summaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/s_cos.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/s_cos.S')
-rw-r--r--sysdeps/ia64/fpu/s_cos.S3497
1 files changed, 3115 insertions, 382 deletions
diff --git a/sysdeps/ia64/fpu/s_cos.S b/sysdeps/ia64/fpu/s_cos.S
index fc121fce19..6540aec724 100644
--- a/sysdeps/ia64/fpu/s_cos.S
+++ b/sysdeps/ia64/fpu/s_cos.S
@@ -1,10 +1,10 @@
.file "sincos.s"
-
-// Copyright (c) 2000 - 2005, Intel Corporation
+// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
-// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
+// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
@@ -20,7 +20,7 @@
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
-
+//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
@@ -35,25 +35,17 @@
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
+// http://developer.intel.com/opensource.
//
// History
//==============================================================
-// 02/02/00 Initial version
-// 04/02/00 Unwind support added.
-// 06/16/00 Updated tables to enforce symmetry
-// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
-// 09/20/00 The updated tables regressed to an old version, so reinstated them
+// 2/02/00 Initial revision
+// 4/02/00 Unwind support added.
+// 6/16/00 Updated tables to enforce symmetry
+// 8/31/00 Saved 2 cycles in main path, and 9 in other paths.
+// 9/20/00 The updated tables regressed to an old version, so reinstated them
// 10/18/00 Changed one table entry to ensure symmetry
-// 01/03/01 Improved speed, fixed flag settings for small arguments.
-// 02/18/02 Large arguments processing routine excluded
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 06/03/02 Insure inexact flag set for large arg result
-// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 08/08/03 Improved performance
-// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader
-// 03/31/05 Reformatted delimiters between data tables
+// 1/03/01 Improved speed, fixed flag settings for small arguments.
// API
//==============================================================
@@ -71,13 +63,9 @@
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
-// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
-// nfloat * LOW(pi/2^k)) -
-// nfloat * LOWEST(pi/2^k) for increased accuracy.
+// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-// HIGH and LOW parts are rounded to zero values,
-// and LOWEST is rounded to nearest one.
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
@@ -133,7 +121,7 @@
//
// as follows
//
-// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
+// Sm = Sin(Mpi/2^k) and Cm = Cos(Mpi/2^k)
// rsq = r*r
//
//
@@ -153,31 +141,32 @@
//
// P = r + rcub * P
//
-// Answer = S[m] Cos(r) + [Cm] P
+// Answer = Sm Cos(r) + Cm P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
//
-// S[m] Cos(r) = S[m](1 + rsq Q)
-// S[m] Cos(r) = S[m] + Sm rsq Q
-// S[m] Cos(r) = S[m] + s_rsq Q
-// Q = S[m] + s_rsq Q
+// Sm Cos(r) = Sm(1 + rsq Q)
+// Sm Cos(r) = Sm + Sm rsq Q
+// Sm Cos(r) = Sm + s_rsq Q
+// Q = Sm + s_rsq Q
//
// Then,
//
-// Answer = Q + C[m] P
+// Answer = Q + Cm P
+#include "libm_support.h"
// Registers used
//==============================================================
// general input registers:
-// r14 -> r26
-// r32 -> r35
+// r14 -> r19
+// r32 -> r45
// predicate registers used:
-// p6 -> p11
+// p6 -> p14
// floating-point registers used
// f9 -> f15
@@ -185,94 +174,99 @@
// Assembly macros
//==============================================================
-sincos_NORM_f8 = f9
-sincos_W = f10
-sincos_int_Nfloat = f11
-sincos_Nfloat = f12
+sind_NORM_f8 = f9
+sind_W = f10
+sind_int_Nfloat = f11
+sind_Nfloat = f12
-sincos_r = f13
-sincos_rsq = f14
-sincos_rcub = f15
-sincos_save_tmp = f15
+sind_r = f13
+sind_rsq = f14
+sind_rcub = f15
-sincos_Inv_Pi_by_16 = f32
-sincos_Pi_by_16_1 = f33
-sincos_Pi_by_16_2 = f34
+sind_Inv_Pi_by_16 = f32
+sind_Pi_by_16_hi = f33
+sind_Pi_by_16_lo = f34
-sincos_Inv_Pi_by_64 = f35
+sind_Inv_Pi_by_64 = f35
+sind_Pi_by_64_hi = f36
+sind_Pi_by_64_lo = f37
-sincos_Pi_by_16_3 = f36
+sind_Sm = f38
+sind_Cm = f39
-sincos_r_exact = f37
+sind_P1 = f40
+sind_Q1 = f41
+sind_P2 = f42
+sind_Q2 = f43
+sind_P3 = f44
+sind_Q3 = f45
+sind_P4 = f46
+sind_Q4 = f47
-sincos_Sm = f38
-sincos_Cm = f39
+sind_P_temp1 = f48
+sind_P_temp2 = f49
-sincos_P1 = f40
-sincos_Q1 = f41
-sincos_P2 = f42
-sincos_Q2 = f43
-sincos_P3 = f44
-sincos_Q3 = f45
-sincos_P4 = f46
-sincos_Q4 = f47
+sind_Q_temp1 = f50
+sind_Q_temp2 = f51
-sincos_P_temp1 = f48
-sincos_P_temp2 = f49
+sind_P = f52
+sind_Q = f53
-sincos_Q_temp1 = f50
-sincos_Q_temp2 = f51
+sind_srsq = f54
-sincos_P = f52
-sincos_Q = f53
+sind_SIG_INV_PI_BY_16_2TO61 = f55
+sind_RSHF_2TO61 = f56
+sind_RSHF = f57
+sind_2TOM61 = f58
+sind_NFLOAT = f59
+sind_W_2TO61_RSH = f60
-sincos_srsq = f54
+fp_tmp = f61
-sincos_SIG_INV_PI_BY_16_2TO61 = f55
-sincos_RSHF_2TO61 = f56
-sincos_RSHF = f57
-sincos_2TOM61 = f58
-sincos_NFLOAT = f59
-sincos_W_2TO61_RSH = f60
+/////////////////////////////////////////////////////////////
-fp_tmp = f61
+sind_AD_1 = r33
+sind_AD_2 = r34
+sind_exp_limit = r35
+sind_r_signexp = r36
+sind_AD_beta_table = r37
+sind_r_sincos = r38
-/////////////////////////////////////////////////////////////
+sind_r_exp = r39
+sind_r_17_ones = r40
+
+sind_GR_sig_inv_pi_by_16 = r14
+sind_GR_rshf_2to61 = r15
+sind_GR_rshf = r16
+sind_GR_exp_2tom61 = r17
+sind_GR_n = r18
+sind_GR_m = r19
+sind_GR_32m = r19
+
+gr_tmp = r41
+GR_SAVE_PFS = r41
+GR_SAVE_B0 = r42
+GR_SAVE_GP = r43
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
-sincos_GR_sig_inv_pi_by_16 = r14
-sincos_GR_rshf_2to61 = r15
-sincos_GR_rshf = r16
-sincos_GR_exp_2tom61 = r17
-sincos_GR_n = r18
-sincos_GR_m = r19
-sincos_GR_32m = r19
-sincos_GR_all_ones = r19
-sincos_AD_1 = r20
-sincos_AD_2 = r21
-sincos_exp_limit = r22
-sincos_r_signexp = r23
-sincos_r_17_ones = r24
-sincos_r_sincos = r25
-sincos_r_exp = r26
-
-GR_SAVE_PFS = r33
-GR_SAVE_B0 = r34
-GR_SAVE_GP = r35
-GR_SAVE_r_sincos = r36
-
-
-RODATA
-
-// Pi/16 parts
.align 16
-LOCAL_OBJECT_START(double_sincos_pi)
- data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
- data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
- data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
-LOCAL_OBJECT_END(double_sincos_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_sincos_pq_k4)
+double_sind_pi:
+ASM_TYPE_DIRECTIVE(double_sind_pi,@object)
+// data8 0xA2F9836E4E44152A, 0x00004001 // 16/pi (significand loaded w/ setf)
+// c90fdaa22168c234
+ data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 hi
+// c4c6628b80dc1cd1 29024e088a
+ data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 lo
+ASM_SIZE_DIRECTIVE(double_sind_pi)
+
+double_sind_pq_k4:
+ASM_TYPE_DIRECTIVE(double_sind_pq_k4,@object)
data8 0x3EC71C963717C63A // P4
data8 0x3EF9FFBA8F191AE6 // Q4
data8 0xBF2A01A00F4E11A8 // P3
@@ -281,112 +275,125 @@ LOCAL_OBJECT_START(double_sincos_pq_k4)
data8 0x3FA555555554DD45 // Q2
data8 0xBFC5555555555555 // P1
data8 0xBFDFFFFFFFFFFFFC // Q1
-LOCAL_OBJECT_END(double_sincos_pq_k4)
+ASM_SIZE_DIRECTIVE(double_sind_pq_k4)
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
+double_sin_cos_beta_k4:
+ASM_TYPE_DIRECTIVE(double_sin_cos_beta_k4,@object)
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
-//
+
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
-//
+
