if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
+ if(f==zero) return dk;
+ R = f*f*(0.5-0.33333333333333333*f);
+ return dk-(R-f)/ln2;
+ }
+ s = f/(2.0+f);
+ z = s*s;
+ i = hx-0x6147a;
+ w = z*z;
+ j = 0x6b851-hx;
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ i |= j;
+ R = t2+t1;
+ if(i>0) {
+ hfsq=0.5*f*f;
+ return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
+ } else {
+ return dk-((s*(f-R))-f)/ln2;
+ }
+}
+
+weak_alias (__log2, log2)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__log2, __log2l)
+weak_alias (__log2, log2l)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_logb.c b/sysdeps/ieee754/dbl-64/s_logb.c
new file mode 100644
index 0000000000..4668cf78f8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_logb.c
@@ -0,0 +1,47 @@
+/* @(#)s_logb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_logb.c,v 1.8 1995/05/10 20:47:50 jtc Exp $";
+#endif
+
+/*
+ * double logb(x)
+ * IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
+ * Use ilogb instead.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __logb(double x)
+#else
+ double __logb(x)
+ double x;
+#endif
+{
+ int32_t lx,ix;
+ EXTRACT_WORDS(ix,lx,x);
+ ix &= 0x7fffffff; /* high |x| */
+ if((ix|lx)==0) return -1.0/fabs(x);
+ if(ix>=0x7ff00000) return x*x;
+ if((ix>>=20)==0) /* IEEE 754 logb */
+ return -1022.0;
+ else
+ return (double) (ix-1023);
+}
+weak_alias (__logb, logb)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__logb, __logbl)
+weak_alias (__logb, logbl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_lrint.c b/sysdeps/ieee754/dbl-64/s_lrint.c
new file mode 100644
index 0000000000..8f0d717963
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_lrint.c
@@ -0,0 +1,95 @@
+/* Round argument to nearest integral value according to current rounding
+ direction.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+static const double two52[2] =
+{
+ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+
+long int
+__lrint (double x)
+{
+ int32_t j0;
+ u_int32_t i0,i1;
+ volatile double w;
+ double t;
+ long int result;
+ int sx;
+
+ EXTRACT_WORDS (i0, i1, x);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ sx = i0 >> 31;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ if (j0 < 20)
+ {
+ if (j0 < -1)
+ return 0;
+ else
+ {
+ w = two52[sx] + x;
+ t = w - two52[sx];
+ EXTRACT_WORDS (i0, i1, t);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ result = i0 >> (20 - j0);
+ }
+ }
+ else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+ {
+ if (j0 >= 52)
+ result = ((long int) i0 << (j0 - 20)) | (i1 << (j0 - 52));
+ else
+ {
+ w = two52[sx] + x;
+ t = w - two52[sx];
+ EXTRACT_WORDS (i0, i1, t);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ result = ((long int) i0 << (j0 - 20)) | (i1 >> (52 - j0));
+ }
+ }
+ else
+ {
+ /* The number is too large. It is left implementation defined
+ what happens. */
+ return (long int) x;
+ }
+
+ return sx ? -result : result;
+}
+
+weak_alias (__lrint, lrint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__lrint, __lrintl)
+weak_alias (__lrint, lrintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_lround.c b/sysdeps/ieee754/dbl-64/s_lround.c
new file mode 100644
index 0000000000..49be12f03b
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_lround.c
@@ -0,0 +1,78 @@
+/* Round double value to long int.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+long int
+__lround (double x)
+{
+ int32_t j0;
+ u_int32_t i1, i0;
+ long int result;
+ int sign;
+
+ EXTRACT_WORDS (i0, i1, x);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ sign = (i0 & 0x80000000) != 0 ? -1 : 1;
+ i0 &= 0xfffff;
+ i0 |= 0x100000;
+
+ if (j0 < 20)
+ {
+ if (j0 < 0)
+ return j0 < -1 ? 0 : sign;
+ else
+ {
+ i0 += 0x80000 >> j0;
+
+ result = i0 >> (20 - j0);
+ }
+ }
+ else if (j0 < (int32_t) (8 * sizeof (long int)) - 1)
+ {
+ if (j0 >= 52)
+ result = ((long int) i0 << (j0 - 20)) | (i1 << (j0 - 52));
+ else
+ {
+ u_int32_t j = i1 + (0x80000000 >> (j0 - 20));
+ if (j < i1)
+ ++i0;
+
+ result = ((long int) i0 << (j0 - 20)) | (j >> (52 - j0));
+ }
+ }
+ else
+ {
+ /* The number is too large. It is left implementation defined
+ what happens. */
+ return (long int) x;
+ }
+
+ return sign * result;
+}
+
+weak_alias (__lround, lround)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__lround, __lroundl)
+weak_alias (__lround, lroundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_modf.c b/sysdeps/ieee754/dbl-64/s_modf.c
new file mode 100644
index 0000000000..7851f675a4
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_modf.c
@@ -0,0 +1,85 @@
+/* @(#)s_modf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_modf.c,v 1.8 1995/05/10 20:47:55 jtc Exp $";
+#endif
+
+/*
+ * modf(double x, double *iptr)
+ * return fraction part of x, and return x's integral part in *iptr.
+ * Method:
+ * Bit twiddling.
+ *
+ * Exception:
+ * No exception.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one = 1.0;
+#else
+static double one = 1.0;
+#endif
+
+#ifdef __STDC__
+ double __modf(double x, double *iptr)
+#else
+ double __modf(x, iptr)
+ double x,*iptr;
+#endif
+{
+ int32_t i0,i1,j0;
+ u_int32_t i;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent of x */
+ if(j0<20) { /* integer part in high x */
+ if(j0<0) { /* |x|<1 */
+ INSERT_WORDS(*iptr,i0&0x80000000,0); /* *iptr = +-0 */
+ return x;
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) { /* x is integral */
+ *iptr = x;
+ INSERT_WORDS(x,i0&0x80000000,0); /* return +-0 */
+ return x;
+ } else {
+ INSERT_WORDS(*iptr,i0&(~i),0);
+ return x - *iptr;
+ }
+ }
+ } else if (j0>51) { /* no fraction part */
+ *iptr = x*one;
+ /* We must handle NaNs separately. */
+ if (j0 == 0x400 && ((i0 & 0xfffff) | i1))
+ return x*one;
+ INSERT_WORDS(x,i0&0x80000000,0); /* return +-0 */
+ return x;
+ } else { /* fraction part in low x */
+ i = ((u_int32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) { /* x is integral */
+ *iptr = x;
+ INSERT_WORDS(x,i0&0x80000000,0); /* return +-0 */
+ return x;
+ } else {
+ INSERT_WORDS(*iptr,i0,i1&(~i));
+ return x - *iptr;
+ }
+ }
+}
+weak_alias (__modf, modf)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__modf, __modfl)
+weak_alias (__modf, modfl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_nearbyint.c b/sysdeps/ieee754/dbl-64/s_nearbyint.c
new file mode 100644
index 0000000000..32f5bf9447
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_nearbyint.c
@@ -0,0 +1,98 @@
+/* Adapted for use as nearbyint by Ulrich Drepper <drepper@cygnus.com>. */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_rint.c,v 1.8 1995/05/10 20:48:04 jtc Exp $";
+#endif
+
+/*
+ * rint(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ * Using floating addition.
+ * Exception:
+ * Inexact flag raised if x not equal to rint(x).
+ */
+
+#include <fenv.h>
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+TWO52[2]={
+ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+#ifdef __STDC__
+ double __nearbyint(double x)
+#else
+ double __nearbyint(x)
+ double x;
+#endif
+{
+ fenv_t env;
+ int32_t i0,j0,sx;
+ u_int32_t i,i1;
+ double w,t;
+ EXTRACT_WORDS(i0,i1,x);
+ sx = (i0>>31)&1;
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) {
+ if(((i0&0x7fffffff)|i1)==0) return x;
+ i1 |= (i0&0x0fffff);
+ i0 &= 0xfffe0000;
+ i0 |= ((i1|-i1)>>12)&0x80000;
+ SET_HIGH_WORD(x,i0);
+ feholdexcept (&env);
+ w = TWO52[sx]+x;
+ t = w-TWO52[sx];
+ fesetenv (&env);
+ GET_HIGH_WORD(i0,t);
+ SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31));
+ return t;
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ i>>=1;
+ if(((i0&i)|i1)!=0) {
+ if(j0==19) i1 = 0x40000000; else
+ i0 = (i0&(~i))|((0x20000)>>j0);
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((u_int32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ i>>=1;
+ if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
+ }
+ INSERT_WORDS(x,i0,i1);
+ feholdexcept (&env);
+ w = TWO52[sx]+x;
+ t = w-TWO52[sx];
+ fesetenv (&env);
+ return t;
+}
+weak_alias (__nearbyint, nearbyint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__nearbyint, __nearbyintl)
+weak_alias (__nearbyint, nearbyintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_nexttoward.c b/sysdeps/ieee754/dbl-64/s_nexttoward.c
new file mode 100644
index 0000000000..c68ba98cb3
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_nexttoward.c
@@ -0,0 +1 @@
+/* This function is the same as nextafter so we use an alias there. */
diff --git a/sysdeps/ieee754/dbl-64/s_remquo.c b/sysdeps/ieee754/dbl-64/s_remquo.c
new file mode 100644
index 0000000000..6e32efbba2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_remquo.c
@@ -0,0 +1,113 @@
+/* Compute remainder and a congruent to the quotient.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const double zero = 0.0;
+
+
+double
+__remquo (double x, double y, int *quo)
+{
+ int32_t hx,hy;
+ u_int32_t sx,lx,ly;
+ int cquo, qs;
+
+ EXTRACT_WORDS (hx, lx, x);
+ EXTRACT_WORDS (hy, ly, y);
+ sx = hx & 0x80000000;
+ qs = sx ^ (hy & 0x80000000);
+ hy &= 0x7fffffff;
+ hx &= 0x7fffffff;
+
+ /* Purge off exception values. */
+ if ((hy | ly) == 0)
+ return (x * y) / (x * y); /* y = 0 */
+ if ((hx >= 0x7ff00000) /* x not finite */
+ || ((hy >= 0x7ff00000) /* p is NaN */
+ && (((hy - 0x7ff00000) | ly) != 0)))
+ return (x * y) / (x * y);
+
+ if (hy <= 0x7fbfffff)
+ x = __ieee754_fmod (x, 8 * y); /* now x < 8y */
+
+ if (((hx - hy) | (lx - ly)) == 0)
+ {
+ *quo = qs ? -1 : 1;
+ return zero * x;
+ }
+
+ x = fabs (x);
+ y = fabs (y);
+ cquo = 0;
+
+ if (x >= 4 * y)
+ {
+ x -= 4 * y;
+ cquo += 4;
+ }
+ if (x >= 2 * y)
+ {
+ x -= 2 * y;
+ cquo += 2;
+ }
+
+ if (hy < 0x00200000)
+ {
+ if (x + x > y)
+ {
+ x -= y;
+ ++cquo;
+ if (x + x >= y)
+ {
+ x -= y;
+ ++cquo;
+ }
+ }
+ }
+ else
+ {
+ double y_half = 0.5 * y;
+ if (x > y_half)
+ {
+ x -= y;
+ ++cquo;
+ if (x >= y_half)
+ {
+ x -= y;
+ ++cquo;
+ }
+ }
+ }
+
+ *quo = qs ? -cquo : cquo;
+
+ if (sx)
+ x = -x;
+ return x;
+}
+weak_alias (__remquo, remquo)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__remquo, __remquol)
+weak_alias (__remquo, remquol)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_rint.c b/sysdeps/ieee754/dbl-64/s_rint.c
new file mode 100644
index 0000000000..e5f241291c
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_rint.c
@@ -0,0 +1,91 @@
+/* @(#)s_rint.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_rint.c,v 1.8 1995/05/10 20:48:04 jtc Exp $";
+#endif
+
+/*
+ * rint(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ * Using floating addition.
+ * Exception:
+ * Inexact flag raised if x not equal to rint(x).
