summaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/dbl-64/halfulp.c
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ieee754/dbl-64/halfulp.c')
-rw-r--r--sysdeps/ieee754/dbl-64/halfulp.c18
1 files changed, 8 insertions, 10 deletions
diff --git a/sysdeps/ieee754/dbl-64/halfulp.c b/sysdeps/ieee754/dbl-64/halfulp.c
index 478a4bacf6..42b21fb61d 100644
--- a/sysdeps/ieee754/dbl-64/halfulp.c
+++ b/sysdeps/ieee754/dbl-64/halfulp.c
@@ -1,7 +1,7 @@
/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
- * Copyright (C) 2001, 2005 Free Software Foundation
+ * Copyright (C) 2001, 2005, 2011 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
@@ -40,13 +40,11 @@
#include "dla.h"
#include "math_private.h"
-double __ieee754_sqrt(double x);
-
static const int4 tab54[32] = {
262143, 11585, 1782, 511, 210, 107, 63, 42,
30, 22, 17, 14, 12, 10, 9, 7,
- 7, 6, 5, 5, 5, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3 };
+ 7, 6, 5, 5, 5, 4, 4, 4,
+ 3, 3, 3, 3, 3, 3, 3, 3 };
double __halfulp(double x, double y)
@@ -64,12 +62,12 @@ double __halfulp(double x, double y)
z = (double) k;
return (z*y == -1075.0)?0: -10.0;
}
- /* if y > 0 */
+ /* if y > 0 */
v.x = y;
if (v.i[LOW_HALF] != 0) return -10.0;
v.x=x;
- /* case where x = 2**n for some integer n */
+ /* case where x = 2**n for some integer n */
if (((v.i[HIGH_HALF]&0x000fffff)|v.i[LOW_HALF]) == 0) {
k=(v.i[HIGH_HALF]>>20)-1023;
return (((double) k)*y == -1075.0)?0:-10.0;
@@ -90,7 +88,7 @@ double __halfulp(double x, double y)
k = -k;
if (k>5) return -10.0;
- /* now treat x */
+ /* now treat x */
while (k>0) {
z = __ieee754_sqrt(x);
EMULV(z,z,u,uu,j1,j2,j3,j4,j5);
@@ -111,11 +109,11 @@ double __halfulp(double x, double y)
m = (k&0x000fffff)|0x00100000;
m = m>>(20-l); /* m is the odd integer of x */
- /* now check whether the length of m**n is at most 54 bits */
+ /* now check whether the length of m**n is at most 54 bits */
if (m > tab54[n-3]) return -10.0;
- /* yes, it is - now compute x**n by simple multiplications */
+ /* yes, it is - now compute x**n by simple multiplications */
u = x;
for (k=1;k<n;k++) u = u*x;