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
-//
+
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
-//
+
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
-//
+
+
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
-//
+
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
-//
+
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
-//
+
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
-//
+
+
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
-//
+
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
-//
+
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
-//
+
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
-//
+
+
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
-//
+
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
-//
+
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
-//
+
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
-//
+
+
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
-//
+
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
-//
+
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
-//
+
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
-//
+
+
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
-//
+
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
-//
+
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
-//
+
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
-//
+
+
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
-//
+
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
-//
+
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
-//
+
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
-//
+
+
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
-//
+
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
-//
+
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
-//
+
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
+ASM_SIZE_DIRECTIVE(double_sin_cos_beta_k4)
-.section .text
+.align 32
+.global sin#
+.global cos#
+#ifdef _LIBC
+.global __sin#
+.global __cos#
+#endif
////////////////////////////////////////////////////////
// There are two entry points: sin and cos
@@ -395,374 +402,3100 @@ LOCAL_OBJECT_END(double_sin_cos_beta_k4)
// If from sin, p8 is true
// If from cos, p9 is true
-GLOBAL_IEEE754_ENTRY(sin)
+.section .text
+.proc sin#
+#ifdef _LIBC
+.proc __sin#
+#endif
+.align 32
+
+sin:
+#ifdef _LIBC
+__sin:
+#endif
{ .mlx
- getf.exp sincos_r_signexp = f8
- movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
+ alloc r32=ar.pfs,1,13,0,0
+ movl sind_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // significand of 16/pi
}
{ .mlx
- addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
- movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
+ addl sind_AD_1 = @ltoff(double_sind_pi), gp
+ movl sind_GR_rshf_2to61 = 0x47b8000000000000 // 1.1000 2^(63+63-2)
}
;;
{ .mfi
- ld8 sincos_AD_1 = [sincos_AD_1]
- fnorm.s0 sincos_NORM_f8 = f8 // Normalize argument
- cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
+ ld8 sind_AD_1 = [sind_AD_1]
+ fnorm sind_NORM_f8 = f8
+ cmp.eq p8,p9 = r0, r0
}
{ .mib
- mov sincos_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
- mov sincos_r_sincos = 0x0 // sincos_r_sincos = 0 for sin
- br.cond.sptk _SINCOS_COMMON // go to common part
+ mov sind_GR_exp_2tom61 = 0xffff-61 // exponent of scaling factor 2^-61
+ mov sind_r_sincos = 0x0
+ br.cond.sptk L(SIND_SINCOS)
}
;;
-GLOBAL_IEEE754_END(sin)
+.endp sin
+ASM_SIZE_DIRECTIVE(sin)
+
-GLOBAL_IEEE754_ENTRY(cos)
+.section .text
+.proc cos#
+#ifdef _LIBC
+.proc __cos#
+#endif
+.align 32
+cos:
+#ifdef _LIBC
+__cos:
+#endif
{ .mlx
- getf.exp sincos_r_signexp = f8
- movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
+ alloc r32=ar.pfs,1,13,0,0
+ movl sind_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // significand of 16/pi
}
{ .mlx
- addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
- movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
+ addl sind_AD_1 = @ltoff(double_sind_pi), gp
+ movl sind_GR_rshf_2to61 = 0x47b8000000000000 // 1.1000 2^(63+63-2)
}
;;
{ .mfi
- ld8 sincos_AD_1 = [sincos_AD_1]
- fnorm.s1 sincos_NORM_f8 = f8 // Normalize argument
- cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
+ ld8 sind_AD_1 = [sind_AD_1]
+ fnorm.s1 sind_NORM_f8 = f8
+ cmp.eq p9,p8 = r0, r0
}
{ .mib
- mov sincos_GR_exp_2tom61 = 0xffff-61 // exp of scale 2^-61
- mov sincos_r_sincos = 0x8 // sincos_r_sincos = 8 for cos
- nop.b 999
+ mov sind_GR_exp_2tom61 = 0xffff-61 // exponent of scaling factor 2^-61
+ mov sind_r_sincos = 0x8
+ br.cond.sptk L(SIND_SINCOS)
}
;;
+
////////////////////////////////////////////////////////
// All entry points end up here.
-// If from sin, sincos_r_sincos is 0 and p8 is true
-// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
-// We add sincos_r_sincos to N
+// If from sin, sind_r_sincos is 0 and p8 is true
+// If from cos, sind_r_sincos is 8 = 2^(k-1) and p9 is true
+// We add sind_r_sincos to N
-///////////// Common sin and cos part //////////////////
-_SINCOS_COMMON:
+L(SIND_SINCOS):
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
+// fcmp used to set denormal, and invalid on snans
{ .mfi
- setf.sig sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
- fclass.m p6,p0 = f8, 0xe7 // if x = 0,inf,nan
- mov sincos_exp_limit = 0x1001a
+ setf.sig sind_SIG_INV_PI_BY_16_2TO61 = sind_GR_sig_inv_pi_by_16
+ fcmp.eq.s0 p12,p0=f8,f0
+ mov sind_r_17_ones = 0x1ffff
}
{ .mlx
- setf.d sincos_RSHF_2TO61 = sincos_GR_rshf_2to61
- movl sincos_GR_rshf = 0x43e8000000000000 // 1.1 2^63
-} // Right shift
+ setf.d sind_RSHF_2TO61 = sind_GR_rshf_2to61
+ movl sind_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 for right shift
+}
;;
// Form another constant
// 2^-61 for scaling Nfloat
-// 0x1001a is register_bias + 27.
-// So if f8 >= 2^27, go to large argument routines
+// 0x10009 is register_bias + 10.
+// So if f8 > 2^10 = Gamma, go to DBX
{ .mfi
- alloc r32 = ar.pfs, 1, 4, 0, 0
- fclass.m p11,p0 = f8, 0x0b // Test for x=unorm
- mov sincos_GR_all_ones = -1 // For "inexect" constant create
-}
-{ .mib
- setf.exp sincos_2TOM61 = sincos_GR_exp_2tom61
- nop.i 999
-(p6) br.cond.spnt _SINCOS_SPECIAL_ARGS
+ setf.exp sind_2TOM61 = sind_GR_exp_2tom61
+ fclass.m p13,p0 = f8, 0x23 // Test for x inf
+ mov sind_exp_limit = 0x10009
}
;;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
-{ .mmb
- ldfe sincos_Pi_by_16_1 = [sincos_AD_1],16
- setf.d sincos_RSHF = sincos_GR_rshf
-(p11) br.cond.spnt _SINCOS_UNORM // Branch if x=unorm
+{ .mmf
+ ldfe sind_Pi_by_16_hi = [sind_AD_1],16
+ setf.d sind_RSHF = sind_GR_rshf
+ fclass.m p14,p0 = f8, 0xc3 // Test for x nan
}
;;
-_SINCOS_COMMON2:
-// Return here if x=unorm
-// Create constant used to set inexact
-{ .mmi
- ldfe sincos_Pi_by_16_2 = [sincos_AD_1],16
- setf.sig fp_tmp = sincos_GR_all_ones
- nop.i 999
-};;
+{ .mfi
+ ldfe sind_Pi_by_16_lo = [sind_AD_1],16
+(p13) frcpa.s0 f8,p12=f0,f0 // force qnan indef for x=inf
+ addl gr_tmp = -1,r0
+}
+{ .mfb
+ addl sind_AD_beta_table = @ltoff(double_sin_cos_beta_k4), gp
+ nop.f 999
+(p13) br.ret.spnt b0 ;; // Exit for x=inf
+}
-// Select exponent (17 lsb)
+// Start loading P, Q coefficients
+// SIN(0)
{ .mfi
- ldfe sincos_Pi_by_16_3 = [sincos_AD_1],16
- nop.f 999
- dep.z sincos_r_exp = sincos_r_signexp, 0, 17
-};;
+ ldfpd sind_P4,sind_Q4 = [sind_AD_1],16
+(p8) fclass.m.unc p6,p0 = f8, 0x07 // Test for sin(0)
+ nop.i 999
+}
+{ .mfb