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+TWO52[2]={
+ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+#ifdef __STDC__
+ double __rint(double x)
+#else
+ double __rint(x)
+ double x;
+#endif
+{
+ int32_t i0,j0,sx;
+ u_int32_t i,i1;
+ double w,t;
+ EXTRACT_WORDS(i0,i1,x);
+ sx = (i0>>31)&1;
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) {
+ if(((i0&0x7fffffff)|i1)==0) return x;
+ i1 |= (i0&0x0fffff);
+ i0 &= 0xfffe0000;
+ i0 |= ((i1|-i1)>>12)&0x80000;
+ SET_HIGH_WORD(x,i0);
+ w = TWO52[sx]+x;
+ t = w-TWO52[sx];
+ GET_HIGH_WORD(i0,t);
+ SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31));
+ return t;
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ i>>=1;
+ if(((i0&i)|i1)!=0) {
+ if(j0==19) i1 = 0x40000000; else
+ i0 = (i0&(~i))|((0x20000)>>j0);
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((u_int32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ i>>=1;
+ if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
+ }
+ INSERT_WORDS(x,i0,i1);
+ w = TWO52[sx]+x;
+ return w-TWO52[sx];
+}
+weak_alias (__rint, rint)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__rint, __rintl)
+weak_alias (__rint, rintl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_round.c b/sysdeps/ieee754/dbl-64/s_round.c
new file mode 100644
index 0000000000..fdb17f8de8
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_round.c
@@ -0,0 +1,97 @@
+/* Round double to integer away from zero.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+static const double huge = 1.0e300;
+
+
+double
+__round (double x)
+{
+ int32_t i0, j0;
+ u_int32_t i1;
+
+ EXTRACT_WORDS (i0, i1, x);
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ if (j0 < 20)
+ {
+ if (j0 < 0)
+ {
+ if (huge + x > 0.0)
+ {
+ i0 &= 0x80000000;
+ if (j0 == -1)
+ i0 |= 0x3ff00000;
+ i1 = 0;
+ }
+ }
+ else
+ {
+ u_int32_t i = 0x000fffff >> j0;
+ if (((i0 & i) | i1) == 0)
+ /* X is integral. */
+ return x;
+ if (huge + x > 0.0)
+ {
+ /* Raise inexact if x != 0. */
+ i0 += 0x00080000 >> j0;
+ i0 &= ~i;
+ i1 = 0;
+ }
+ }
+ }
+ else if (j0 > 51)
+ {
+ if (j0 == 0x400)
+ /* Inf or NaN. */
+ return x + x;
+ else
+ return x;
+ }
+ else
+ {
+ u_int32_t i = 0xffffffff >> (j0 - 20);
+ if ((i1 & i) == 0)
+ /* X is integral. */
+ return x;
+
+ if (huge + x > 0.0)
+ {
+ /* Raise inexact if x != 0. */
+ u_int32_t j = i1 + (1 << (51 - j0));
+ if (j < i1)
+ i0 += 1;
+ i1 = j;
+ }
+ i1 &= ~i;
+ }
+
+ INSERT_WORDS (x, i0, i1);
+ return x;
+}
+weak_alias (__round, round)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__round, __roundl)
+weak_alias (__round, roundl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_scalbln.c b/sysdeps/ieee754/dbl-64/s_scalbln.c
new file mode 100644
index 0000000000..aa6134f093
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_scalbln.c
@@ -0,0 +1,70 @@
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbn.c,v 1.8 1995/05/10 20:48:08 jtc Exp $";
+#endif
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n computed by exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+huge = 1.0e+300,
+tiny = 1.0e-300;
+
+#ifdef __STDC__
+ double __scalbln (double x, long int n)
+#else
+ double __scalbln (x,n)
+ double x; long int n;
+#endif
+{
+ int32_t k,hx,lx;
+ EXTRACT_WORDS(hx,lx,x);
+ k = (hx&0x7ff00000)>>20; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
+ if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+ x *= two54;
+ GET_HIGH_WORD(hx,x);
+ k = ((hx&0x7ff00000)>>20) - 54;
+ }
+ if (k==0x7ff) return x+x; /* NaN or Inf */
+ k = k+n;
+ if (n> 50000 || k > 0x7fe)
+ return huge*__copysign(huge,x); /* overflow */
+ if (n< -50000) return tiny*__copysign(tiny,x); /*underflow*/
+ if (k > 0) /* normal result */
+ {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
+ if (k <= -54)
+ return tiny*__copysign(tiny,x); /*underflow*/
+ k += 54; /* subnormal result */
+ SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
+ return x*twom54;
+}
+weak_alias (__scalbln, scalbln)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__scalbln, __scalblnl)
+weak_alias (__scalbln, scalblnl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_scalbn.c b/sysdeps/ieee754/dbl-64/s_scalbn.c
new file mode 100644
index 0000000000..3dbfe8fef0
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_scalbn.c
@@ -0,0 +1,70 @@
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_scalbn.c,v 1.8 1995/05/10 20:48:08 jtc Exp $";
+#endif
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n computed by exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+huge = 1.0e+300,
+tiny = 1.0e-300;
+
+#ifdef __STDC__
+ double __scalbn (double x, int n)
+#else
+ double __scalbn (x,n)
+ double x; int n;
+#endif
+{
+ int32_t k,hx,lx;
+ EXTRACT_WORDS(hx,lx,x);
+ k = (hx&0x7ff00000)>>20; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
+ if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+ x *= two54;
+ GET_HIGH_WORD(hx,x);
+ k = ((hx&0x7ff00000)>>20) - 54;
+ }
+ if (k==0x7ff) return x+x; /* NaN or Inf */
+ k = k+n;
+ if (n> 50000 || k > 0x7fe)
+ return huge*__copysign(huge,x); /* overflow */
+ if (n< -50000) return tiny*__copysign(tiny,x); /*underflow*/
+ if (k > 0) /* normal result */
+ {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
+ if (k <= -54)
+ return tiny*__copysign(tiny,x); /*underflow*/
+ k += 54; /* subnormal result */
+ SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
+ return x*twom54;
+}
+weak_alias (__scalbn, scalbn)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__scalbn, __scalbnl)
+weak_alias (__scalbn, scalbnl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_signbit.c b/sysdeps/ieee754/dbl-64/s_signbit.c
new file mode 100644
index 0000000000..ee340035fb
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_signbit.c
@@ -0,0 +1,32 @@
+/* Return nonzero value if number is negative.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+int
+__signbit (double x)
+{
+ int32_t hx;
+
+ GET_HIGH_WORD (hx, x);
+ return hx & 0x80000000;
+}
diff --git a/sysdeps/ieee754/dbl-64/s_sin.c b/sysdeps/ieee754/dbl-64/s_sin.c
new file mode 100644
index 0000000000..376c69ed00
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_sin.c
@@ -0,0 +1,87 @@
+/* @(#)s_sin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_sin.c,v 1.7 1995/05/10 20:48:15 jtc Exp $";
+#endif
+
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cose function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __sin(double x)
+#else
+ double __sin(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
+
+ /* sin(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_sin(y[0],y[1],1);
+ case 1: return __kernel_cos(y[0],y[1]);
+ case 2: return -__kernel_sin(y[0],y[1],1);
+ default:
+ return -__kernel_cos(y[0],y[1]);
+ }
+ }
+}
+weak_alias (__sin, sin)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__sin, __sinl)
+weak_alias (__sin, sinl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_sincos.c b/sysdeps/ieee754/dbl-64/s_sincos.c
new file mode 100644
index 0000000000..5bc564ba5b
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_sincos.c
@@ -0,0 +1,78 @@
+/* Compute sine and cosine of argument.
+ Copyright (C) 1997 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+void
+__sincos (double x, double *sinx, double *cosx)
+{
+ int32_t ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD (ix, x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if (ix <= 0x3fe921fb)
+ {
+ *sinx = __kernel_sin (x, 0.0, 0);
+ *cosx = __kernel_cos (x, 0.0);
+ }
+ else if (ix>=0x7ff00000)
+ {
+ /* sin(Inf or NaN) is NaN */
+ *sinx = *cosx = x - x;
+ }
+ else
+ {
+ /* Argument reduction needed. */
+ double y[2];
+ int n;
+
+ n = __ieee754_rem_pio2 (x, y);
+ switch (n & 3)
+ {
+ case 0:
+ *sinx = __kernel_sin (y[0], y[1], 1);
+ *cosx = __kernel_cos (y[0], y[1]);
+ break;
+ case 1:
+ *sinx = __kernel_cos (y[0], y[1]);
+ *cosx = -__kernel_sin (y[0], y[1], 1);
+ break;
+ case 2:
+ *sinx = -__kernel_sin (y[0], y[1], 1);
+ *cosx = -__kernel_cos (y[0], y[1]);
+ break;
+ default:
+ *sinx = -__kernel_cos (y[0], y[1]);
+ *cosx = __kernel_sin (y[0], y[1], 1);
+ break;
+ }
+ }
+}
+weak_alias (__sincos, sincos)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__sincos, __sincosl)
+weak_alias (__sincos, sincosl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_tan.c b/sysdeps/ieee754/dbl-64/s_tan.c
new file mode 100644
index 0000000000..714cf27dd2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_tan.c
@@ -0,0 +1,81 @@
+/* @(#)s_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tan.c,v 1.7 1995/05/10 20:48:18 jtc Exp $";
+#endif
+
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ * __kernel_tan ... tangent function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+ double __tan(double x)
+#else
+ double __tan(x)
+ double x;
+#endif
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
+
+ /* tan(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x; /* NaN */
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
+ -1 -- n odd */
+ }
+}
+weak_alias (__tan, tan)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__tan, __tanl)
+weak_alias (__tan, tanl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_tanh.c b/sysdeps/ieee754/dbl-64/s_tanh.c
new file mode 100644
index 0000000000..944f96386f
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_tanh.c
@@ -0,0 +1,93 @@
+/* @(#)s_tanh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: s_tanh.c,v 1.7 1995/05/10 20:48:22 jtc Exp $";
+#endif
+
+/* Tanh(x)
+ * Return the Hyperbolic Tangent of x
+ *
+ * Method :
+ * x -x
+ * e - e
+ * 0. tanh(x) is defined to be -----------
+ * x -x
+ * e + e
+ * 1. reduce x to non-negative by tanh(-x) = -tanh(x).
+ * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
+ * -t
+ * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
+ * t + 2
+ * 2
+ * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
+ * t + 2
+ * 22.0 < x <= INF : tanh(x) := 1.
+ *
+ * Special cases:
+ * tanh(NaN) is NaN;
+ * only tanh(0)=0 is exact for finite argument.
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double one=1.0, two=2.0, tiny = 1.0e-300;
+#else
+static double one=1.0, two=2.0, tiny = 1.0e-300;
+#endif
+
+#ifdef __STDC__
+ double __tanh(double x)
+#else
+ double __tanh(x)
+ double x;
+#endif
+{
+ double t,z;
+ int32_t jx,ix,lx;
+
+ /* High word of |x|. */
+ EXTRACT_WORDS(jx,lx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) {
+ if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
+ else return one/x-one; /* tanh(NaN) = NaN */
+ }
+
+ /* |x| < 22 */
+ if (ix < 0x40360000) { /* |x|<22 */
+ if ((ix | lx) == 0)
+ return x; /* x == +-0 */
+ if (ix<0x3c800000) /* |x|<2**-55 */
+ return x*(one+x); /* tanh(small) = small */
+ if (ix>=0x3ff00000) { /* |x|>=1 */
+ t = __expm1(two*fabs(x));
+ z = one - two/(t+two);
+ } else {
+ t = __expm1(-two*fabs(x));
+ z= -t/(t+two);
+ }
+ /* |x| > 22, return +-1 */
+ } else {
+ z = one - tiny; /* raised inexact flag */
+ }
+ return (jx>=0)? z: -z;
+}
+weak_alias (__tanh, tanh)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__tanh, __tanhl)
+weak_alias (__tanh, tanhl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/s_trunc.c b/sysdeps/ieee754/dbl-64/s_trunc.c
new file mode 100644
index 0000000000..07b4951bcb
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/s_trunc.c
@@ -0,0 +1,61 @@
+/* Truncate argument to nearest integral value not larger than the argument.
+ Copyright (C) 1997, 1998 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include <math.h>
+
+#include "math_private.h"
+
+
+double
+__trunc (double x)
+{
+ int32_t i0, j0;
+ u_int32_t i1;
+ int sx;
+
+ EXTRACT_WORDS (i0, i1, x);
+ sx = i0 & 0x80000000;
+ j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
+ if (j0 < 20)
+ {
+ if (j0 < 0)
+ /* The magnitude of the number is < 1 so the result is +-0. */
+ INSERT_WORDS (x, sx, 0);
+ else
+ INSERT_WORDS (x, sx | (i0 & ~(0x000fffff >> j0)), 0);
+ }
+ else if (j0 > 51)
+ {
+ if (j0 == 0x400)
+ /* x is inf or NaN. */
+ return x + x;
+ }
+ else
+ {
+ INSERT_WORDS (x, i0, i1 & ~(0xffffffffu >> (j0 - 20)));
+ }
+
+ return x;
+}
+weak_alias (__trunc, trunc)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__trunc, __truncl)
+weak_alias (__trunc, truncl)
+#endif
diff --git a/sysdeps/ieee754/dbl-64/t_exp.c b/sysdeps/ieee754/dbl-64/t_exp.c
new file mode 100644
index 0000000000..b02b4f55ca
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/t_exp.c
@@ -0,0 +1,436 @@
+/* Accurate tables for exp().
