diff options
Diffstat (limited to 'sysdeps/ieee754/dbl-64/k_cos.c')
-rw-r--r-- | sysdeps/ieee754/dbl-64/k_cos.c | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/sysdeps/ieee754/dbl-64/k_cos.c b/sysdeps/ieee754/dbl-64/k_cos.c new file mode 100644 index 0000000000..7e38ef7915 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/k_cos.c @@ -0,0 +1,107 @@ +/* @(#)k_cos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25, + for performance improvement on pipelined processors. +*/ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $"; +#endif + +/* + * __kernel_cos( x, y ) + * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * + * Algorithm + * 1. Since cos(-x) = cos(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. + * 3. cos(x) is approximated by a polynomial of degree 14 on + * [0,pi/4] + * 4 14 + * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x + * where the remez error is + * + * | 2 4 6 8 10 12 14 | -58 + * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 + * | | + * + * 4 6 8 10 12 14 + * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then + * cos(x) = 1 - x*x/2 + r + * since cos(x+y) ~ cos(x) - sin(x)*y + * ~ cos(x) - x*y, + * a correction term is necessary in cos(x) and hence + * cos(x+y) = 1 - (x*x/2 - (r - x*y)) + * For better accuracy when x > 0.3, let qx = |x|/4 with + * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. + * Then + * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). + * Note that 1-qx and (x*x/2-qx) is EXACT here, and the + * magnitude of the latter is at least a quarter of x*x/2, + * thus, reducing the rounding error in the subtraction. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const double +#else +static double +#endif +C[] = { + 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ + 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ + -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ + 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ + -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ + 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ + -1.13596475577881948265e-11}; /* 0xBDA8FAE9, 0xBE8838D4 */ + +#ifdef __STDC__ + double __kernel_cos(double x, double y) +#else + double __kernel_cos(x, y) + double x,y; +#endif +{ + double a,hz,z,r,qx,r1,r2,r3,z1,z2,z3; + int32_t ix; + z = x*x; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* ix = |x|'s high word*/ + if(ix<0x3e400000) { /* if x < 2**27 */ + if(((int)x)==0) return C[0]; /* generate inexact */ + } +#ifdef DO_NOT_USE_THIS + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); +#else + r1=z*C[6];r1=r1+C[5];z1=z*z; + r2=z*C[4];r2=r2+C[3];z2=z1*z; + r3=z*C[2];r3=r3+C[1];z3=z2*z1; + r=z3*r1+z2*r2+z*r3; +#endif + if(ix < 0x3FD33333) /* if |x| < 0.3 */ + return C[0] - (0.5*z - (z*r - x*y)); + else { + if(ix > 0x3fe90000) { /* x > 0.78125 */ + qx = 0.28125; + } else { + INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ + } + hz = 0.5*z-qx; + a = C[0]-qx; + return a - (hz - (z*r-x*y)); + } +} |