+ addl sind_AD_beta_table = @ltoff(double_sin_cos_beta_k4), gp
+(p14) fma.d f8=f8,f1,f0 // qnan for x=nan
+(p14) br.ret.spnt b0 ;; // Exit for x=nan
+}
+
+
+// COS(0)
+{ .mfi
+ getf.exp sind_r_signexp = f8
+(p9) fclass.m.unc p7,p0 = f8, 0x07 // Test for sin(0)
+ nop.i 999
+}
+{ .mfi
+ ld8 sind_AD_beta_table = [sind_AD_beta_table]
+ nop.f 999
+ nop.i 999 ;;
+}
-// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x1001a (2^27)
{ .mmb
- ldfpd sincos_P4,sincos_Q4 = [sincos_AD_1],16
- cmp.ge p10,p0 = sincos_r_exp,sincos_exp_limit
-(p10) br.cond.spnt _SINCOS_LARGE_ARGS // Go to "large args" routine
-};;
+ ldfpd sind_P3,sind_Q3 = [sind_AD_1],16
+ setf.sig fp_tmp = gr_tmp // Create constant such that fmpy sets inexact
+(p6) br.ret.spnt b0 ;;
+}
+
+{ .mfb
+ and sind_r_exp = sind_r_17_ones, sind_r_signexp
+(p7) fmerge.s f8 = f1,f1
+(p7) br.ret.spnt b0 ;;
+}
-// sincos_W = x * sincos_Inv_Pi_by_16
+// p10 is true if we must call routines to handle larger arguments
+// p10 is true if f8 exp is > 0x10009
+
+{ .mfi
+ ldfpd sind_P2,sind_Q2 = [sind_AD_1],16
+ nop.f 999
+ cmp.ge p10,p0 = sind_r_exp,sind_exp_limit
+}
+;;
+
+// sind_W = x * sind_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
- ldfpd sincos_P3,sincos_Q3 = [sincos_AD_1],16
- fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
- nop.i 999
-};;
+ ldfpd sind_P1,sind_Q1 = [sind_AD_1]
+ fma.s1 sind_W_2TO61_RSH = sind_NORM_f8,sind_SIG_INV_PI_BY_16_2TO61,sind_RSHF_2TO61
+ nop.i 999
+}
+{ .mbb
+(p10) cmp.ne.unc p11,p12=sind_r_sincos,r0 // p11 call __libm_cos_double_dbx
+ // p12 call __libm_sin_double_dbx
+(p11) br.cond.spnt L(COSD_DBX)
+(p12) br.cond.spnt L(SIND_DBX)
+}
+;;
+
-// get N = (int)sincos_int_Nfloat
-// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
+// sind_NFLOAT = Round_Int_Nearest(sind_W)
// This is done by scaling back by 2^-61 and subtracting the shift constant
+{ .mfi
+ nop.m 999
+ fms.s1 sind_NFLOAT = sind_W_2TO61_RSH,sind_2TOM61,sind_RSHF
+ nop.i 999 ;;
+}
+
+
+// get N = (int)sind_int_Nfloat
+{ .mfi
+ getf.sig sind_GR_n = sind_W_2TO61_RSH
+ nop.f 999
+ nop.i 999 ;;
+}
+
+// Add 2^(k-1) (which is in sind_r_sincos) to N
+// sind_r = -sind_Nfloat * sind_Pi_by_16_hi + x
+// sind_r = sind_r -sind_Nfloat * sind_Pi_by_16_lo
+{ .mfi
+ add sind_GR_n = sind_GR_n, sind_r_sincos
+ fnma.s1 sind_r = sind_NFLOAT, sind_Pi_by_16_hi, sind_NORM_f8
+ nop.i 999 ;;
+}
+
+
+// Get M (least k+1 bits of N)
+{ .mmi
+ and sind_GR_m = 0x1f,sind_GR_n ;;
+ nop.m 999
+ shl sind_GR_32m = sind_GR_m,5 ;;
+}
+
+// Add 32*M to address of sin_cos_beta table
+{ .mmi
+ add sind_AD_2 = sind_GR_32m, sind_AD_beta_table
+ nop.m 999
+ nop.i 999 ;;
+}
+
+{ .mfi
+ ldfe sind_Sm = [sind_AD_2],16
+(p8) fclass.m.unc p10,p0=f8,0x0b // If sin, note denormal input to set uflow
+ nop.i 999 ;;
+}
+
+{ .mfi
+ ldfe sind_Cm = [sind_AD_2]
+ fnma.s1 sind_r = sind_NFLOAT, sind_Pi_by_16_lo, sind_r
+ nop.i 999 ;;
+}
+
+// get rsq
+{ .mfi
+ nop.m 999
+ fma.s1 sind_rsq = sind_r, sind_r, f0
+ nop.i 999
+}
+{ .mfi
+ nop.m 999
+ fmpy.s0 fp_tmp = fp_tmp,fp_tmp // fmpy forces inexact flag
+ nop.i 999 ;;
+}
+
+// form P and Q series
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P_temp1 = sind_rsq, sind_P4, sind_P3
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q_temp1 = sind_rsq, sind_Q4, sind_Q3
+ nop.i 999 ;;
+}
+
+// get rcube and sm*rsq
+{ .mfi
+ nop.m 999
+ fmpy.s1 sind_srsq = sind_Sm,sind_rsq
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fmpy.s1 sind_rcub = sind_r, sind_rsq
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q_temp2 = sind_rsq, sind_Q_temp1, sind_Q2
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P_temp2 = sind_rsq, sind_P_temp1, sind_P2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q = sind_rsq, sind_Q_temp2, sind_Q1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P = sind_rsq, sind_P_temp2, sind_P1
+ nop.i 999 ;;
+}
+
+// Get final P and Q
+{ .mfi
+ nop.m 999
+ fma.s1 sind_Q = sind_srsq,sind_Q, sind_Sm
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 sind_P = sind_rcub,sind_P, sind_r
+ nop.i 999 ;;
+}
+
+// If sin(denormal), force inexact to be set
+{ .mfi
+ nop.m 999
+(p10) fmpy.d.s0 fp_tmp = f8,f8
+ nop.i 999 ;;
+}
+
+// Final calculation
+{ .mfb
+ nop.m 999
+ fma.d f8 = sind_Cm, sind_P, sind_Q
+ br.ret.sptk b0 ;;
+}
+.endp cos#
+ASM_SIZE_DIRECTIVE(cos#)
+
+
+
+.proc __libm_callout_1s
+__libm_callout_1s:
+L(SIND_DBX):
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+;;
+
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+}
+
+.body
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.call.sptk.many b0=__libm_sin_double_dbx# ;;
+}
+;;
+
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+{ .mib
+ nop.m 999
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0 ;;
+}
+.endp __libm_callout_1s
+ASM_SIZE_DIRECTIVE(__libm_callout_1s)
+
+
+.proc __libm_callout_1c
+__libm_callout_1c:
+L(COSD_DBX):
+.prologue
+{ .mfi
+ nop.m 0
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs
+}
+;;
+
+{ .mfi
+ mov GR_SAVE_GP=gp
+ nop.f 0
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0
+}
+
+.body
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.call.sptk.many b0=__libm_cos_double_dbx# ;;
+}
+;;
+
+
+{ .mfi
+ mov gp = GR_SAVE_GP
+ nop.f 999
+ mov b0 = GR_SAVE_B0
+}
+;;
+
+{ .mib
+ nop.m 999
+ mov ar.pfs = GR_SAVE_PFS
+ br.ret.sptk b0 ;;
+}
+.endp __libm_callout_1c
+ASM_SIZE_DIRECTIVE(__libm_callout_1c)
+
+
+// ====================================================================
+// ====================================================================
+
+// These functions calculate the sin and cos for inputs
+// greater than 2^10
+// __libm_sin_double_dbx# and __libm_cos_double_dbx#
+
+// *********************************************************************
+// *********************************************************************
+//
+// Function: Combined sin(x) and cos(x), where
+//
+// sin(x) = sine(x), for double precision x values
+// cos(x) = cosine(x), for double precision x values
+//
+// *********************************************************************
+//
+// Accuracy: Within .7 ulps for 80-bit floating point values
+// Very accurate for double precision values
+//
+// *********************************************************************
+//
+// Resources Used:
+//
+// Floating-Point Registers: f8 (Input and Return Value)
+// f32-f99
+//
+// General Purpose Registers:
+// r32-r43
+// r44-r45 (Used to pass arguments to pi_by_2 reduce routine)
+//
+// Predicate Registers: p6-p13
+//
+// *********************************************************************
+//
+// IEEE Special Conditions:
+//
+// Denormal fault raised on denormal inputs
+// Overflow exceptions do not occur
+// Underflow exceptions raised when appropriate for sin
+// (No specialized error handling for this routine)
+// Inexact raised when appropriate by algorithm
+//
+// sin(SNaN) = QNaN
+// sin(QNaN) = QNaN
+// sin(inf) = QNaN
+// sin(+/-0) = +/-0
+// cos(inf) = QNaN
+// cos(SNaN) = QNaN
+// cos(QNaN) = QNaN
+// cos(0) = 1
+//
+// *********************************************************************
+//
+// Mathematical Description
+// ========================
+//
+// The computation of FSIN and FCOS is best handled in one piece of
+// code. The main reason is that given any argument Arg, computation
+// of trigonometric functions first calculate N and an approximation
+// to alpha where
+//
+// Arg = N pi/2 + alpha, |alpha| <= pi/4.