+ Copyright (C) 1998 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+ Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/* This table has the property that, for all integers -177 <= i <= 177,
+ exp(i/512.0 + __exp_deltatable[abs(i)]) == __exp_atable[i+177] + r
+ for some -2^-64 < r < 2^-64 (abs(r) < 2^-65 if i <= 0); and that
+ __exp_deltatable[abs(i)] == t * 2^-60
+ for integer t so that abs(t) <= 8847927 * 2^8. */
+
+#define W52 (2.22044605e-16)
+#define W55 (2.77555756e-17)
+#define W58 (3.46944695e-18)
+#define W59 (1.73472348e-18)
+#define W60 (8.67361738e-19)
+const float __exp_deltatable[178] = {
+ 0*W60, 16558714*W60, -10672149*W59, 1441652*W60,
+ -15787963*W55, 462888*W60, 7291806*W60, 1698880*W60,
+ -14375103*W58, -2021016*W60, 728829*W60, -3759654*W60,
+ 3202123*W60, -10916019*W58, -251570*W60, -1043086*W60,
+ 8207536*W60, -409964*W60, -5993931*W60, -475500*W60,
+ 2237522*W60, 324170*W60, -244117*W60, 32077*W60,
+ 123907*W60, -1019734*W60, -143*W60, 813077*W60,
+ 743345*W60, 462461*W60, 629794*W60, 2125066*W60,
+ -2339121*W60, -337951*W60, 9922067*W60, -648704*W60,
+ 149407*W60, -2687209*W60, -631608*W60, 2128280*W60,
+ -4882082*W60, 2001360*W60, 175074*W60, 2923216*W60,
+ -538947*W60, -1212193*W60, -1920926*W60, -1080577*W60,
+ 3690196*W60, 2643367*W60, 2911937*W60, 671455*W60,
+ -1128674*W60, 593282*W60, -5219347*W60, -1941490*W60,
+ 11007953*W60, 239609*W60, -2969658*W60, -1183650*W60,
+ 942998*W60, 699063*W60, 450569*W60, -329250*W60,
+ -7257875*W60, -312436*W60, 51626*W60, 555877*W60,
+ -641761*W60, 1565666*W60, 884327*W60, -10960035*W60,
+ -2004679*W60, -995793*W60, -2229051*W60, -146179*W60,
+ -510327*W60, 1453482*W60, -3778852*W60, -2238056*W60,
+ -4895983*W60, 3398883*W60, -252738*W60, 1230155*W60,
+ 346918*W60, 1109352*W60, 268941*W60, -2930483*W60,
+ -1036263*W60, -1159280*W60, 1328176*W60, 2937642*W60,
+ -9371420*W60, -6902650*W60, -1419134*W60, 1442904*W60,
+ -1319056*W60, -16369*W60, 696555*W60, -279987*W60,
+ -7919763*W60, 252741*W60, 459711*W60, -1709645*W60,
+ 354913*W60, 6025867*W60, -421460*W60, -853103*W60,
+ -338649*W60, 962151*W60, 955965*W60, 784419*W60,
+ -3633653*W60, 2277133*W60, -8847927*W52, 1223028*W60,
+ 5907079*W60, 623167*W60, 5142888*W60, 2599099*W60,
+ 1214280*W60, 4870359*W60, 593349*W60, -57705*W60,
+ 7761209*W60, -5564097*W60, 2051261*W60, 6216869*W60,
+ 4692163*W60, 601691*W60, -5264906*W60, 1077872*W60,
+ -3205949*W60, 1833082*W60, 2081746*W60, -987363*W60,
+ -1049535*W60, 2015244*W60, 874230*W60, 2168259*W60,
+ -1740124*W60, -10068269*W60, -18242*W60, -3013583*W60,
+ 580601*W60, -2547161*W60, -535689*W60, 2220815*W60,
+ 1285067*W60, 2806933*W60, -983086*W60, -1729097*W60,
+ -1162985*W60, -2561904*W60, 801988*W60, 244351*W60,
+ 1441893*W60, -7517981*W60, 271781*W60, -15021588*W60,
+ -2341588*W60, -919198*W60, 1642232*W60, 4771771*W60,
+ -1220099*W60, -3062372*W60, 628624*W60, 1278114*W60,
+ 13083513*W60, -10521925*W60, 3180310*W60, -1659307*W60,
+ 3543773*W60, 2501203*W60, 4151*W60, -340748*W60,
+ -2285625*W60, 2495202*W60
+};
+
+const double __exp_atable[355] /* __attribute__((mode(DF))) */ = {
+ 0.707722561055888932371, /* 0x0.b52d4e46605c27ffd */
+ 0.709106182438804188967, /* 0x0.b587fb96f75097ffb */
+ 0.710492508843861281234, /* 0x0.b5e2d649899167ffd */
+ 0.711881545564593931623, /* 0x0.b63dde74d36bdfffe */
+ 0.713273297897442870573, /* 0x0.b699142f945f87ffc */
+ 0.714667771153751463236, /* 0x0.b6f477909c4ea0001 */
+ 0.716064970655995725059, /* 0x0.b75008aec758f8004 */
+ 0.717464901723956938193, /* 0x0.b7abc7a0eea7e0002 */
+ 0.718867569715736398602, /* 0x0.b807b47e1586c7ff8 */
+ 0.720272979947266023271, /* 0x0.b863cf5d10e380003 */
+ 0.721681137825144314297, /* 0x0.b8c01855195c37ffb */
+ 0.723092048691992950199, /* 0x0.b91c8f7d213740004 */
+ 0.724505717938892290800, /* 0x0.b97934ec5002d0007 */
+ 0.725922150953176470431, /* 0x0.b9d608b9c92ea7ffc */
+ 0.727341353138962865022, /* 0x0.ba330afcc29e98003 */
+ 0.728763329918453162104, /* 0x0.ba903bcc8618b7ffc */
+ 0.730188086709957051568, /* 0x0.baed9b40591ba0000 */
+ 0.731615628948127705309, /* 0x0.bb4b296f931e30002 */
+ 0.733045962086486091436, /* 0x0.bba8e671a05617ff9 */
+ 0.734479091556371366251, /* 0x0.bc06d25dd49568001 */
+ 0.735915022857225542529, /* 0x0.bc64ed4bce8f6fff9 */
+ 0.737353761441304711410, /* 0x0.bcc33752f915d7ff9 */
+ 0.738795312814142124419, /* 0x0.bd21b08af98e78005 */
+ 0.740239682467211168593, /* 0x0.bd80590b65e9a8000 */
+ 0.741686875913991849885, /* 0x0.bddf30ebec4a10000 */
+ 0.743136898669507939299, /* 0x0.be3e38443c84e0007 */
+ 0.744589756269486091620, /* 0x0.be9d6f2c1d32a0002 */
+ 0.746045454254026796384, /* 0x0.befcd5bb59baf8004 */
+ 0.747503998175051087583, /* 0x0.bf5c6c09ca84c0003 */
+ 0.748965393601880857739, /* 0x0.bfbc322f5b18b7ff8 */
+ 0.750429646104262104698, /* 0x0.c01c2843f776fffff */
+ 0.751896761271877989160, /* 0x0.c07c4e5fa18b88002 */
+ 0.753366744698445112140, /* 0x0.c0dca49a5fb18fffd */
+ 0.754839601988627206827, /* 0x0.c13d2b0c444db0005 */
+ 0.756315338768691947122, /* 0x0.c19de1cd798578006 */
+ 0.757793960659406629066, /* 0x0.c1fec8f623723fffd */
+ 0.759275473314173443536, /* 0x0.c25fe09e8a0f47ff8 */
+ 0.760759882363831851927, /* 0x0.c2c128dedc88f8000 */
+ 0.762247193485956486805, /* 0x0.c322a1cf7d6e7fffa */
+ 0.763737412354726363781, /* 0x0.c3844b88cb9347ffc */
+ 0.765230544649828092739, /* 0x0.c3e626232bd8f7ffc */
+ 0.766726596071518051729, /* 0x0.c44831b719bf18002 */
+ 0.768225572321911687194, /* 0x0.c4aa6e5d12d078001 */
+ 0.769727479119219348810, /* 0x0.c50cdc2da64a37ffb */
+ 0.771232322196981678892, /* 0x0.c56f7b41744490001 */
+ 0.772740107296721268087, /* 0x0.c5d24bb1259e70004 */
+ 0.774250840160724651565, /* 0x0.c6354d95640dd0007 */
+ 0.775764526565368872643, /* 0x0.c6988106fec447fff */
+ 0.777281172269557396602, /* 0x0.c6fbe61eb1bd0ffff */
+ 0.778800783068235302750, /* 0x0.c75f7cf560942fffc */
+ 0.780323364758801041312, /* 0x0.c7c345a3f1983fffe */
+ 0.781848923151573727006, /* 0x0.c8274043594cb0002 */
+ 0.783377464064598849602, /* 0x0.c88b6cec94b3b7ff9 */
+ 0.784908993312207869935, /* 0x0.c8efcbb89cba27ffe */
+ 0.786443516765346961618, /* 0x0.c9545cc0a88c70003 */
+ 0.787981040257604625744, /* 0x0.c9b9201dc643bfffa */
+ 0.789521569657452682047, /* 0x0.ca1e15e92a5410007 */
+ 0.791065110849462849192, /* 0x0.ca833e3c1ae510005 */
+ 0.792611669712891875319, /* 0x0.cae8992fd84667ffd */
+ 0.794161252150049179450, /* 0x0.cb4e26ddbc207fff8 */
+ 0.795713864077794763584, /* 0x0.cbb3e75f301b60003 */
+ 0.797269511407239561694, /* 0x0.cc19dacd978cd8002 */
+ 0.798828200086368567220, /* 0x0.cc8001427e55d7ffb */
+ 0.800389937624300440456, /* 0x0.cce65ade24d360006 */
+ 0.801954725261124767840, /* 0x0.cd4ce7a5de839fffb */
+ 0.803522573691593189330, /* 0x0.cdb3a7c79a678fffd */
+ 0.805093487311204114563, /* 0x0.ce1a9b563965ffffc */
+ 0.806667472122675088819, /* 0x0.ce81c26b838db8000 */
+ 0.808244534127439906441, /* 0x0.cee91d213f8428002 */
+ 0.809824679342317166307, /* 0x0.cf50ab9144d92fff9 */
+ 0.811407913793616542005, /* 0x0.cfb86dd5758c2ffff */
+ 0.812994243520784198882, /* 0x0.d0206407c20e20005 */
+ 0.814583674571603966162, /* 0x0.d0888e4223facfff9 */
+ 0.816176213022088536960, /* 0x0.d0f0ec9eb3f7c8002 */
+ 0.817771864936188586101, /* 0x0.d1597f377d6768002 */
+ 0.819370636400374108252, /* 0x0.d1c24626a46eafff8 */
+ 0.820972533518165570298, /* 0x0.d22b41865ff1e7ff9 */
+ 0.822577562404315121269, /* 0x0.d2947170f32ec7ff9 */
+ 0.824185729164559344159, /* 0x0.d2fdd60097795fff8 */
+ 0.825797039949601741075, /* 0x0.d3676f4fb796d0001 */
+ 0.827411500902565544264, /* 0x0.d3d13d78b5f68fffb */
+ 0.829029118181348834154, /* 0x0.d43b40960546d8001 */
+ 0.830649897953322891022, /* 0x0.d4a578c222a058000 */
+ 0.832273846408250750368, /* 0x0.d50fe617a3ba78005 */
+ 0.833900969738858188772, /* 0x0.d57a88b1218e90002 */
+ 0.835531274148056613016, /* 0x0.d5e560a94048f8006 */
+ 0.837164765846411529371, /* 0x0.d6506e1aac8078003 */
+ 0.838801451086016225394, /* 0x0.d6bbb1204074e0001 */
+ 0.840441336100884561780, /* 0x0.d72729d4c28518004 */
+ 0.842084427144139224814, /* 0x0.d792d8530e12b0001 */
+ 0.843730730487052604790, /* 0x0.d7febcb61273e7fff */
+ 0.845380252404570153833, /* 0x0.d86ad718c308dfff9 */
+ 0.847032999194574087728, /* 0x0.d8d727962c69d7fff */
+ 0.848688977161248581090, /* 0x0.d943ae49621ce7ffb */
+ 0.850348192619261200615, /* 0x0.d9b06b4d832ef8005 */
+ 0.852010651900976245816, /* 0x0.da1d5ebdc22220005 */
+ 0.853676361342631029337, /* 0x0.da8a88b555baa0006 */
+ 0.855345327311054837175, /* 0x0.daf7e94f965f98004 */
+ 0.857017556155879489641, /* 0x0.db6580a7c98f7fff8 */
+ 0.858693054267390953857, /* 0x0.dbd34ed9617befff8 */
+ 0.860371828028939855647, /* 0x0.dc4153ffc8b65fff9 */
+ 0.862053883854957292436, /* 0x0.dcaf90368bfca8004 */
+ 0.863739228154875360306, /* 0x0.dd1e0399328d87ffe */
+ 0.865427867361348468455, /* 0x0.dd8cae435d303fff9 */
+ 0.867119807911702289458, /* 0x0.ddfb9050b1cee8006 */
+ 0.868815056264353846599, /* 0x0.de6aa9dced8448001 */
+ 0.870513618890481399881, /* 0x0.ded9fb03db7320006 */
+ 0.872215502247877139094, /* 0x0.df4983e1380657ff8 */
+ 0.873920712852848668986, /* 0x0.dfb94490ffff77ffd */
+ 0.875629257204025623884, /* 0x0.e0293d2f1cb01fff9 */
+ 0.877341141814212965880, /* 0x0.e0996dd786fff0007 */
+ 0.879056373217612985183, /* 0x0.e109d6a64f5d57ffc */
+ 0.880774957955916648615, /* 0x0.e17a77b78e72a7ffe */
+ 0.882496902590150900078, /* 0x0.e1eb5127722cc7ff8 */