+//
+// Since
+//
+// cos( Arg ) = sin( (N+1) pi/2 + alpha ),
+//
+// therefore, the code for computing sine will produce cosine as long
+// as 1 is added to N immediately after the argument reduction
+// process.
+//
+// Let M = N if sine
+// N+1 if cosine.
+//
+// Now, given
+//
+// Arg = M pi/2 + alpha, |alpha| <= pi/4,
+//
+// let I = M mod 4, or I be the two lsb of M when M is represented
+// as 2's complement. I = [i_0 i_1]. Then
+//
+// sin( Arg ) = (-1)^i_0 sin( alpha ) if i_1 = 0,
+// = (-1)^i_0 cos( alpha ) if i_1 = 1.
+//
+// For example:
+// if M = -1, I = 11
+// sin ((-pi/2 + alpha) = (-1) cos (alpha)
+// if M = 0, I = 00
+// sin (alpha) = sin (alpha)
+// if M = 1, I = 01
+// sin (pi/2 + alpha) = cos (alpha)
+// if M = 2, I = 10
+// sin (pi + alpha) = (-1) sin (alpha)
+// if M = 3, I = 11
+// sin ((3/2)pi + alpha) = (-1) cos (alpha)
+//
+// The value of alpha is obtained by argument reduction and
+// represented by two working precision numbers r and c where
+//
+// alpha = r + c accurately.
+//
+// The reduction method is described in a previous write up.
+// The argument reduction scheme identifies 4 cases. For Cases 2
+// and 4, because |alpha| is small, sin(r+c) and cos(r+c) can be
+// computed very easily by 2 or 3 terms of the Taylor series
+// expansion as follows:
+//
+// Case 2:
+// -------
+//
+// sin(r + c) = r + c - r^3/6 accurately
+// cos(r + c) = 1 - 2^(-67) accurately
+//
+// Case 4:
+// -------
+//
+// sin(r + c) = r + c - r^3/6 + r^5/120 accurately
+// cos(r + c) = 1 - r^2/2 + r^4/24 accurately
+//
+// The only cases left are Cases 1 and 3 of the argument reduction
+// procedure. These two cases will be merged since after the
+// argument is reduced in either cases, we have the reduced argument
+// represented as r + c and that the magnitude |r + c| is not small
+// enough to allow the usage of a very short approximation.
+//
+// The required calculation is either
+//
+// sin(r + c) = sin(r) + correction, or
+// cos(r + c) = cos(r) + correction.
+//
+// Specifically,
+//
+// sin(r + c) = sin(r) + c sin'(r) + O(c^2)
+// = sin(r) + c cos (r) + O(c^2)
+// = sin(r) + c(1 - r^2/2) accurately.
+// Similarly,
+//
+// cos(r + c) = cos(r) - c sin(r) + O(c^2)
+// = cos(r) - c(r - r^3/6) accurately.
+//
+// We therefore concentrate on accurately calculating sin(r) and
+// cos(r) for a working-precision number r, |r| <= pi/4 to within
+// 0.1% or so.
+//
+// The greatest challenge of this task is that the second terms of
+// the Taylor series
+//
+// r - r^3/3! + r^r/5! - ...
+//
+// and
+//
+// 1 - r^2/2! + r^4/4! - ...
+//
+// are not very small when |r| is close to pi/4 and the rounding
+// errors will be a concern if simple polynomial accumulation is
+// used. When |r| < 2^-3, however, the second terms will be small
+// enough (6 bits or so of right shift) that a normal Horner
+// recurrence suffices. Hence there are two cases that we consider
+// in the accurate computation of sin(r) and cos(r), |r| <= pi/4.
+//
+// Case small_r: |r| < 2^(-3)
+// --------------------------
+//
+// Since Arg = M pi/4 + r + c accurately, and M mod 4 is [i_0 i_1],
+// we have
+//
+// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
+// = (-1)^i_0 * cos(r + c) if i_1 = 1
+//
+// can be accurately approximated by
+//
+// sin(Arg) = (-1)^i_0 * [sin(r) + c] if i_1 = 0
+// = (-1)^i_0 * [cos(r) - c*r] if i_1 = 1
+//
+// because |r| is small and thus the second terms in the correction
+// are unneccessary.
+//
+// Finally, sin(r) and cos(r) are approximated by polynomials of
+// moderate lengths.
+//
+// sin(r) = r + S_1 r^3 + S_2 r^5 + ... + S_5 r^11
+// cos(r) = 1 + C_1 r^2 + C_2 r^4 + ... + C_5 r^10
+//
+// We can make use of predicates to selectively calculate
+// sin(r) or cos(r) based on i_1.
+//
+// Case normal_r: 2^(-3) <= |r| <= pi/4
+// ------------------------------------
+//
+// This case is more likely than the previous one if one considers
+// r to be uniformly distributed in [-pi/4 pi/4]. Again,
+//
+// sin(Arg) = (-1)^i_0 * sin(r + c) if i_1 = 0
+// = (-1)^i_0 * cos(r + c) if i_1 = 1.
+//
+// Because |r| is now larger, we need one extra term in the
+// correction. sin(Arg) can be accurately approximated by
+//
+// sin(Arg) = (-1)^i_0 * [sin(r) + c(1-r^2/2)] if i_1 = 0
+// = (-1)^i_0 * [cos(r) - c*r*(1 - r^2/6)] i_1 = 1.
+//
+// Finally, sin(r) and cos(r) are approximated by polynomials of
+// moderate lengths.
+//
+// sin(r) = r + PP_1_hi r^3 + PP_1_lo r^3 +
+// PP_2 r^5 + ... + PP_8 r^17
+//
+// cos(r) = 1 + QQ_1 r^2 + QQ_2 r^4 + ... + QQ_8 r^16
+//
+// where PP_1_hi is only about 16 bits long and QQ_1 is -1/2.
+// The crux in accurate computation is to calculate
+//
+// r + PP_1_hi r^3 or 1 + QQ_1 r^2
+//
+// accurately as two pieces: U_hi and U_lo. The way to achieve this
+// is to obtain r_hi as a 10 sig. bit number that approximates r to
+// roughly 8 bits or so of accuracy. (One convenient way is
+//
+// r_hi := frcpa( frcpa( r ) ).)
+//
+// This way,
+//
+// r + PP_1_hi r^3 = r + PP_1_hi r_hi^3 +
+// PP_1_hi (r^3 - r_hi^3)
+// = [r + PP_1_hi r_hi^3] +
+// [PP_1_hi (r - r_hi)
+// (r^2 + r_hi r + r_hi^2) ]
+// = U_hi + U_lo
+//
+// Since r_hi is only 10 bit long and PP_1_hi is only 16 bit long,
+// PP_1_hi * r_hi^3 is only at most 46 bit long and thus computed
+// exactly. Furthermore, r and PP_1_hi r_hi^3 are of opposite sign
+// and that there is no more than 8 bit shift off between r and
+// PP_1_hi * r_hi^3. Hence the sum, U_hi, is representable and thus
+// calculated without any error. Finally, the fact that
+//
+// |U_lo| <= 2^(-8) |U_hi|
+//
+// says that U_hi + U_lo is approximating r + PP_1_hi r^3 to roughly
+// 8 extra bits of accuracy.
+//
+// Similarly,
+//
+// 1 + QQ_1 r^2 = [1 + QQ_1 r_hi^2] +
+// [QQ_1 (r - r_hi)(r + r_hi)]
+// = U_hi + U_lo.
+//
+// Summarizing, we calculate r_hi = frcpa( frcpa( r ) ).
+//
+// If i_1 = 0, then
+//
+// U_hi := r + PP_1_hi * r_hi^3
+// U_lo := PP_1_hi * (r - r_hi) * (r^2 + r*r_hi + r_hi^2)
+// poly := PP_1_lo r^3 + PP_2 r^5 + ... + PP_8 r^17
+// correction := c * ( 1 + C_1 r^2 )
+//
+// Else ...i_1 = 1
+//
+// U_hi := 1 + QQ_1 * r_hi * r_hi
+// U_lo := QQ_1 * (r - r_hi) * (r + r_hi)
+// poly := QQ_2 * r^4 + QQ_3 * r^6 + ... + QQ_8 r^16
+// correction := -c * r * (1 + S_1 * r^2)
+//
+// End
+//
+// Finally,
+//
+// V := poly + ( U_lo + correction )
+//
+// / U_hi + V if i_0 = 0
+// result := |
+// \ (-U_hi) - V if i_0 = 1
+//
+// It is important that in the last step, negation of U_hi is
+// performed prior to the subtraction which is to be performed in
+// the user-set rounding mode.
+//
+//
+// Algorithmic Description
+// =======================
+//
+// The argument reduction algorithm is tightly integrated into FSIN
+// and FCOS which share the same code. The following is complete and
+// self-contained. The argument reduction description given
+// previously is repeated below.
+//
+//
+// Step 0. Initialization.
+//
+// If FSIN is invoked, set N_inc := 0; else if FCOS is invoked,
+// set N_inc := 1.
+//
+// Step 1. Check for exceptional and special cases.
+//
+// * If Arg is +-0, +-inf, NaN, NaT, go to Step 10 for special
+// handling.
+// * If |Arg| < 2^24, go to Step 2 for reduction of moderate
+// arguments. This is the most likely case.
+// * If |Arg| < 2^63, go to Step 8 for pre-reduction of large
+// arguments.
+// * If |Arg| >= 2^63, go to Step 10 for special handling.
+//
+// Step 2. Reduction of moderate arguments.
+//
+// If |Arg| < pi/4 ...quick branch
+// N_fix := N_inc (integer)
+// r := Arg
+// c := 0.0
+// Branch to Step 4, Case_1_complete
+// Else ...cf. argument reduction
+// N := Arg * two_by_PI (fp)
+// N_fix := fcvt.fx( N ) (int)
+// N := fcvt.xf( N_fix )
+// N_fix := N_fix + N_inc
+// s := Arg - N * P_1 (first piece of pi/2)
+// w := -N * P_2 (second piece of pi/2)
+//
+// If |s| >= 2^(-33)
+// go to Step 3, Case_1_reduce
+// Else
+// go to Step 7, Case_2_reduce
+// Endif
+// Endif
+//
+// Step 3. Case_1_reduce.
+//
+// r := s + w
+// c := (s - r) + w ...observe order
+//
+// Step 4. Case_1_complete
+//
+// ...At this point, the reduced argument alpha is
+// ...accurately represented as r + c.
+// If |r| < 2^(-3), go to Step 6, small_r.
+//
+// Step 5. Normal_r.
+//
+// Let [i_0 i_1] by the 2 lsb of N_fix.
+// FR_rsq := r * r
+// r_hi := frcpa( frcpa( r ) )
+// r_lo := r - r_hi
+//
+// If i_1 = 0, then
+// poly := r*FR_rsq*(PP_1_lo + FR_rsq*(PP_2 + ... FR_rsq*PP_8))
+// U_hi := r + PP_1_hi*r_hi*r_hi*r_hi ...any order
+// U_lo := PP_1_hi*r_lo*(r*r + r*r_hi + r_hi*r_hi)
+// correction := c + c*C_1*FR_rsq ...any order
+// Else
+// poly := FR_rsq*FR_rsq*(QQ_2 + FR_rsq*(QQ_3 + ... + FR_rsq*QQ_8))
+// U_hi := 1 + QQ_1 * r_hi * r_hi ...any order
+// U_lo := QQ_1 * r_lo * (r + r_hi)
+// correction := -c*(r + S_1*FR_rsq*r) ...any order
+// Endif
+//
+// V := poly + (U_lo + correction) ...observe order
+//
+// result := (i_0 == 0? 1.0 : -1.0)
+//
+// Last instruction in user-set rounding mode
+//
+// result := (i_0 == 0? result*U_hi + V :
+// result*U_hi - V)
+//
+// Return
+//
+// Step 6. Small_r.
+//
+// ...Use flush to zero mode without causing exception
+// Let [i_0 i_1] be the two lsb of N_fix.
+//
+// FR_rsq := r * r
+//
+// If i_1 = 0 then
+// z := FR_rsq*FR_rsq; z := FR_rsq*z *r
+// poly_lo := S_3 + FR_rsq*(S_4 + FR_rsq*S_5)
+// poly_hi := r*FR_rsq*(S_1 + FR_rsq*S_2)
+// correction := c
+// result := r
+// Else
+// z := FR_rsq*FR_rsq; z := FR_rsq*z
+// poly_lo := C_3 + FR_rsq*(C_4 + FR_rsq*C_5)
+// poly_hi := FR_rsq*(C_1 + FR_rsq*C_2)
+// correction := -c*r
+// result := 1
+// Endif
+//
+// poly := poly_hi + (z * poly_lo + correction)
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+// Return
+//
+// Step 7. Case_2_reduce.
+//
+// ...Refer to the write up for argument reduction for
+// ...rationale. The reduction algorithm below is taken from
+// ...argument reduction description and integrated this.
+//
+// w := N*P_3
+// U_1 := N*P_2 + w ...FMA
+// U_2 := (N*P_2 - U_1) + w ...2 FMA
+// ...U_1 + U_2 is N*(P_2+P_3) accurately
+//
+// r := s - U_1
+// c := ( (s - r) - U_1 ) - U_2
+//
+// ...The mathematical sum r + c approximates the reduced
+// ...argument accurately. Note that although compared to
+// ...Case 1, this case requires much more work to reduce
+// ...the argument, the subsequent calculation needed for
+// ...any of the trigonometric function is very little because
+// ...|alpha| < 1.01*2^(-33) and thus two terms of the
+// ...Taylor series expansion suffices.
+//
+// If i_1 = 0 then
+// poly := c + S_1 * r * r * r ...any order
+// result := r
+// Else
+// poly := -2^(-67)
+// result := 1.0
+// Endif
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+//
+// Return
+//
+//
+// Step 8. Pre-reduction of large arguments.
+//
+// ...Again, the following reduction procedure was described
+// ...in the separate write up for argument reduction, which
+// ...is tightly integrated here.
+
+// N_0 := Arg * Inv_P_0
+// N_0_fix := fcvt.fx( N_0 )
+// N_0 := fcvt.xf( N_0_fix)
+
+// Arg' := Arg - N_0 * P_0
+// w := N_0 * d_1
+// N := Arg' * two_by_PI
+// N_fix := fcvt.fx( N )
+// N := fcvt.xf( N_fix )
+// N_fix := N_fix + N_inc
+//
+// s := Arg' - N * P_1
+// w := w - N * P_2
+//
+// If |s| >= 2^(-14)
+// go to Step 3
+// Else
+// go to Step 9
+// Endif
+//
+// Step 9. Case_4_reduce.
+//
+// ...first obtain N_0*d_1 and -N*P_2 accurately
+// U_hi := N_0 * d_1 V_hi := -N*P_2
+// U_lo := N_0 * d_1 - U_hi V_lo := -N*P_2 - U_hi ...FMAs
+//
+// ...compute the contribution from N_0*d_1 and -N*P_3
+// w := -N*P_3
+// w := w + N_0*d_2
+// t := U_lo + V_lo + w ...any order
+//
+// ...at this point, the mathematical value
+// ...s + U_hi + V_hi + t approximates the true reduced argument
+// ...accurately. Just need to compute this accurately.
+//
+// ...Calculate U_hi + V_hi accurately:
+// A := U_hi + V_hi
+// if |U_hi| >= |V_hi| then
+// a := (U_hi - A) + V_hi
+// else
+// a := (V_hi - A) + U_hi
+// endif
+// ...order in computing "a" must be observed. This branch is
+// ...best implemented by predicates.
+// ...A + a is U_hi + V_hi accurately. Moreover, "a" is
+// ...much smaller than A: |a| <= (1/2)ulp(A).
+//
+// ...Just need to calculate s + A + a + t
+// C_hi := s + A t := t + a
+// C_lo := (s - C_hi) + A
+// C_lo := C_lo + t
+//
+// ...Final steps for reduction
+// r := C_hi + C_lo
+// c := (C_hi - r) + C_lo
+//
+// ...At this point, we have r and c
+// ...And all we need is a couple of terms of the corresponding
+// ...Taylor series.
+//
+// If i_1 = 0
+// poly := c + r*FR_rsq*(S_1 + FR_rsq*S_2)
+// result := r
+// Else
+// poly := FR_rsq*(C_1 + FR_rsq*C_2)
+// result := 1
+// Endif
+//
+// If i_0 = 1, result := -result
+//
+// Last operation. Perform in user-set rounding mode
+//
+// result := (i_0 == 0? result + poly :
+// result - poly )
+// Return
+//
+// Large Arguments: For arguments above 2**63, a Payne-Hanek
+// style argument reduction is used and pi_by_2 reduce is called.