+ 0.884222213673356738383, /* 0x0.e25c63121fb0c8006 */
+ 0.885950897802399772740, /* 0x0.e2cdad93ec5340003 */
+ 0.887682961567391237685, /* 0x0.e33f30c925fb97ffb */
+ 0.889418411575228162725, /* 0x0.e3b0ecce2d05ffff9 */
+ 0.891157254447957902797, /* 0x0.e422e1bf727718006 */
+ 0.892899496816652704641, /* 0x0.e4950fb9713fc7ffe */
+ 0.894645145323828439008, /* 0x0.e50776d8b0e60fff8 */
+ 0.896394206626591749641, /* 0x0.e57a1739c8fadfffc */
+ 0.898146687421414902124, /* 0x0.e5ecf0f97c5798007 */
+ 0.899902594367530173098, /* 0x0.e660043464e378005 */
+ 0.901661934163603406867, /* 0x0.e6d3510747e150006 */
+ 0.903424713533971135418, /* 0x0.e746d78f06cd97ffd */
+ 0.905190939194458810123, /* 0x0.e7ba97e879c91fffc */
+ 0.906960617885092856864, /* 0x0.e82e92309390b0007 */
+ 0.908733756358986566306, /* 0x0.e8a2c6845544afffa */
+ 0.910510361377119825629, /* 0x0.e9173500c8abc7ff8 */
+ 0.912290439722343249336, /* 0x0.e98bddc30f98b0002 */
+ 0.914073998177417412765, /* 0x0.ea00c0e84bc4c7fff */
+ 0.915861043547953501680, /* 0x0.ea75de8db8094fffe */
+ 0.917651582652244779397, /* 0x0.eaeb36d09d3137ffe */
+ 0.919445622318405764159, /* 0x0.eb60c9ce4ed3dffff */
+ 0.921243169397334638073, /* 0x0.ebd697a43995b0007 */
+ 0.923044230737526172328, /* 0x0.ec4ca06fc7768fffa */
+ 0.924848813220121135342, /* 0x0.ecc2e44e865b6fffb */
+ 0.926656923710931002014, /* 0x0.ed39635df34e70006 */
+ 0.928468569126343790092, /* 0x0.edb01dbbc2f5b7ffa */
+ 0.930283756368834757725, /* 0x0.ee2713859aab57ffa */
+ 0.932102492359406786818, /* 0x0.ee9e44d9342870004 */
+ 0.933924784042873379360, /* 0x0.ef15b1d4635438005 */
+ 0.935750638358567643520, /* 0x0.ef8d5a94f60f50007 */
+ 0.937580062297704630580, /* 0x0.f0053f38f345cffff */
+ 0.939413062815381727516, /* 0x0.f07d5fde3a2d98001 */
+ 0.941249646905368053689, /* 0x0.f0f5bca2d481a8004 */
+ 0.943089821583810716806, /* 0x0.f16e55a4e497d7ffe */
+ 0.944933593864477061592, /* 0x0.f1e72b028a2827ffb */
+ 0.946780970781518460559, /* 0x0.f2603cd9fb5430001 */
+ 0.948631959382661205081, /* 0x0.f2d98b497d2a87ff9 */
+ 0.950486566729423554277, /* 0x0.f353166f63e3dffff */
+ 0.952344799896018723290, /* 0x0.f3ccde6a11ae37ffe */
+ 0.954206665969085765512, /* 0x0.f446e357f66120000 */
+ 0.956072172053890279009, /* 0x0.f4c12557964f0fff9 */
+ 0.957941325265908139014, /* 0x0.f53ba48781046fffb */
+ 0.959814132734539637840, /* 0x0.f5b66106555d07ffa */
+ 0.961690601603558903308, /* 0x0.f6315af2c2027fffc */
+ 0.963570739036113010927, /* 0x0.f6ac926b8aeb80004 */
+ 0.965454552202857141381, /* 0x0.f728078f7c5008002 */
+ 0.967342048278315158608, /* 0x0.f7a3ba7d66a908001 */
+ 0.969233234469444204768, /* 0x0.f81fab543e1897ffb */
+ 0.971128118008140250896, /* 0x0.f89bda33122c78007 */
+ 0.973026706099345495256, /* 0x0.f9184738d4cf97ff8 */
+ 0.974929006031422851235, /* 0x0.f994f284d3a5c0008 */
+ 0.976835024947348973265, /* 0x0.fa11dc35bc7820002 */
+ 0.978744770239899142285, /* 0x0.fa8f046b4fb7f8007 */
+ 0.980658249138918636210, /* 0x0.fb0c6b449ab1cfff9 */
+ 0.982575468959622777535, /* 0x0.fb8a10e1088fb7ffa */
+ 0.984496437054508843888, /* 0x0.fc07f5602d79afffc */
+ 0.986421160608523028820, /* 0x0.fc8618e0e55e47ffb */
+ 0.988349647107594098099, /* 0x0.fd047b83571b1fffa */
+ 0.990281903873210800357, /* 0x0.fd831d66f4c018002 */
+ 0.992217938695037382475, /* 0x0.fe01fead3320bfff8 */
+ 0.994157757657894713987, /* 0x0.fe811f703491e8006 */
+ 0.996101369488558541238, /* 0x0.ff007fd5744490005 */
+ 0.998048781093141101932, /* 0x0.ff801ffa9b9280007 */
+ 1.000000000000000000000, /* 0x1.00000000000000000 */
+ 1.001955033605393285965, /* 0x1.0080200565d29ffff */
+ 1.003913889319761887310, /* 0x1.0100802aa0e80fff0 */
+ 1.005876574715736104818, /* 0x1.01812090377240007 */
+ 1.007843096764807100351, /* 0x1.020201541aad7fff6 */
+ 1.009813464316352327214, /* 0x1.0283229c4c9820007 */
+ 1.011787683565730677817, /* 0x1.030484836910a000e */
+ 1.013765762469146736174, /* 0x1.0386272b9c077fffe */
+ 1.015747708536026694351, /* 0x1.04080ab526304fff0 */
+ 1.017733529475172815584, /* 0x1.048a2f412375ffff0 */
+ 1.019723232714418781378, /* 0x1.050c94ef7ad5e000a */
+ 1.021716825883923762690, /* 0x1.058f3be0f1c2d0004 */
+ 1.023714316605201180057, /* 0x1.06122436442e2000e */
+ 1.025715712440059545995, /* 0x1.06954e0fec63afff2 */
+ 1.027721021151397406936, /* 0x1.0718b98f41c92fff6 */
+ 1.029730250269221158939, /* 0x1.079c66d49bb2ffff1 */
+ 1.031743407506447551857, /* 0x1.082056011a9230009 */
+ 1.033760500517691527387, /* 0x1.08a487359ebd50002 */
+ 1.035781537016238873464, /* 0x1.0928fa93490d4fff3 */
+ 1.037806524719013578963, /* 0x1.09adb03b3e5b3000d */
+ 1.039835471338248051878, /* 0x1.0a32a84e9e5760004 */
+ 1.041868384612101516848, /* 0x1.0ab7e2eea5340ffff */
+ 1.043905272300907460835, /* 0x1.0b3d603ca784f0009 */
+ 1.045946142174331239262, /* 0x1.0bc3205a042060000 */
+ 1.047991002016745332165, /* 0x1.0c4923682a086fffe */
+ 1.050039859627715177527, /* 0x1.0ccf698898f3a000d */
+ 1.052092722826109660856, /* 0x1.0d55f2dce5d1dfffb */
+ 1.054149599440827866881, /* 0x1.0ddcbf86b09a5fff6 */
+ 1.056210497317612961855, /* 0x1.0e63cfa7abc97fffd */
+ 1.058275424318780855142, /* 0x1.0eeb23619c146fffb */
+ 1.060344388322010722446, /* 0x1.0f72bad65714bffff */
+ 1.062417397220589476718, /* 0x1.0ffa9627c38d30004 */
+ 1.064494458915699715017, /* 0x1.1082b577d0eef0003 */
+ 1.066575581342167566880, /* 0x1.110b18e893a90000a */
+ 1.068660772440545025953, /* 0x1.1193c09c267610006 */
+ 1.070750040138235936705, /* 0x1.121cacb4959befff6 */
+ 1.072843392435016474095, /* 0x1.12a5dd543cf36ffff */
+ 1.074940837302467588937, /* 0x1.132f529d59552000b */
+ 1.077042382749654914030, /* 0x1.13b90cb250d08fff5 */
+ 1.079148036789447484528, /* 0x1.14430bb58da3dfff9 */
+ 1.081257807444460983297, /* 0x1.14cd4fc984c4a000e */
+ 1.083371702785017154417, /* 0x1.1557d910df9c7000e */
+ 1.085489730853784307038, /* 0x1.15e2a7ae292d30002 */
+ 1.087611899742884524772, /* 0x1.166dbbc422d8c0004 */
+ 1.089738217537583819804, /* 0x1.16f9157586772ffff */
+ 1.091868692357631731528, /* 0x1.1784b4e533cacfff0 */
+ 1.094003332327482702577, /* 0x1.18109a360fc23fff2 */
+ 1.096142145591650907149, /* 0x1.189cc58b155a70008 */
+ 1.098285140311341168136, /* 0x1.1929370751ea50002 */
+ 1.100432324652149906842, /* 0x1.19b5eecdd79cefff0 */
+ 1.102583706811727015711, /* 0x1.1a42ed01dbdba000e */
+ 1.104739294993289488947, /* 0x1.1ad031c69a2eafff0 */
+ 1.106899097422573863281, /* 0x1.1b5dbd3f66e120003 */
+ 1.109063122341542140286, /* 0x1.1beb8f8fa8150000b */
+ 1.111231377994659874592, /* 0x1.1c79a8dac6ad0fff4 */
+ 1.113403872669181282605, /* 0x1.1d0809445a97ffffc */
+ 1.115580614653132185460, /* 0x1.1d96b0effc9db000e */
+ 1.117761612217810673898, /* 0x1.1e25a001332190000 */
+ 1.119946873713312474002, /* 0x1.1eb4d69bdb2a9fff1 */
+ 1.122136407473298902480, /* 0x1.1f4454e3bfae00006 */
+ 1.124330221845670330058, /* 0x1.1fd41afcbb48bfff8 */
+ 1.126528325196519908506, /* 0x1.2064290abc98c0001 */
+ 1.128730725913251964394, /* 0x1.20f47f31c9aa7000f */
+ 1.130937432396844410880, /* 0x1.21851d95f776dfff0 */
+ 1.133148453059692917203, /* 0x1.2216045b6784efffa */
+ 1.135363796355857157764, /* 0x1.22a733a6692ae0004 */
+ 1.137583470716100553249, /* 0x1.2338ab9b3221a0004 */
+ 1.139807484614418608939, /* 0x1.23ca6c5e27aadfff7 */
+ 1.142035846532929888057, /* 0x1.245c7613b7f6c0004 */
+ 1.144268564977221958089, /* 0x1.24eec8e06b035000c */
+ 1.146505648458203463465, /* 0x1.258164e8cea85fff8 */
+ 1.148747105501412235671, /* 0x1.26144a5180d380009 */
+ 1.150992944689175123667, /* 0x1.26a7793f5de2efffa */
+ 1.153243174560058870217, /* 0x1.273af1d712179000d */
+ 1.155497803703682491111, /* 0x1.27ceb43d81d42fff1 */
+ 1.157756840726344771440, /* 0x1.2862c097a3d29000c */
+ 1.160020294239811677834, /* 0x1.28f7170a74cf4fff1 */
+ 1.162288172883275239058, /* 0x1.298bb7bb0faed0004 */
+ 1.164560485298402170388, /* 0x1.2a20a2ce920dffff4 */
+ 1.166837240167474476460, /* 0x1.2ab5d86a4631ffff6 */
+ 1.169118446164539637555, /* 0x1.2b4b58b36d5220009 */
+ 1.171404112007080167155, /* 0x1.2be123cf786790002 */
+ 1.173694246390975415341, /* 0x1.2c7739e3c0aac000d */
+ 1.175988858069749065617, /* 0x1.2d0d9b15deb58fff6 */
+ 1.178287955789017793514, /* 0x1.2da4478b627040002 */
+ 1.180591548323240091978, /* 0x1.2e3b3f69fb794fffc */
+ 1.182899644456603782686, /* 0x1.2ed282d76421d0004 */
+ 1.185212252993012693694, /* 0x1.2f6a11f96c685fff3 */
+ 1.187529382762033236513, /* 0x1.3001ecf60082ffffa */
+ 1.189851042595508889847, /* 0x1.309a13f30f28a0004 */
+ 1.192177241354644978669, /* 0x1.31328716a758cfff7 */
+ 1.194507987909589896687, /* 0x1.31cb4686e1e85fffb */
+ 1.196843291137896336843, /* 0x1.32645269dfd04000a */
+ 1.199183159977805113226, /* 0x1.32fdaae604c39000f */
+ 1.201527603343041317132, /* 0x1.339750219980dfff3 */
+ 1.203876630171082595692, /* 0x1.3431424300e480007 */
+ 1.206230249419600664189, /* 0x1.34cb8170b3fee000e */
+ 1.208588470077065268869, /* 0x1.35660dd14dbd4fffc */
+ 1.210951301134513435915, /* 0x1.3600e78b6bdfc0005 */
+ 1.213318751604272271958, /* 0x1.369c0ec5c38ebfff2 */
+ 1.215690830512196507537, /* 0x1.373783a718d29000f */
+ 1.218067546930756250870, /* 0x1.37d3465662f480007 */
+ 1.220448909901335365929, /* 0x1.386f56fa770fe0008 */
+ 1.222834928513994334780, /* 0x1.390bb5ba5fc540004 */
+ 1.225225611877684750397, /* 0x1.39a862bd3c7a8fff3 */
+ 1.227620969111500981433, /* 0x1.3a455e2a37bcafffd */
+ 1.230021009336254911271, /* 0x1.3ae2a8287dfbefff6 */
+ 1.232425741726685064472, /* 0x1.3b8040df76f39fffa */
+ 1.234835175450728295084, /* 0x1.3c1e287682e48fff1 */
+ 1.237249319699482263931, /* 0x1.3cbc5f151b86bfff8 */
+ 1.239668183679933477545, /* 0x1.3d5ae4e2cc0a8000f */
+ 1.242091776620540377629, /* 0x1.3df9ba07373bf0006 */
+ 1.244520107762172811399, /* 0x1.3e98deaa0d8cafffe */
+ 1.246953186383919165383, /* 0x1.3f3852f32973efff0 */
+ 1.249391019292643401078, /* 0x1.3fd816ffc72b90001 */
+ 1.251833623164381181797, /* 0x1.40782b17863250005 */
+ 1.254280999953110153911, /* 0x1.41188f42caf400000 */
+ 1.256733161434815393410, /* 0x1.41b943b42945bfffd */
+ 1.259190116985283935980, /* 0x1.425a4893e5f10000a */
+ 1.261651875958665236542, /* 0x1.42fb9e0a2df4c0009 */
+ 1.264118447754797758244, /* 0x1.439d443f608c4fff9 */
+ 1.266589841787181258708, /* 0x1.443f3b5bebf850008 */
+ 1.269066067469190262045, /* 0x1.44e183883e561fff7 */
+ 1.271547134259576328224, /* 0x1.45841cecf7a7a0001 */
+ 1.274033051628237434048, /* 0x1.462707b2c43020009 */
+ 1.276523829025464573684, /* 0x1.46ca44023aa410007 */
+ 1.279019475999373156531, /* 0x1.476dd2045d46ffff0 */
+ 1.281520002043128991825, /* 0x1.4811b1e1f1f19000b */
+ 1.284025416692967214122, /* 0x1.48b5e3c3edd74fff4 */
+ 1.286535729509738823464, /* 0x1.495a67d3613c8fff7 */
+ 1.289050950070396384145, /* 0x1.49ff3e396e19d000b */
+ 1.291571087985403654081, /* 0x1.4aa4671f5b401fff1 */
+ 1.294096152842774794011, /* 0x1.4b49e2ae56d19000d */
+ 1.296626154297237043484, /* 0x1.4befb10fd84a3fff4 */
+ 1.299161101984141142272, /* 0x1.4c95d26d41d84fff8 */
+ 1.301701005575179204100, /* 0x1.4d3c46f01d9f0fff3 */
+ 1.304245874766450485904, /* 0x1.4de30ec21097d0003 */
+ 1.306795719266019562007, /* 0x1.4e8a2a0ccce3d0002 */
+ 1.309350548792467483458, /* 0x1.4f3198fa10346fff5 */
+ 1.311910373099227200545, /* 0x1.4fd95bb3be8cffffd */
+ 1.314475201942565174546, /* 0x1.50817263bf0e5fffb */
+ 1.317045045107389400535, /* 0x1.5129dd3418575000e */
+ 1.319619912422941299109, /* 0x1.51d29c4f01c54ffff */
+ 1.322199813675649204855, /* 0x1.527bafde83a310009 */
+ 1.324784758729532718739, /* 0x1.5325180cfb8b3fffd */
+ 1.327374757430096474625, /* 0x1.53ced504b2bd0fff4 */
+ 1.329969819671041886272, /* 0x1.5478e6f02775e0001 */
+ 1.332569955346704748651, /* 0x1.55234df9d8a59fff8 */
+ 1.335175174370685002822, /* 0x1.55ce0a4c5a6a9fff6 */
+ 1.337785486688218616860, /* 0x1.56791c1263abefff7 */
+ 1.340400902247843806217, /* 0x1.57248376aef21fffa */
+ 1.343021431036279800211, /* 0x1.57d040a420c0bfff3 */
+ 1.345647083048053138662, /* 0x1.587c53c5a630f0002 */
+ 1.348277868295411074918, /* 0x1.5928bd063fd7bfff9 */
+ 1.350913796821875845231, /* 0x1.59d57c9110ad60006 */
+ 1.353554878672557082439, /* 0x1.5a8292913d68cfffc */
+ 1.356201123929036356254, /* 0x1.5b2fff3212db00007 */
+ 1.358852542671913132777, /* 0x1.5bddc29edcc06fff3 */
+ 1.361509145047255398051, /* 0x1.5c8bdd032ed16000f */
+ 1.364170941142184734180, /* 0x1.5d3a4e8a5bf61fff4 */
+ 1.366837941171020309735, /* 0x1.5de9176042f1effff */
+ 1.369510155261156381121, /* 0x1.5e9837b062f4e0005 */
+ 1.372187593620959988833, /* 0x1.5f47afa69436cfff1 */
+ 1.374870266463378287715, /* 0x1.5ff77f6eb3f8cfffd */
+ 1.377558184010425845733, /* 0x1.60a7a734a9742fff9 */
+ 1.380251356531521533853, /* 0x1.6158272490016000c */
+ 1.382949794301995272203, /* 0x1.6208ff6a8978a000f */
+ 1.385653507605306700170, /* 0x1.62ba3032c0a280004 */
+ 1.388362506772382154503, /* 0x1.636bb9a994784000f */
+ 1.391076802081129493127, /* 0x1.641d9bfb29a7bfff6 */
+ 1.393796403973427855412, /* 0x1.64cfd7545928b0002 */
+ 1.396521322756352656542, /* 0x1.65826be167badfff8 */
+ 1.399251568859207761660, /* 0x1.663559cf20826000c */
+ 1.401987152677323100733, /* 0x1.66e8a14a29486fffc */
+ 1.404728084651919228815, /* 0x1.679c427f5a4b6000b */
+ 1.407474375243217723560, /* 0x1.68503d9ba0add000f */
+ 1.410226034922914983815, /* 0x1.690492cbf6303fff9 */
+ 1.412983074197955213304, /* 0x1.69b9423d7b548fff6 */
+};
diff --git a/sysdeps/ieee754/dbl-64/t_exp2.h b/sysdeps/ieee754/dbl-64/t_exp2.h
new file mode 100644
index 0000000000..1fd73338cf
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/t_exp2.h
@@ -0,0 +1,585 @@
+/* These values are accurate to 52+12 bits when represented as
+ a double. */
+static const double exp2_accuratetable[512] = {
+0.707106781187802013759 /* 0x0.b504f333fb3f80007 */,
+0.708064712808760599040 /* 0x0.b543baa0f71b38000 */,
+0.709023942160304065938 /* 0x0.b58297d3a8d518002 */,
+0.709984470998547667624 /* 0x0.b5c18ad39b4ba0001 */,
+0.710946301084324217006 /* 0x0.b60093a85e8d30001 */,
+0.711909434180505784637 /* 0x0.b63fb25984e628005 */,
+0.712873872052760648733 /* 0x0.b67ee6eea3b5f8003 */,
+0.713839616467838999908 /* 0x0.b6be316f518c98001 */,
+0.714806669195984345523 /* 0x0.b6fd91e328d148007 */,
+0.715775032009894562898 /* 0x0.b73d0851c69e20002 */,
+0.716744706683768884058 /* 0x0.b77c94c2c9b3d0003 */,
+0.717715694995770148178 /* 0x0.b7bc373dd52eb0003 */,
+0.718687998724665488852 /* 0x0.b7fbefca8cd530004 */,
+0.719661619652575468291 /* 0x0.b83bbe70981da8001 */,
+0.720636559564428180758 /* 0x0.b87ba337a194b0006 */,
+0.721612820246623098989 /* 0x0.b8bb9e27556508004 */,
+0.722590403488338473025 /* 0x0.b8fbaf4762c798006 */,
+0.723569311081411870036 /* 0x0.b93bd69f7be1d0000 */,
+0.724549544820974333906 /* 0x0.b97c1437567828007 */,
+0.725531106502312561633 /* 0x0.b9bc6816a87ae8002 */,
+0.726513997924421062181 /* 0x0.b9fcd2452bee00000 */,
+0.727498220889519875430 /* 0x0.ba3d52ca9e6148002 */,
+0.728483777200401694265 /* 0x0.ba7de9aebe05c8003 */,
+0.729470668664712662563 /* 0x0.babe96f94e62a8002 */,
+0.730458897090379144517 /* 0x0.baff5ab2134df0004 */,
+0.731448464287988597833 /* 0x0.bb4034e0d38ab0000 */,
+0.732439372072965166897 /* 0x0.bb81258d5b2d60001 */,
+0.733431622260458326859 /* 0x0.bbc22cbf75fd28001 */,
+0.734425216668725511232 /* 0x0.bc034a7ef32c00001 */,
+0.735420157118880535324 /* 0x0.bc447ed3a50fe0005 */,
+0.736416445434497690674 /* 0x0.bc85c9c560b350001 */,
+0.737414083433310718618 /* 0x0.bcc72b5bf4b4e0000 */,
+0.738413072966152328496 /* 0x0.bd08a39f5417a8007 */,
+0.739413415848264365956 /* 0x0.bd4a32974abcd0002 */,
+0.740415113911250699637 /* 0x0.bd8bd84bb68300002 */,
+0.741418168994518067562 /* 0x0.bdcd94c47ddd30003 */,
+0.742422582936659858376 /* 0x0.be0f6809865968006 */,
+0.743428357577745613238 /* 0x0.be515222b72530003 */,
+0.744435494762383687126 /* 0x0.be935317fc6ba0002 */,
+0.745443996335090397492 /* 0x0.bed56af1423de8001 */,
+0.746453864145572798553 /* 0x0.bf1799b67a6248007 */,
+0.747465100043933849969 /* 0x0.bf59df6f970e70002 */,
+0.748477705883256683178 /* 0x0.bf9c3c248dbee8001 */,
+0.749491683518965001732 /* 0x0.bfdeafdd568308000 */,
+0.750507034813367890373 /* 0x0.c0213aa1f0fc38004 */,
+0.751523761622240105153 /* 0x0.c063dc7a559ca0003 */,
+0.752541865811731880422 /* 0x0.c0a6956e883ed8000 */,
+0.753561349247157341600 /* 0x0.c0e965868bd220006 */,
+0.754582213796583967110 /* 0x0.c12c4cca664cb8002 */,
+0.755604461332336940791 /* 0x0.c16f4b42225350006 */,
+0.756628093726406381068 /* 0x0.c1b260f5ca2c48002 */,
+0.757653112855631305506 /* 0x0.c1f58ded6d72d8001 */,
+0.758679520599333412360 /* 0x0.c238d2311e7d08001 */,
+0.759707318837184453227 /* 0x0.c27c2dc8f00368005 */,
+0.760736509456435783249 /* 0x0.c2bfa0bcfd1400000 */,
+0.761767094336480043995 /* 0x0.c3032b155818d0000 */,
+0.762799075372231349951 /* 0x0.c346ccda248cc0001 */,
+0.763832454453522768941 /* 0x0.c38a8613805488005 */,
+0.764867233473625618441 /* 0x0.c3ce56c98d1ca8005 */,
+0.765903414329434539816 /* 0x0.c4123f04708d80002 */,
+0.766940998920452976510 /* 0x0.c4563ecc532dc0001 */,
+0.767979989148100838946 /* 0x0.c49a56295f9f88006 */,
+0.769020386915772125040 /* 0x0.c4de8523c2b0a0001 */,
+0.770062194131770905170 /* 0x0.c522cbc3ae94e0003 */,
+0.771105412703856241146 /* 0x0.c5672a1154e6b8004 */,
+0.772150044545352520777 /* 0x0.c5aba014ed5f18003 */,
+0.773196091570364285606 /* 0x0.c5f02dd6b09288003 */,
+0.774243555696622731700 /* 0x0.c634d35edb1260003 */,
+0.775292438842697939641 /* 0x0.c67990b5aa5c18004 */,
+0.776342742931542928455 /* 0x0.c6be65e360bed8000 */,
+0.777394469888802008854 /* 0x0.c70352f0437f50004 */,
+0.778447621641124243320 /* 0x0.c74857e498fd00006 */,
+0.779502200118583399303 /* 0x0.c78d74c8ab5b60000 */,
+0.780558207255445668515 /* 0x0.c7d2a9a4c959f8000 */,
+0.781615644985491186966 /* 0x0.c817f681412f80002 */,
+0.782674515247667956808 /* 0x0.c85d5b6666c150006 */,
+0.783734819983036512536 /* 0x0.c8a2d85c904760003 */,
+0.784796561133562109454 /* 0x0.c8e86d6c14f850002 */,
+0.785859740645942328471 /* 0x0.c92e1a9d513ec8002 */,
+0.786924360469767103536 /* 0x0.c973dff8a4b390007 */,
+0.787990422552312885808 /* 0x0.c9b9bd866c6440007 */,
+0.789057928854407064640 /* 0x0.c9ffb34f1444b0001 */,
+0.790126881326406182996 /* 0x0.ca45c15afcc570001 */,
+0.791197281930050233534 /* 0x0.ca8be7b292db38000 */,
+0.792269132620954885659 /* 0x0.cad2265e3cbee8000 */,
+0.793342435380726906957 /* 0x0.cb187d667d3d38006 */,
+0.794417192158282659010 /* 0x0.cb5eecd3b33158006 */,
+0.795493404931386649540 /* 0x0.cba574ae5d2e80001 */,
+0.796571075671306805268 /* 0x0.cbec14fef2a348004 */,
+0.797650206352955137846 /* 0x0.cc32cdcdef0000000 */,
+0.798730798954342069432 /* 0x0.cc799f23d11d18000 */,
+0.799812855456121796232 /* 0x0.ccc089091abb28004 */,
+0.800896377841454287795 /* 0x0.cd078b86505c18003 */,
+0.801981368096190028208 /* 0x0.cd4ea6a3f97720007 */,
+0.803067828208752554378 /* 0x0.cd95da6aa057b8007 */,