+//
+
+
+#ifdef _LIBC
+.rodata
+#else
+.data
+#endif
+.align 64
+
+FSINCOS_CONSTANTS:
+ASM_TYPE_DIRECTIVE(FSINCOS_CONSTANTS,@object)
+data4 0x4B800000, 0xCB800000, 0x00000000,0x00000000 // two**24, -two**24
+data4 0x4E44152A, 0xA2F9836E, 0x00003FFE,0x00000000 // Inv_pi_by_2
+data4 0xCE81B9F1, 0xC84D32B0, 0x00004016,0x00000000 // P_0
+data4 0x2168C235, 0xC90FDAA2, 0x00003FFF,0x00000000 // P_1
+data4 0xFC8F8CBB, 0xECE675D1, 0x0000BFBD,0x00000000 // P_2
+data4 0xACC19C60, 0xB7ED8FBB, 0x0000BF7C,0x00000000 // P_3
+data4 0x5F000000, 0xDF000000, 0x00000000,0x00000000 // two_to_63, -two_to_63
+data4 0x6EC6B45A, 0xA397E504, 0x00003FE7,0x00000000 // Inv_P_0
+data4 0xDBD171A1, 0x8D848E89, 0x0000BFBF,0x00000000 // d_1
+data4 0x18A66F8E, 0xD5394C36, 0x0000BF7C,0x00000000 // d_2
+data4 0x2168C234, 0xC90FDAA2, 0x00003FFE,0x00000000 // pi_by_4
+data4 0x2168C234, 0xC90FDAA2, 0x0000BFFE,0x00000000 // neg_pi_by_4
+data4 0x3E000000, 0xBE000000, 0x00000000,0x00000000 // two**-3, -two**-3
+data4 0x2F000000, 0xAF000000, 0x9E000000,0x00000000 // two**-33, -two**-33, -two**-67
+data4 0xA21C0BC9, 0xCC8ABEBC, 0x00003FCE,0x00000000 // PP_8
+data4 0x720221DA, 0xD7468A05, 0x0000BFD6,0x00000000 // PP_7
+data4 0x640AD517, 0xB092382F, 0x00003FDE,0x00000000 // PP_6
+data4 0xD1EB75A4, 0xD7322B47, 0x0000BFE5,0x00000000 // PP_5
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0x00000000, 0xAAAA0000, 0x0000BFFC,0x00000000 // PP_1_hi
+data4 0xBAF69EEA, 0xB8EF1D2A, 0x00003FEC,0x00000000 // PP_4
+data4 0x0D03BB69, 0xD00D00D0, 0x0000BFF2,0x00000000 // PP_3
+data4 0x88888962, 0x88888888, 0x00003FF8,0x00000000 // PP_2
+data4 0xAAAB0000, 0xAAAAAAAA, 0x0000BFEC,0x00000000 // PP_1_lo
+data4 0xC2B0FE52, 0xD56232EF, 0x00003FD2,0x00000000 // QQ_8
+data4 0x2B48DCA6, 0xC9C99ABA, 0x0000BFDA,0x00000000 // QQ_7
+data4 0x9C716658, 0x8F76C650, 0x00003FE2,0x00000000 // QQ_6
+data4 0xFDA8D0FC, 0x93F27DBA, 0x0000BFE9,0x00000000 // QQ_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x00000000, 0x80000000, 0x0000BFFE,0x00000000 // QQ_1
+data4 0x0C6E5041, 0xD00D00D0, 0x00003FEF,0x00000000 // QQ_4
+data4 0x0B607F60, 0xB60B60B6, 0x0000BFF5,0x00000000 // QQ_3
+data4 0xAAAAAA9B, 0xAAAAAAAA, 0x00003FFA,0x00000000 // QQ_2
+data4 0xFFFFFFFE, 0xFFFFFFFF, 0x0000BFFD,0x00000000 // C_1
+data4 0xAAAA719F, 0xAAAAAAAA, 0x00003FFA,0x00000000 // C_2
+data4 0x0356F994, 0xB60B60B6, 0x0000BFF5,0x00000000 // C_3
+data4 0xB2385EA9, 0xD00CFFD5, 0x00003FEF,0x00000000 // C_4
+data4 0x292A14CD, 0x93E4BD18, 0x0000BFE9,0x00000000 // C_5
+data4 0xAAAAAAAA, 0xAAAAAAAA, 0x0000BFFC,0x00000000 // S_1
+data4 0x888868DB, 0x88888888, 0x00003FF8,0x00000000 // S_2
+data4 0x055EFD4B, 0xD00D00D0, 0x0000BFF2,0x00000000 // S_3
+data4 0x839730B9, 0xB8EF1C5D, 0x00003FEC,0x00000000 // S_4
+data4 0xE5B3F492, 0xD71EA3A4, 0x0000BFE5,0x00000000 // S_5
+data4 0x38800000, 0xB8800000, 0x00000000 // two**-14, -two**-14
+ASM_SIZE_DIRECTIVE(FSINCOS_CONSTANTS)
+
+FR_Input_X = f8
+FR_Neg_Two_to_M3 = f32
+FR_Two_to_63 = f32
+FR_Two_to_24 = f33
+FR_Pi_by_4 = f33
+FR_Two_to_M14 = f34
+FR_Two_to_M33 = f35
+FR_Neg_Two_to_24 = f36
+FR_Neg_Pi_by_4 = f36
+FR_Neg_Two_to_M14 = f37
+FR_Neg_Two_to_M33 = f38
+FR_Neg_Two_to_M67 = f39
+FR_Inv_pi_by_2 = f40
+FR_N_float = f41
+FR_N_fix = f42
+FR_P_1 = f43
+FR_P_2 = f44
+FR_P_3 = f45
+FR_s = f46
+FR_w = f47
+FR_c = f48
+FR_r = f49
+FR_Z = f50
+FR_A = f51
+FR_a = f52
+FR_t = f53
+FR_U_1 = f54
+FR_U_2 = f55
+FR_C_1 = f56
+FR_C_2 = f57
+FR_C_3 = f58
+FR_C_4 = f59
+FR_C_5 = f60
+FR_S_1 = f61
+FR_S_2 = f62
+FR_S_3 = f63
+FR_S_4 = f64
+FR_S_5 = f65
+FR_poly_hi = f66
+FR_poly_lo = f67
+FR_r_hi = f68
+FR_r_lo = f69
+FR_rsq = f70
+FR_r_cubed = f71
+FR_C_hi = f72
+FR_N_0 = f73
+FR_d_1 = f74
+FR_V = f75
+FR_V_hi = f75
+FR_V_lo = f76
+FR_U_hi = f77
+FR_U_lo = f78
+FR_U_hiabs = f79
+FR_V_hiabs = f80
+FR_PP_8 = f81
+FR_QQ_8 = f81
+FR_PP_7 = f82
+FR_QQ_7 = f82
+FR_PP_6 = f83
+FR_QQ_6 = f83
+FR_PP_5 = f84
+FR_QQ_5 = f84
+FR_PP_4 = f85
+FR_QQ_4 = f85
+FR_PP_3 = f86
+FR_QQ_3 = f86
+FR_PP_2 = f87
+FR_QQ_2 = f87
+FR_QQ_1 = f88
+FR_N_0_fix = f89
+FR_Inv_P_0 = f90
+FR_corr = f91
+FR_poly = f92
+FR_d_2 = f93
+FR_Two_to_M3 = f94
+FR_Neg_Two_to_63 = f94
+FR_P_0 = f95
+FR_C_lo = f96
+FR_PP_1 = f97
+FR_PP_1_lo = f98
+FR_ArgPrime = f99
+
+GR_Table_Base = r32
+GR_Table_Base1 = r33
+GR_i_0 = r34
+GR_i_1 = r35
+GR_N_Inc = r36
+GR_Sin_or_Cos = r37
+
+GR_SAVE_B0 = r39
+GR_SAVE_GP = r40
+GR_SAVE_PFS = r41
+
+.section .text
+.proc __libm_sin_double_dbx#
+.align 64
+__libm_sin_double_dbx:
+
+{ .mlx
+alloc GR_Table_Base = ar.pfs,0,12,2,0
+ movl GR_Sin_or_Cos = 0x0 ;;
+}
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.cond.sptk L(SINCOS_CONTINUE) ;;
+}
+
+.endp __libm_sin_double_dbx#
+ASM_SIZE_DIRECTIVE(__libm_sin_double_dbx)
+
+.section .text
+.proc __libm_cos_double_dbx#
+__libm_cos_double_dbx:
+
+{ .mlx
+alloc GR_Table_Base= ar.pfs,0,12,2,0
+ movl GR_Sin_or_Cos = 0x1 ;;
+}
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+//
+// Load Table Address
+//
+L(SINCOS_CONTINUE):
+
+{ .mmi
+ add GR_Table_Base1 = 96, GR_Table_Base
+ ldfs FR_Two_to_24 = [GR_Table_Base], 4
+ nop.i 999
+}
+;;
+
+{ .mmi
+ nop.m 999
+//
+// Load 2**24, load 2**63.