+0.804155760170129796375 /* 0x0.cddd26e2d21b28001 */,
+0.805245165974338261710 /* 0x0.ce248c151f3330001 */,
+0.806336047619038653883 /* 0x0.ce6c0a0a1c1350001 */,
+0.807428407102107836855 /* 0x0.ceb3a0ca5d6be0006 */,
+0.808522246427078927792 /* 0x0.cefb505e7e2550007 */,
+0.809617567597010201484 /* 0x0.cf4318cf18a268002 */,
+0.810714372621179513182 /* 0x0.cf8afa24ce1c98004 */,
+0.811812663508675536069 /* 0x0.cfd2f4683f9810005 */,
+0.812912442272482604912 /* 0x0.d01b07a2126188003 */,
+0.814013710929394895825 /* 0x0.d06333daeff618001 */,
+0.815116471495287542325 /* 0x0.d0ab791b80d028006 */,
+0.816220725993571205593 /* 0x0.d0f3d76c75b330000 */,
+0.817326476447408967199 /* 0x0.d13c4ed67f1cf8000 */,
+0.818433724883006474832 /* 0x0.d184df6250e3b0001 */,
+0.819542473330909460055 /* 0x0.d1cd8918a3a328004 */,
+0.820652723822034690935 /* 0x0.d2164c02305fa0002 */,
+0.821764478391968422618 /* 0x0.d25f2827b53fb0005 */,
+0.822877739077315761840 /* 0x0.d2a81d91f188b8000 */,
+0.823992507918612782109 /* 0x0.d2f12c49a8d290005 */,
+0.825108786960634610365 /* 0x0.d33a5457a35e40003 */,
+0.826226578247117093869 /* 0x0.d38395c4a84848007 */,
+0.827345883828319528258 /* 0x0.d3ccf09985d958004 */,
+0.828466705754248966560 /* 0x0.d41664df0a1320005 */,
+0.829589046080638992111 /* 0x0.d45ff29e094330000 */,
+0.830712906863802391671 /* 0x0.d4a999df585a20005 */,
+0.831838290163696481037 /* 0x0.d4f35aabd04a60006 */,
+0.832965198041969556729 /* 0x0.d53d350c4be258002 */,
+0.834093632565442222342 /* 0x0.d5872909aba050007 */,
+0.835223595802037643865 /* 0x0.d5d136acd138e8006 */,
+0.836355089820669306292 /* 0x0.d61b5dfe9f7780004 */,
+0.837488116698010487424 /* 0x0.d6659f0801afa8005 */,
+0.838622678508982644113 /* 0x0.d6aff9d1e147d8004 */,
+0.839758777333464490056 /* 0x0.d6fa6e652d19e0000 */,
+0.840896415254110962690 /* 0x0.d744fccad70d00003 */,
+0.842035594355151628676 /* 0x0.d78fa50bd2c3b0000 */,
+0.843176316724478125433 /* 0x0.d7da673117e730007 */,
+0.844318584453106590905 /* 0x0.d8254343a19038003 */,
+0.845462399634695271912 /* 0x0.d870394c6dbf30003 */,
+0.846607764365415071965 /* 0x0.d8bb49547d37c0004 */,
+0.847754680744707056494 /* 0x0.d9067364d45608003 */,
+0.848903150873708822763 /* 0x0.d951b7867953b0006 */,
+0.850053176859071113491 /* 0x0.d99d15c2787a30006 */,
+0.851204760807439786431 /* 0x0.d9e88e21de11a0003 */,
+0.852357904828824897169 /* 0x0.da3420adba1508003 */,
+0.853512611037803181642 /* 0x0.da7fcd6f2184d8005 */,
+0.854668881550406100980 /* 0x0.dacb946f2afaf8000 */,
+0.855826718478671755185 /* 0x0.db1775b6e8ad48000 */,
+0.856986123964844970247 /* 0x0.db63714f8e0818006 */,
+0.858147100114499461478 /* 0x0.dbaf87422625b8000 */,
+0.859309649060962410524 /* 0x0.dbfbb797daa460002 */,
+0.860473772936213743282 /* 0x0.dc480259d3a710001 */,
+0.861639473872910177676 /* 0x0.dc9467913a0f48006 */,
+0.862806754008130227807 /* 0x0.dce0e7473b9b28003 */,
+0.863975615481124226159 /* 0x0.dd2d8185086c20006 */,
+0.865146060433749419813 /* 0x0.dd7a3653d38168005 */,
+0.866318091005120138881 /* 0x0.ddc705bcccd628000 */,
+0.867491709362415264210 /* 0x0.de13efc9434100004 */,
+0.868666917636779056818 /* 0x0.de60f4825df9b8005 */,
+0.869843717989716047624 /* 0x0.deae13f16599c0003 */,
+0.871022112578215268471 /* 0x0.defb4e1f9dc388002 */,
+0.872202103559697183859 /* 0x0.df48a3164a92f0001 */,
+0.873383693097737778847 /* 0x0.df9612deb6e878007 */,
+0.874566883362160263365 /* 0x0.dfe39d82348310001 */,
+0.875751676517234511901 /* 0x0.e031430a0f0688000 */,
+0.876938074732511840819 /* 0x0.e07f037f97e548001 */,
+0.878126080186539592654 /* 0x0.e0ccdeec2a75e0006 */,
+0.879315695055312818168 /* 0x0.e11ad5591f4078001 */,
+0.880506921518618312932 /* 0x0.e168e6cfd2f880004 */,
+0.881699761760385225541 /* 0x0.e1b71359a6df60003 */,
+0.882894217964411143207 /* 0x0.e2055afffc1178000 */,
+0.884090292325693805080 /* 0x0.e253bdcc3ffbb8001 */,
+0.885287987031581180559 /* 0x0.e2a23bc7d7a1d8002 */,
+0.886487304278189114386 /* 0x0.e2f0d4fc31ab80004 */,
+0.887688246263368285778 /* 0x0.e33f8972bea8a8005 */,
+0.888890815189881999840 /* 0x0.e38e5934f49010007 */,
+0.890095013257492739835 /* 0x0.e3dd444c460bd0007 */,
+0.891300842677948068626 /* 0x0.e42c4ac232f380000 */,
+0.892508305659222567226 /* 0x0.e47b6ca036f8b8005 */,
+0.893717404414979710310 /* 0x0.e4caa9efd40e58002 */,
+0.894928141160697743242 /* 0x0.e51a02ba8e2610007 */,
+0.896140518115016826430 /* 0x0.e5697709ecab90000 */,
+0.897354537501434679237 /* 0x0.e5b906e77c61d0006 */,
+0.898570201543732793877 /* 0x0.e608b25cca5ba8005 */,
+0.899787512470129891014 /* 0x0.e6587973688ce8002 */,
+0.901006472512270728537 /* 0x0.e6a85c34ecadb8000 */,
+0.902227083902570559127 /* 0x0.e6f85aaaed4f20006 */,
+0.903449348881299796343 /* 0x0.e74874df09a530003 */,
+0.904673269686823378091 /* 0x0.e798aadadecba0007 */,
+0.905898848559668845585 /* 0x0.e7e8fca80c3ee0001 */,
+0.907126087750156795426 /* 0x0.e8396a503c3fe0005 */,
+0.908354989505901100354 /* 0x0.e889f3dd1615b0002 */,
+0.909585556079328783087 /* 0x0.e8da9958465228007 */,
+0.910817789726044213523 /* 0x0.e92b5acb7d0578001 */,
+0.912051692703457872481 /* 0x0.e97c38406c3c30003 */,
+0.913287267274154990210 /* 0x0.e9cd31c0cbb370001 */,
+0.914524515702244578108 /* 0x0.ea1e475654d540000 */,
+0.915763440256158633982 /* 0x0.ea6f790ac5cc78001 */,
+0.917004043205012497909 /* 0x0.eac0c6e7dd8448007 */,
+0.918246326823137892807 /* 0x0.eb1230f760a428007 */,
+0.919490293387826285200 /* 0x0.eb63b7431714a8007 */,
+0.920735945178816406225 /* 0x0.ebb559d4cb6f30007 */,
+0.921983284479243714322 /* 0x0.ec0718b64c0940002 */,
+0.923232313574974705626 /* 0x0.ec58f3f16a3910002 */,
+0.924483034755387955725 /* 0x0.ecaaeb8ffb3168005 */,
+0.925735450311948926408 /* 0x0.ecfcff9bd67078000 */,
+0.926989562542820610982 /* 0x0.ed4f301edad1a0007 */,
+0.928245373740515189457 /* 0x0.eda17d22e0f9b0001 */,
+0.929502886213858126045 /* 0x0.edf3e6b1d37d40001 */,
+0.930762102264245716494 /* 0x0.ee466cd594c5c8005 */,
+0.932023024199046146183 /* 0x0.ee990f980dcdb0005 */,
+0.933285654329454095216 /* 0x0.eeebcf032bc470007 */,
+0.934549994971191289044 /* 0x0.ef3eab20e0d3c0001 */,
+0.935816048439005676599 /* 0x0.ef91a3fb1e1340004 */,
+0.937083817055075818404 /* 0x0.efe4b99bdcc618006 */,
+0.938353303143720007819 /* 0x0.f037ec0d1889b8000 */,
+0.939624509028518128972 /* 0x0.f08b3b58cc2bb8006 */,
+0.940897437041863904384 /* 0x0.f0dea788fc2a90000 */,
+0.942172089516254085427 /* 0x0.f13230a7ad21b8003 */,
+0.943448468787511540534 /* 0x0.f185d6bee754e0006 */,
+0.944726577195256100890 /* 0x0.f1d999d8b73478005 */,
+0.946006417082291717338 /* 0x0.f22d79ff2cb130000 */,
+0.947287990793413858827 /* 0x0.f281773c59ec48007 */,
+0.948571300678290207925 /* 0x0.f2d5919a566268001 */,
+0.949856349088629370320 /* 0x0.f329c9233bceb0001 */,
+0.951143138379053731954 /* 0x0.f37e1de1272068002 */,
+0.952431670908847949364 /* 0x0.f3d28fde3a6728006 */,
+0.953721949039916472305 /* 0x0.f4271f249a93f0001 */,
+0.955013975135367898520 /* 0x0.f47bcbbe6deab0001 */,
+0.956307751564417496418 /* 0x0.f4d095b5e16638004 */,
+0.957603280698967163097 /* 0x0.f5257d1524f590006 */,
+0.958900564911197350604 /* 0x0.f57a81e668d628000 */,
+0.960199606581278120057 /* 0x0.f5cfa433e60e50007 */,
+0.961500408088936442422 /* 0x0.f624e407d527a0007 */,
+0.962802971817578789903 /* 0x0.f67a416c72b760006 */,
+0.964107300155846558292 /* 0x0.f6cfbc6c011458004 */,
+0.965413395493874504368 /* 0x0.f7255510c439a8002 */,
+0.966721260225105960572 /* 0x0.f77b0b6503c5b8006 */,
+0.968030896745834645873 /* 0x0.f7d0df730a7940005 */,
+0.969342307458006424716 /* 0x0.f826d145294be8003 */,
+0.970655494764855020231 /* 0x0.f87ce0e5b29fd8000 */,
+0.971970461071268720958 /* 0x0.f8d30e5efaa8f0004 */,
+0.973287208789983648852 /* 0x0.f92959bb5e3c08001 */,
+0.974605740331924708124 /* 0x0.f97fc305383028004 */,
+0.975926058115625383329 /* 0x0.f9d64a46ebb9f8004 */,
+0.977248164559556209435 /* 0x0.fa2cef8adbfc68004 */,
+0.978572062087848637573 /* 0x0.fa83b2db7253d0007 */,
+0.979897753126343307191 /* 0x0.fada944319fda0005 */,
+0.981225240104636631254 /* 0x0.fb3193cc425870002 */,
+0.982554525455618277276 /* 0x0.fb88b1815e61d0003 */,
+0.983885611617111077747 /* 0x0.fbdfed6ce683e0007 */,
+0.985218501026348891812 /* 0x0.fc3747995282f8006 */,
+0.986553196127724962867 /* 0x0.fc8ec0112202a0005 */,
+0.987889699367056062238 /* 0x0.fce656ded63710002 */,
+0.989228013193998778636 /* 0x0.fd3e0c0cf48d50005 */,
+0.990568140061241164686 /* 0x0.fd95dfa605c7b0003 */,
+0.991910082424819927754 /* 0x0.fdedd1b4965710004 */,
+0.993253842749249660216 /* 0x0.fe45e2433bfea0000 */,
+0.994599423484053835071 /* 0x0.fe9e115c7c05f0005 */,
+0.995946827107488830167 /* 0x0.fef65f0afb4c28006 */,
+0.997296056085008264529 /* 0x0.ff4ecb59509cc8001 */,
+0.998647112892057764479 /* 0x0.ffa756521dbfd0007 */,
+1.000000000000000000000 /* 0x1.00000000000000000 */,
+1.001354719891689004659 /* 0x1.0058c86da14aa0005 */,
+1.002711275050312211844 /* 0x1.00b1afa5abead0003 */,
+1.004069667960743483835 /* 0x1.010ab5b2cc0660009 */,
+1.005429901112333324093 /* 0x1.0163da9fb2af30008 */,
+1.006791976999887428009 /* 0x1.01bd1e7716f6a0008 */,
+1.008155898118476168101 /* 0x1.02168143b03890006 */,
+1.009521666967782227439 /* 0x1.027003103ae320002 */,
+1.010889286051850133326 /* 0x1.02c9a3e7783030002 */,
+1.012258757875921233497 /* 0x1.032363d42aaa8000e */,
+1.013630084952214405194 /* 0x1.037d42e11c88d0000 */,
+1.015003269791313389451 /* 0x1.03d741191635a0001 */,
+1.016378314911229763267 /* 0x1.04315e86e84630008 */,
+1.017755222831652872635 /* 0x1.048b9b35652800002 */,
+1.019133996077934645224 /* 0x1.04e5f72f65827000b */,
+1.020514637175266248212 /* 0x1.0540727fc1cfa0006 */,
+1.021897148653734488385 /* 0x1.059b0d3157ebb0002 */,
+1.023281533050062419584 /* 0x1.05f5c74f0cfeb0002 */,
+1.024667792897328677539 /* 0x1.0650a0e3c22ee0003 */,
+1.026055930738840826806 /* 0x1.06ab99fa63e1b0008 */,
+1.027445949118511947550 /* 0x1.0706b29ddf2700009 */,
+1.028837850584049418178 /* 0x1.0761ead9253ab0009 */,
+1.030231637685799839262 /* 0x1.07bd42b72a3f80008 */,
+1.031627312979383592802 /* 0x1.0818ba42e824a000c */,
+1.033024879021186448496 /* 0x1.0874518759b0b0008 */,
+1.034424338374263729911 /* 0x1.08d0088f80ffa0006 */,
+1.035825693601787333992 /* 0x1.092bdf66604e30005 */,
+1.037228947273990842283 /* 0x1.0987d617019cd000a */,
+1.038634101961269928846 /* 0x1.09e3ecac6f199000f */,
+1.040041160239590700707 /* 0x1.0a402331b91270002 */,
+1.041450124688240164200 /* 0x1.0a9c79b1f37c3000b */,
+1.042860997889083929381 /* 0x1.0af8f038352160000 */,
+1.044273782427270314011 /* 0x1.0b5586cf986890006 */,
+1.045688480893644856116 /* 0x1.0bb23d833dfbf0006 */,
+1.047105095879385272564 /* 0x1.0c0f145e46e330007 */,
+1.048523629981608529302 /* 0x1.0c6c0b6bdaadc000f */,
+1.049944085800634585634 /* 0x1.0cc922b72470a000f */,
+1.051366465939483019223 /* 0x1.0d265a4b5238b0007 */,
+1.052790773004648849929 /* 0x1.0d83b23395e510002 */,
+1.054217009607077093512 /* 0x1.0de12a7b263970006 */,
+1.055645178360430591625 /* 0x1.0e3ec32d3cf680000 */,
+1.057075281882416506511 /* 0x1.0e9c7c55184f5000e */,
+1.058507322794714378170 /* 0x1.0efa55fdfad51000a */,
+1.059941303721639416236 /* 0x1.0f58503329fed0003 */,
+1.061377227289284297385 /* 0x1.0fb66affed37f0000 */,
+1.062815096132297298980 /* 0x1.1014a66f95540000c */,
+1.064254912884593951029 /* 0x1.1073028d725850007 */,
+1.065696680185205469411 /* 0x1.10d17f64d9ea2000b */,
+1.067140400676658718053 /* 0x1.11301d012586a0007 */,
+1.068586077004890055886 /* 0x1.118edb6db26ab0003 */,
+1.070033711820396415998 /* 0x1.11edbab5e2d6e000b */,
+1.071483307775789262099 /* 0x1.124cbae51b5ef0001 */,
+1.072934867526001312439 /* 0x1.12abdc06c3240000c */,
+1.074388393734249103080 /* 0x1.130b1e264a62e0005 */,
+1.075843889063253344684 /* 0x1.136a814f20ccd0003 */,
+1.077301356179926061823 /* 0x1.13ca058cbaaed000b */,
+1.078760797756675327056 /* 0x1.1429aaea9260e000e */,
+1.080222216468626150775 /* 0x1.148971742537c0009 */,
+1.081685614993597610617 /* 0x1.14e95934f37e8000b */,
+1.083150996013011013776 /* 0x1.1549623881762000d */,
+1.084618362213087383633 /* 0x1.15a98c8a58a6a000b */,
+1.086087716284427351384 /* 0x1.1609d8360768c0008 */,
+1.087559060917626885283 /* 0x1.166a45471c13f0008 */,
+1.089032398810997337465 /* 0x1.16cad3c92d7b50009 */,
+1.090507732647478578212 /* 0x1.172b83c7c18b5000f */,
+1.091985065182095926460 /* 0x1.178c554ead72a000c */,
+1.093464399073070136880 /* 0x1.17ed48695befe000c */,
+1.094945737045367906172 /* 0x1.184e5d23812500007 */,
+1.096429081816546080591 /* 0x1.18af9388c90e40005 */,
+1.097914436104650892651 /* 0x1.1910eba4e031a0001 */,
+1.099401802629782043408 /* 0x1.19726583755720003 */,
+1.100891184121537858001 /* 0x1.19d4013041b860007 */,
+1.102382583308144647940 /* 0x1.1a35beb6fd0cd0007 */,
+1.103876002922312915544 /* 0x1.1a979e2363fa10000 */,
+1.105371445702084232160 /* 0x1.1af99f8139025000e */,
+1.106868914387219016199 /* 0x1.1b5bc2dc408b9000e */,
+1.108368411723785085252 /* 0x1.1bbe084045eb30002 */,
+1.109869940458469095340 /* 0x1.1c206fb91524c000e */,
+1.111373503344554869449 /* 0x1.1c82f952817cc0001 */,
+1.112879103137133007859 /* 0x1.1ce5a51860344000f */,
+1.114386742595953938610 /* 0x1.1d4873168babf000e */,
+1.115896424484008608911 /* 0x1.1dab6358e1d4a000f */,
+1.117408151567338414664 /* 0x1.1e0e75eb43f9c000c */,
+1.118921926613465345265 /* 0x1.1e71aad995078000f */,
+1.120437752409564780022 /* 0x1.1ed5022fcd8600003 */,
+1.121955631720569668277 /* 0x1.1f387bf9cd88b0000 */,
+1.123475567332998359439 /* 0x1.1f9c18438cdec000a */,
+1.124997562033035469759 /* 0x1.1fffd71902f970002 */,
+1.126521618608448571713 /* 0x1.2063b88629079000e */,
+1.128047739853580200284 /* 0x1.20c7bc96ff72a0002 */,
+1.129575928566289189112 /* 0x1.212be3578a81e0006 */,
+1.131106187546149888259 /* 0x1.21902cd3d05f70007 */,
+1.132638519598779369743 /* 0x1.21f49917ddda5000c */,
+1.134172927531616359481 /* 0x1.2259282fc1c24000e */,
+1.135709414157753949251 /* 0x1.22bdda27911e90007 */,
+1.137247982292643566662 /* 0x1.2322af0b638e60007 */,
+1.138788634756517259562 /* 0x1.2387a6e755f270000 */,
+1.140331374372893558110 /* 0x1.23ecc1c788c890006 */,
+1.141876203969685699176 /* 0x1.2451ffb821639000c */,
+1.143423126377846266197 /* 0x1.24b760c5486dc0009 */,
+1.144972144431494420774 /* 0x1.251ce4fb2a0cc0005 */,
+1.146523260971646252006 /* 0x1.25828c65f9fb8000d */,
+1.148076478839068270690 /* 0x1.25e85711ebaeb0000 */,
+1.149631800883562204903 /* 0x1.264e450b3c8a30008 */,
+1.151189229953253789786 /* 0x1.26b4565e281a20003 */,
+1.152748768902654319399 /* 0x1.271a8b16f0f000002 */,
+1.154310420590433317050 /* 0x1.2780e341de2fc0001 */,
+1.155874187878668246681 /* 0x1.27e75eeb3abc90007 */,
+1.157440073633736243899 /* 0x1.284dfe1f5633e000a */,
+1.159008080725518974322 /* 0x1.28b4c0ea840d90001 */,
+1.160578212048386514965 /* 0x1.291ba75932ae60000 */,
+1.162150470417516290340 /* 0x1.2982b177796850008 */,
+1.163724858777502646494 /* 0x1.29e9df51fdd900001 */,
+1.165301379991388053320 /* 0x1.2a5130f50bf34000e */,
+1.166880036952526289469 /* 0x1.2ab8a66d10fdc0008 */,
+1.168460832550151540268 /* 0x1.2b203fc675b7a000a */,
+1.170043769683112966389 /* 0x1.2b87fd0dad7260008 */,
+1.171628851252754177681 /* 0x1.2befde4f2e3da000d */,
+1.173216080163546060084 /* 0x1.2c57e397719940002 */,
+1.174805459325657830448 /* 0x1.2cc00cf2f7491000c */,
+1.176396991650083379037 /* 0x1.2d285a6e3ff90000b */,
+1.177990680055698513602 /* 0x1.2d90cc15d4ff90005 */,
+1.179586527463262646306 /* 0x1.2df961f641c57000c */,
+1.181184536796979545103 /* 0x1.2e621c1c157cd000d */,
+1.182784710984701836994 /* 0x1.2ecafa93e35af0004 */,
+1.184387052960675701386 /* 0x1.2f33fd6a459cb0000 */,
+1.185991565661414393112 /* 0x1.2f9d24abd8fd1000e */,
+1.187598252026902612178 /* 0x1.300670653e083000a */,
+1.189207115003001469262 /* 0x1.306fe0a31bc040008 */,
+1.190818157535919796833 /* 0x1.30d9757219895000e */,
+1.192431382587621380206 /* 0x1.31432edef01a1000f */,
+1.194046793097208292195 /* 0x1.31ad0cf63f0630008 */,
+1.195664392040319823392 /* 0x1.32170fc4ce0db000c */,
+1.197284182375793593084 /* 0x1.32813757527750005 */,
+1.198906167074650808198 /* 0x1.32eb83ba8eef3000f */,
+1.200530349107333139048 /* 0x1.3355f4fb457e5000d */,
+1.202156731453099647353 /* 0x1.33c08b2641df9000c */,
+1.203785317090505513368 /* 0x1.342b46484f07b0005 */,
+1.205416109005122526928 /* 0x1.3496266e3fa270005 */,
+1.207049110184904572310 /* 0x1.35012ba4e8fa10000 */,
+1.208684323627194912036 /* 0x1.356c55f92aabb0004 */,
+1.210321752322854882437 /* 0x1.35d7a577dd33f0004 */,
+1.211961399276747286580 /* 0x1.36431a2de8748000d */,
+1.213603267492579629347 /* 0x1.36aeb4283309e000c */,
+1.215247359985374142610 /* 0x1.371a7373b00160000 */,
+1.216893679753690671322 /* 0x1.3786581d404e90000 */,
+1.218542229828181611183 /* 0x1.37f26231e82e4000c */,
+1.220193013225231215567 /* 0x1.385e91be9c2d20002 */,
+1.221846032973555429280 /* 0x1.38cae6d05e66f0000 */,
+1.223501292099485437962 /* 0x1.393761742e5830001 */,
+1.225158793636904830441 /* 0x1.39a401b713cb3000e */,
+1.226818540625497444577 /* 0x1.3a10c7a61ceae0007 */,
+1.228480536107136034131 /* 0x1.3a7db34e5a4a50003 */,
+1.230144783126481566885 /* 0x1.3aeac4bcdf8d60001 */,
+1.231811284734168454619 /* 0x1.3b57fbfec6e950008 */,
+1.233480043984379381835 /* 0x1.3bc559212e7a2000f */,
+1.235151063936380300149 /* 0x1.3c32dc3139f2a0004 */,
+1.236824347652524913647 /* 0x1.3ca0853c106ac000e */,
+1.238499898199571624970 /* 0x1.3d0e544eddd240003 */,
+1.240177718649636107175 /* 0x1.3d7c4976d3fcd0000 */,
+1.241857812073360767273 /* 0x1.3dea64c1231f70004 */,
+1.243540181554270152039 /* 0x1.3e58a63b099920005 */,
+1.245224830175077013244 /* 0x1.3ec70df1c4e46000e */,
+1.246911761022835740725 /* 0x1.3f359bf29741c000e */,
+1.248600977188942806639 /* 0x1.3fa4504ac7b800009 */,
+1.250292481770148400634 /* 0x1.40132b07a330d000a */,
+1.251986277866492969263 /* 0x1.40822c367a340000b */,
+1.253682368581898742876 /* 0x1.40f153e4a18e0000d */,
+1.255380757024939564249 /* 0x1.4160a21f73289000d */,
+1.257081446308726757662 /* 0x1.41d016f44deaa000c */,
+1.258784439550028944083 /* 0x1.423fb27094c090008 */,
+1.260489739869405489991 /* 0x1.42af74a1aec1c0006 */,
+1.262197350394008266193 /* 0x1.431f5d950a453000c */,
+1.263907274252603851764 /* 0x1.438f6d58176860004 */,
+1.265619514578811388761 /* 0x1.43ffa3f84b9eb000d */,
+1.267334074511444086425 /* 0x1.44700183221180008 */,
+1.269050957191869555296 /* 0x1.44e0860618b930006 */,
+1.270770165768063009230 /* 0x1.4551318eb4d20000e */,
+1.272491703389059036805 /* 0x1.45c2042a7cc26000b */,
+1.274215573211836316547 /* 0x1.4632fde6ffacd000d */,
+1.275941778396075143580 /* 0x1.46a41ed1cfac40001 */,
+1.277670322103555911043 /* 0x1.471566f8812ac0000 */,
+1.279401207505722393185 /* 0x1.4786d668b33260005 */,
+1.281134437771823675369 /* 0x1.47f86d3002637000a */,
+1.282870016078732078362 /* 0x1.486a2b5c13c00000e */,
+1.284607945607987078432 /* 0x1.48dc10fa916bd0004 */,