+//
+ ldfs FR_Neg_Two_to_24 = [GR_Table_Base], 12
+ mov r41 = ar.pfs ;;
+}
+
+{ .mfi
+ ldfs FR_Two_to_63 = [GR_Table_Base1], 4
+//
+// Check for unnormals - unsupported operands. We do not want
+// to generate denormal exception
+// Check for NatVals, QNaNs, SNaNs, +/-Infs
+// Check for EM unsupporteds
+// Check for Zero
+//
+ fclass.m.unc p6, p8 = FR_Input_X, 0x1E3
+ mov r40 = gp ;;
+}
+
+{ .mfi
+ nop.m 999
+ fclass.nm.unc p8, p0 = FR_Input_X, 0x1FF
+// GR_Sin_or_Cos denotes
+ mov r39 = b0
+}
+
+{ .mfb
+ ldfs FR_Neg_Two_to_63 = [GR_Table_Base1], 12
+ fclass.m.unc p10, p0 = FR_Input_X, 0x007
+(p6) br.cond.spnt L(SINCOS_SPECIAL) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p8) br.cond.spnt L(SINCOS_SPECIAL) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Branch if +/- NaN, Inf.
+// Load -2**24, load -2**63.
+//
+(p10) br.cond.spnt L(SINCOS_ZERO) ;;
+}
+
+{ .mmb
+ ldfe FR_Inv_pi_by_2 = [GR_Table_Base], 16
+ ldfe FR_Inv_P_0 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+ nop.m 999
+ ldfe FR_d_1 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+//
+// Raise possible denormal operand flag with useful fcmp
+// Is x <= -2**63
+// Load Inv_P_0 for pre-reduction
+// Load Inv_pi_by_2
+//
+
+{ .mmb
+ ldfe FR_P_0 = [GR_Table_Base], 16
+ ldfe FR_d_2 = [GR_Table_Base1], 16
+ nop.b 999 ;;
+}
+//
+// Load P_0
+// Load d_1
+// Is x >= 2**63
+// Is x <= -2**24?
+//
+
+{ .mmi
+ ldfe FR_P_1 = [GR_Table_Base], 16 ;;
+//
+// Load P_1
+// Load d_2
+// Is x >= 2**24?
+//
+ ldfe FR_P_2 = [GR_Table_Base], 16
+ nop.i 999 ;;
+}
+
{ .mmf
- getf.sig sincos_GR_n = sincos_W_2TO61_RSH
- ldfpd sincos_P2,sincos_Q2 = [sincos_AD_1],16
- fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
-};;
+ nop.m 999
+ ldfe FR_P_3 = [GR_Table_Base], 16
+ fcmp.le.unc.s1 p7, p8 = FR_Input_X, FR_Neg_Two_to_24
+}
-// sincos_r = -sincos_Nfloat * sincos_Pi_by_16_1 + x
{ .mfi
- ldfpd sincos_P1,sincos_Q1 = [sincos_AD_1],16
- fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
- nop.i 999
-};;
+ nop.m 999
+//
+// Branch if +/- zero.
+// Decide about the paths to take:
+// If -2**24 < FR_Input_X < 2**24 - CASE 1 OR 2
+// OTHERWISE - CASE 3 OR 4
+//
+ fcmp.le.unc.s0 p10, p11 = FR_Input_X, FR_Neg_Two_to_63
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fcmp.ge.s1 p7, p0 = FR_Input_X, FR_Two_to_24
+ nop.i 999
+}
+
+{ .mfi
+ ldfe FR_Pi_by_4 = [GR_Table_Base1], 16
+(p11) fcmp.ge.s1 p10, p0 = FR_Input_X, FR_Two_to_63
+ nop.i 999 ;;
+}
+
+{ .mmi
+ ldfe FR_Neg_Pi_by_4 = [GR_Table_Base1], 16 ;;
+ ldfs FR_Two_to_M3 = [GR_Table_Base1], 4
+ nop.i 999 ;;
+}
+
+{ .mib
+ ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1], 12
+ nop.i 999
+//
+// Load P_2
+// Load P_3
+// Load pi_by_4
+// Load neg_pi_by_4
+// Load 2**(-3)
+// Load -2**(-3).
+//
+(p10) br.cond.spnt L(SINCOS_ARG_TOO_LARGE) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Branch out if x >= 2**63. Use Payne-Hanek Reduction
+//
+(p7) br.cond.spnt L(SINCOS_LARGER_ARG) ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Branch if Arg <= -2**24 or Arg >= 2**24 and use pre-reduction.
+//
+ fma.s1 FR_N_float = FR_Input_X, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fcmp.lt.unc.s1 p6, p7 = FR_Input_X, FR_Pi_by_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Select the case when |Arg| < pi/4
+// Else Select the case when |Arg| >= pi/4
+//
+ fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// N = Arg * 2/pi
+// Check if Arg < pi/4
+//
+(p6) fcmp.gt.s1 p6, p7 = FR_Input_X, FR_Neg_Pi_by_4
+ nop.i 999 ;;
+}
+//
+// Case 2: Convert integer N_fix back to normalized floating-point value.
+// Case 1: p8 is only affected when p6 is set
+//
+
+{ .mfi
+(p7) ldfs FR_Two_to_M33 = [GR_Table_Base1], 4
+//
+// Grab the integer part of N and call it N_fix
+//
+(p6) fmerge.se FR_r = FR_Input_X, FR_Input_X
+// If |x| < pi/4, r = x and c = 0
+// lf |x| < pi/4, is x < 2**(-3).
+// r = Arg
+// c = 0
+(p6) mov GR_N_Inc = GR_Sin_or_Cos ;;
+}
+
+{ .mmf
+ nop.m 999
+(p7) ldfs FR_Neg_Two_to_M33 = [GR_Table_Base1], 4
+(p6) fmerge.se FR_c = f0, f0
+}
+
+{ .mfi
+ nop.m 999
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_Input_X, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// lf |x| < pi/4, is -2**(-3)< x < 2**(-3) - set p8.
+// If |x| >= pi/4,
+// Create the right N for |x| < pi/4 and otherwise
+// Case 2: Place integer part of N in GP register
+//
+(p7) fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+(p7) getf.sig GR_N_Inc = FR_N_fix
+(p8) fcmp.gt.s1 p8, p0 = FR_Input_X, FR_Neg_Two_to_M3 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+//
+// Load 2**(-33), -2**(-33)
+//
+(p8) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+//
+// if |x| < pi/4, branch based on |x| < 2**(-3) or otherwise.
+//
+//
+// In this branch, |x| >= pi/4.
+//
+
+{ .mfi
+ ldfs FR_Neg_Two_to_M67 = [GR_Table_Base1], 8
+//
+// Load -2**(-67)
+//
+ fnma.s1 FR_s = FR_N_float, FR_P_1, FR_Input_X
+//
+// w = N * P_2
+// s = -N * P_1 + Arg
+//
+ add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_w = FR_N_float, FR_P_2, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Adjust N_fix by N_inc to determine whether sine or
+// cosine is being calculated
+//
+ fcmp.lt.unc.s1 p7, p6 = FR_s, FR_Two_to_M33
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fcmp.gt.s1 p7, p6 = FR_s, FR_Neg_Two_to_M33
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+// Remember x >= pi/4.
+// Is s <= -2**(-33) or s >= 2**(-33) (p6)
+// or -2**(-33) < s < 2**(-33) (p7)
+(p6) fms.s1 FR_r = FR_s, f1, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_w = FR_N_float, FR_P_3, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_U_1 = FR_N_float, FR_P_2, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p6) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For big s: r = s - w: No futher reduction is necessary
+// For small s: w = N * P_3 (change sign) More reduction
+//
+(p6) fcmp.lt.unc.s1 p8, p9 = FR_r, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fcmp.gt.s1 p8, p9 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fms.s1 FR_r = FR_s, f1, FR_U_1
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+//
+// For big s: Is |r| < 2**(-3)?
+// For big s: c = S - r
+// For small s: U_1 = N * P_2 + w
+//
+// If p8 is set, prepare to branch to Small_R.
+// If p9 is set, prepare to branch to Normal_R.
+// For big s, r is complete here.