+1.286348229545787758022 /* 0x1.494e1e192aaa30007 */,
+1.288090871080605159846 /* 0x1.49c052c5913df000c */,
+1.289835873406902644341 /* 0x1.4a32af0d7d8090002 */,
+1.291583239722392528754 /* 0x1.4aa532feab5e10002 */,
+1.293332973229098792374 /* 0x1.4b17dea6db8010008 */,
+1.295085077135345708087 /* 0x1.4b8ab213d57d9000d */,
+1.296839554650994097442 /* 0x1.4bfdad53629e10003 */,
+1.298596408992440220988 /* 0x1.4c70d0735358a000d */,
+1.300355643380135983739 /* 0x1.4ce41b817c99e0001 */,
+1.302117261036232376282 /* 0x1.4d578e8bb52cb0003 */,
+1.303881265192249561154 /* 0x1.4dcb299fde2920008 */,
+1.305647659079073541490 /* 0x1.4e3eeccbd7f4c0003 */,
+1.307416445934474813521 /* 0x1.4eb2d81d8a86f000b */,
+1.309187629001237640529 /* 0x1.4f26eba2e35a5000e */,
+1.310961211525240921493 /* 0x1.4f9b2769d35090009 */,
+1.312737196755087820678 /* 0x1.500f8b804e4a30000 */,
+1.314515587949291131086 /* 0x1.508417f4530d00009 */,
+1.316296388365203462468 /* 0x1.50f8ccd3df1840003 */,
+1.318079601265708777911 /* 0x1.516daa2cf60020002 */,
+1.319865229921343141607 /* 0x1.51e2b00da3c2b0007 */,
+1.321653277603506371251 /* 0x1.5257de83f5512000d */,
+1.323443747588034513690 /* 0x1.52cd359dfc7d5000e */,
+1.325236643161341820781 /* 0x1.5342b569d6baa000f */,
+1.327031967602244177939 /* 0x1.53b85df59921b0000 */,
+1.328829724206201046165 /* 0x1.542e2f4f6b17e0006 */,
+1.330629916266568235675 /* 0x1.54a4298571b27000e */,
+1.332432547083447937938 /* 0x1.551a4ca5d97190009 */,
+1.334237619959296017340 /* 0x1.559098bed16bf0008 */,
+1.336045138203900251029 /* 0x1.56070dde90c800000 */,
+1.337855105129210686631 /* 0x1.567dac13510cd0009 */,
+1.339667524053662184301 /* 0x1.56f4736b52e2c000c */,
+1.341482398296830025383 /* 0x1.576b63f4d8333000f */,
+1.343299731186792467254 /* 0x1.57e27dbe2c40e0003 */,
+1.345119526053918823702 /* 0x1.5859c0d59cd37000f */,
+1.346941786233264881662 /* 0x1.58d12d497cd9a0005 */,
+1.348766515064854010261 /* 0x1.5948c32824b87000c */,
+1.350593715891792223641 /* 0x1.59c0827ff03890007 */,
+1.352423392064920459908 /* 0x1.5a386b5f43a3e0006 */,
+1.354255546937278120764 /* 0x1.5ab07dd485af1000c */,
+1.356090183865519494030 /* 0x1.5b28b9ee21085000f */,
+1.357927306213322804534 /* 0x1.5ba11fba8816e000b */,
+1.359766917346459269620 /* 0x1.5c19af482f8f2000f */,
+1.361609020638567812980 /* 0x1.5c9268a594cc00004 */,
+1.363453619463660171403 /* 0x1.5d0b4be135916000c */,
+1.365300717204201985683 /* 0x1.5d84590998eeb0005 */,
+1.367150317245710233754 /* 0x1.5dfd902d494e40001 */,
+1.369002422974674892971 /* 0x1.5e76f15ad22c40008 */,
+1.370857037789471544224 /* 0x1.5ef07ca0cc166000b */,
+1.372714165088220639199 /* 0x1.5f6a320dcf5280006 */,
+1.374573808273481745378 /* 0x1.5fe411b0790800009 */,
+1.376435970755022220096 /* 0x1.605e1b976e4b1000e */,
+1.378300655944092456600 /* 0x1.60d84fd155d15000e */,
+1.380167867259843417228 /* 0x1.6152ae6cdf0030003 */,
+1.382037608124419003675 /* 0x1.61cd3778bc879000d */,
+1.383909881963391264069 /* 0x1.6247eb03a4dc40009 */,
+1.385784692209972801544 /* 0x1.62c2c91c56d9b0002 */,
+1.387662042298923203992 /* 0x1.633dd1d1930ec0001 */,
+1.389541935670444372533 /* 0x1.63b90532200630004 */,
+1.391424375772021271329 /* 0x1.6434634ccc4cc0007 */,
+1.393309366052102982208 /* 0x1.64afec30677e90008 */,
+1.395196909966106124701 /* 0x1.652b9febc8e0f000d */,
+1.397087010973788290271 /* 0x1.65a77e8dcc7f10004 */,
+1.398979672539331309267 /* 0x1.66238825534170000 */,
+1.400874898129892187656 /* 0x1.669fbcc1415600008 */,
+1.402772691220124823310 /* 0x1.671c1c708328e000a */,
+1.404673055288671035301 /* 0x1.6798a7420988b000d */,
+1.406575993818903302975 /* 0x1.68155d44ca77a000f */,
+1.408481510297352468121 /* 0x1.68923e87bf70e000a */,
+1.410389608216942924956 /* 0x1.690f4b19e8f74000c */,
+1.412300291075172076232 /* 0x1.698c830a4c94c0008 */
+};
+#define S (1.0/4503599627370496.0) /* 2^-52 */
+static const float exp2_deltatable[512] = {
+ 11527*S, -963*S, 884*S, -781*S, -2363*S, -3441*S, 123*S, 526*S,
+ -6*S, 1254*S, -1138*S, 1519*S, 1576*S, -65*S, 1040*S, 793*S,
+ -1662*S, -5063*S, -387*S, 968*S, -941*S, 984*S, -2856*S, -545*S,
+ 495*S, -5246*S, -2109*S, 1281*S, 2075*S, 909*S, -1642*S,-78233*S,
+-31653*S, -265*S, 130*S, 430*S, 2482*S, -742*S, 1616*S, -2213*S,
+ -519*S, 20*S, -3134*S,-13981*S, 1343*S, -1740*S, 247*S, 1679*S,
+ -1097*S, 3131*S, 871*S, -1480*S, 1936*S, -1827*S, 17325*S, 528*S,
+ -322*S, 1404*S, -152*S, -1845*S, -212*S, 2639*S, -476*S, 2960*S,
+ -962*S, -1012*S, -1231*S, 3030*S, 1659*S, -486*S, 2154*S, 1728*S,
+ -2793*S, 699*S, -1560*S, -2125*S, 2156*S, 142*S, -1888*S, 4426*S,
+-13443*S, 1970*S, -50*S, 1771*S,-43399*S, 4979*S, -2448*S, -370*S,
+ 1414*S, 1075*S, 232*S, 206*S, 873*S, 2141*S, 2970*S, 1279*S,
+ -2331*S, 336*S, -2595*S, 753*S, -3384*S, -616*S, 89*S, -818*S,
+ 5755*S, -241*S, -528*S, -661*S, -3777*S, -354*S, 250*S, 3881*S,
+ 2632*S, -2131*S, 2565*S, -316*S, 1746*S, -2541*S, -1324*S, -50*S,
+ 2564*S, -782*S, 1176*S, 6452*S, -1002*S, 1288*S, 336*S, -185*S,
+ 3063*S, 3784*S, 2169*S, 686*S, 328*S, -400*S, 312*S, -4517*S,
+ -1457*S, 1046*S, -1530*S, -685*S, 1328*S,-49815*S, -895*S, 1063*S,
+ -2091*S, -672*S, -1710*S, -665*S, 1545*S, 1819*S,-45265*S, 3548*S,
+ -554*S, -568*S, 4752*S, -1907*S,-13738*S, 675*S, 9611*S, -1115*S,
+ -815*S, 408*S, -1281*S, -937*S,-16376*S, -4772*S, -1440*S, 992*S,
+ 788*S, 10364*S, -1602*S, -661*S, -1783*S, -265*S, -20*S, -3781*S,
+ -861*S, -345*S, -994*S, 1364*S, -5339*S, 1620*S, 9390*S, -1066*S,
+ -305*S, -170*S, 175*S, 2461*S, -490*S, -769*S, -1450*S, 3315*S,
+ 2418*S, -45*S, -852*S, -1295*S, -488*S, -96*S, 1142*S, -2639*S,
+ 7905*S, -9306*S, -3859*S, 760*S, 1057*S, -1570*S, 3977*S, 209*S,
+ -514*S, 7151*S, 1646*S, 627*S, 599*S, -774*S, -1468*S, 633*S,
+ -473*S, 851*S, 2406*S, 143*S, 74*S, 4260*S, 1177*S, -913*S,
+ 2670*S, -3298*S, -1662*S, -120*S, -3264*S, -2148*S, 410*S, 2078*S,
+ -2098*S, -926*S, 3580*S, -1289*S, 2450*S, -1158*S, 907*S, -590*S,
+ 986*S, 1801*S, 1145*S, -1677*S, 3455*S, 956*S, 710*S, 144*S,
+ 153*S, -255*S, -1898*S, 28102*S, 2748*S, 1194*S, -3009*S, 7076*S,
+ 0*S, -2720*S, 711*S, 1225*S, -3034*S, -473*S, 378*S, -1046*S,
+ 962*S, -2006*S, 4647*S, 3206*S, 1769*S, -2665*S, 1254*S, 2025*S,
+ -2430*S, 6193*S, 1224*S, -856*S, -1592*S, -325*S, -1521*S, 1827*S,
+ -264*S, 2403*S, -1065*S, 967*S, -681*S, -2106*S, -474*S, 1333*S,
+ -893*S, 2296*S, 592*S, -1220*S, -326*S, 990*S, 139*S, 206*S,
+ -779*S, -1683*S, 1238*S, 6098*S, 136*S, 1197*S, 790*S, -107*S,
+ -1004*S, -2449*S, 939*S, 5568*S, 156*S, 1812*S, 2792*S, -1094*S,
+ -2677*S, -251*S, 2297*S, 943*S, -1329*S, 2883*S, -853*S, -2626*S,
+-105929*S, -6552*S, 1095*S, -1508*S, 1003*S, 5039*S, -2600*S, -749*S,
+ 1790*S, 890*S, 2016*S, -1073*S, 624*S, -2084*S, -1536*S, -1330*S,
+ 358*S, 2444*S, -179*S,-25759*S, -243*S, -552*S, -124*S, 3766*S,
+ 1192*S, -1614*S, 6*S, -1227*S, 345*S, -981*S, -295*S, -1006*S,
+ -995*S, -1195*S, 706*S, 2512*S, -1758*S, -734*S, -6286*S, -922*S,
+ 1530*S, 1542*S, 1223*S, 61*S, -83*S, 522*S,116937*S, -914*S,
+ -418*S, -7339*S, 249*S, -520*S, -762*S, 426*S, -505*S, 2664*S,
+ -1093*S, -1035*S, 2130*S, 4878*S, 1982*S, 1551*S, 2304*S, 193*S,
+ 1532*S, -7268*S, 24357*S, 531*S, 2676*S, -1170*S, 1465*S, -1917*S,
+ 2143*S, 1466*S, -7*S, -7300*S, 3297*S, -1197*S, -289*S, -1548*S,
+ 26226*S, 4401*S, 4123*S, -1588*S, 4243*S, 4069*S, -1276*S, -2010*S,
+ 1407*S, 1478*S, 488*S, -2366*S, -2909*S, -2534*S, -1285*S, 7095*S,
+ -645*S, -2089*S, -944*S, -40*S, -1363*S, -833*S, 917*S, 1609*S,
+ 1286*S, 1677*S, 1613*S, -2295*S, -1248*S, 40*S, 26*S, 2038*S,
+ 698*S, 2675*S, -1755*S, -3522*S, -1614*S, -6111*S, 270*S, 1822*S,
+ -234*S, -2844*S, -1201*S, -830*S, 1193*S, 2354*S, 47*S, 1522*S,
+ -78*S, -640*S, 2425*S, -1596*S, 1563*S, 1169*S, -1006*S, -83*S,
+ 2362*S, -3521*S, -314*S, 1814*S, -1751*S, 305*S, 1715*S, -3741*S,
+ 7847*S, 1291*S, 1206*S, 36*S, 1397*S, -1419*S, -1194*S, -2014*S,
+ 1742*S, -578*S, -207*S, 875*S, 1539*S, 2826*S, -1165*S, -909*S,
+ 1849*S, 927*S, 2018*S, -981*S, 1637*S, -463*S, 905*S, 6618*S,
+ 400*S, 630*S, 2614*S, 900*S, 2323*S, -1094*S, -1858*S, -212*S,
+ -2069*S, 747*S, 1845*S, -1450*S, 444*S, -213*S, -438*S, 1158*S,
+ 4738*S, 2497*S, -370*S, -2016*S, -518*S, -1160*S, -1510*S, 123*S
+};
+/* Maximum magnitude in above table: 116937 */
+#undef S
diff --git a/sysdeps/ieee754/dbl-64/w_exp.c b/sysdeps/ieee754/dbl-64/w_exp.c
new file mode 100644
index 0000000000..445c5788d2
--- /dev/null
+++ b/sysdeps/ieee754/dbl-64/w_exp.c
@@ -0,0 +1,58 @@
+/* @(#)w_exp.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#if defined(LIBM_SCCS) && !defined(lint)
+static char rcsid[] = "$NetBSD: w_exp.c,v 1.6 1995/05/10 20:48:51 jtc Exp $";
+#endif
+
+/*
+ * wrapper exp(x)
+ */
+
+#include "math.h"
+#include "math_private.h"
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
+u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
+
+#ifdef __STDC__
+ double __exp(double x) /* wrapper exp */
+#else
+ double __exp(x) /* wrapper exp */
+ double x;
+#endif
+{
+#ifdef _IEEE_LIBM
+ return __ieee754_exp(x);
+#else
+ double z;
+ z = __ieee754_exp(x);
+ if(_LIB_VERSION == _IEEE_) return z;
+ if(__finite(x)) {
+ if(x>o_threshold)
+ return __kernel_standard(x,x,6); /* exp overflow */
+ else if(x<u_threshold)
+ return __kernel_standard(x,x,7); /* exp underflow */
+ }
+ return z;
+#endif
+}
+weak_alias (__exp, exp)
+#ifdef NO_LONG_DOUBLE
+strong_alias (__exp, __expl)
+weak_alias (__exp, expl)
+#endif