+//
+(p6) fms.s1 FR_c = FR_c, f1, FR_w
+//
+// For big s: c = c + w (w has not been negated.)
+// For small s: r = S - U_1
+//
+(p8) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p9) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+{ .mfi
+(p7) add GR_Table_Base1 = 224, GR_Table_Base1
+//
+// Branch to SINCOS_SMALL_R or SINCOS_NORMAL_R
+//
+(p7) fms.s1 FR_U_2 = FR_N_float, FR_P_2, FR_U_1
+//
+// c = S - U_1
+// r = S_1 * r
+//
+//
+(p7) extr.u GR_i_1 = GR_N_Inc, 0, 1
+}
-// Add 2^(k-1) (which is in sincos_r_sincos) to N
{ .mmi
- add sincos_GR_n = sincos_GR_n, sincos_r_sincos
+ nop.m 999 ;;
+//
+// Get [i_0,i_1] - two lsb of N_fix_gr.
+// Do dummy fmpy so inexact is always set.
+//
+(p7) cmp.eq.unc p9, p10 = 0x0, GR_i_1
+(p7) extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+//
+// For small s: U_2 = N * P_2 - U_1
+// S_1 stored constant - grab the one stored with the
+// coefficients.
+//
+
+{ .mfi
+(p7) ldfe FR_S_1 = [GR_Table_Base1], 16
+//
+// Check if i_1 and i_0 != 0
+//
+(p10) fma.s1 FR_poly = f0, f1, FR_Neg_Two_to_M67
+(p7) cmp.eq.unc p11, p12 = 0x0, GR_i_0 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fms.s1 FR_s = FR_s, f1, FR_r
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// S = S - r
+// U_2 = U_2 + w
+// load S_1
+//
+(p7) fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_U_2 = FR_U_2, f1, FR_w
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fmerge.se FR_Input_X = FR_r, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// FR_rsq = r * r
+// Save r as the result.
+//
+(p7) fms.s1 FR_c = FR_s, f1, FR_U_1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if ( i_1 ==0) poly = c + S_1*r*r*r
+// else Result = 1
+//
+(p12) fnma.s1 FR_Input_X = FR_Input_X, f1, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.s1 FR_r = FR_S_1, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fma.d.s0 FR_S_1 = FR_S_1, FR_S_1, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// If i_1 != 0, poly = 2**(-67)
+//
+(p7) fms.s1 FR_c = FR_c, f1, FR_U_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// c = c - U_2
+//
+(p9) fma.s1 FR_poly = FR_r, FR_rsq, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// i_0 != 0, so Result = -Result
+//
+(p11) fma.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
+}
+
+{ .mfb
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+//
+// if (i_0 == 0), Result = Result + poly
+// else Result = Result - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_LARGER_ARG):
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_N_0 = FR_Input_X, FR_Inv_P_0, f0
+ nop.i 999
+}
+;;
+
+// This path for argument > 2*24
+// Adjust table_ptr1 to beginning of table.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
;;
-// Get M (least k+1 bits of N)
- and sincos_GR_m = 0x1f,sincos_GR_n
- nop.i 999
-};;
-// sincos_r = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
+
+//
+// Point to 2*-14
+// N_0 = Arg * Inv_P_0
+//
+
+{ .mmi
+ add GR_Table_Base = 688, GR_Table_Base ;;
+ ldfs FR_Two_to_M14 = [GR_Table_Base], 4
+ nop.i 999 ;;
+}
+
{ .mfi
- nop.m 999
- fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2, sincos_r
- shl sincos_GR_32m = sincos_GR_m,5
-};;
+ ldfs FR_Neg_Two_to_M14 = [GR_Table_Base], 0
+ nop.f 999
+ nop.i 999 ;;
+}
-// Add 32*M to address of sin_cos_beta table
-// For sin denorm. - set uflow
{ .mfi
- add sincos_AD_2 = sincos_GR_32m, sincos_AD_1
-(p8) fclass.m.unc p10,p0 = f8,0x0b
- nop.i 999
-};;
+ nop.m 999
+//
+// Load values 2**(-14) and -2**(-14)
+//
+ fcvt.fx.s1 FR_N_0_fix = FR_N_0
+ nop.i 999 ;;
+}
-// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
{ .mfi
- ldfe sincos_Sm = [sincos_AD_2],16
- nop.f 999
- nop.i 999
-};;
+ nop.m 999
+//
+// N_0_fix = integer part of N_0
+//
+ fcvt.xf FR_N_0 = FR_N_0_fix
+ nop.i 999 ;;
+}
-// get rsq = r*r
{ .mfi
- ldfe sincos_Cm = [sincos_AD_2]
- fma.s1 sincos_rsq = sincos_r, sincos_r, f0 // r^2 = r*r
- nop.i 999
+ nop.m 999
+//
+// Make N_0 the integer part
+//
+ fnma.s1 FR_ArgPrime = FR_N_0, FR_P_0, FR_Input_X
+ nop.i 999
}
+
{ .mfi
- nop.m 999
- fmpy.s0 fp_tmp = fp_tmp,fp_tmp // forces inexact flag
- nop.i 999
-};;
+ nop.m 999
+ fma.s1 FR_w = FR_N_0, FR_d_1, f0
+ nop.i 999 ;;
+}
-// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
{ .mfi
- nop.m 999
- fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
- nop.i 999
-};;
+ nop.m 999
+//
+// Arg' = -N_0 * P_0 + Arg
+// w = N_0 * d_1
+//
+ fma.s1 FR_N_float = FR_ArgPrime, FR_Inv_pi_by_2, f0
+ nop.i 999 ;;
+}
-// Polynomials calculation
-// P_1 = P4*r^2 + P3
-// Q_2 = Q4*r^2 + Q3
{ .mfi
- nop.m 999
- fma.s1 sincos_P_temp1 = sincos_rsq, sincos_P4, sincos_P3
- nop.i 999
+ nop.m 999
+//
+// N = A' * 2/pi
+//
+ fcvt.fx.s1 FR_N_fix = FR_N_float
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_Q_temp1 = sincos_rsq, sincos_Q4, sincos_Q3
- nop.i 999
-};;
+ nop.m 999
+//
+// N_fix is the integer part
+//
+ fcvt.xf FR_N_float = FR_N_fix
+ nop.i 999 ;;
+}
-// get rcube = r^3 and S[m]*r^2
{ .mfi
- nop.m 999
- fmpy.s1 sincos_srsq = sincos_Sm,sincos_rsq
- nop.i 999
+ getf.sig GR_N_Inc = FR_N_fix
+ nop.f 999
+ nop.i 999 ;;
+}
+
+{ .mii
+ nop.m 999
+ nop.i 999 ;;
+ add GR_N_Inc = GR_N_Inc, GR_Sin_or_Cos ;;
}
+
{ .mfi
- nop.m 999
- fmpy.s1 sincos_rcub = sincos_r_exact, sincos_rsq
- nop.i 999
-};;
+ nop.m 999
+//
+// N is the integer part of the reduced-reduced argument.
+// Put the integer in a GP register
+//
+ fnma.s1 FR_s = FR_N_float, FR_P_1, FR_ArgPrime
+ nop.i 999
+}
-// Polynomials calculation
-// Q_2 = Q_1*r^2 + Q2
-// P_1 = P_1*r^2 + P2
{ .mfi
- nop.m 999
- fma.s1 sincos_Q_temp2 = sincos_rsq, sincos_Q_temp1, sincos_Q2
- nop.i 999
+ nop.m 999
+ fnma.s1 FR_w = FR_N_float, FR_P_2, FR_w
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P_temp2 = sincos_rsq, sincos_P_temp1, sincos_P2
- nop.i 999
-};;
+ nop.m 999
+//
+// s = -N*P_1 + Arg'
+// w = -N*P_2 + w
+// N_fix_gr = N_fix_gr + N_inc
+//
+ fcmp.lt.unc.s1 p9, p8 = FR_s, FR_Two_to_M14
+ nop.i 999 ;;
+}
-// Polynomials calculation
-// Q = Q_2*r^2 + Q1
-// P = P_2*r^2 + P1
{ .mfi
- nop.m 999
- fma.s1 sincos_Q = sincos_rsq, sincos_Q_temp2, sincos_Q1
- nop.i 999
+ nop.m 999
+(p9) fcmp.gt.s1 p9, p8 = FR_s, FR_Neg_Two_to_M14
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P = sincos_rsq, sincos_P_temp2, sincos_P1
- nop.i 999
-};;
+ nop.m 999
+//
+// For |s| > 2**(-14) r = S + w (r complete)
+// Else U_hi = N_0 * d_1
+//
+(p9) fma.s1 FR_V_hi = FR_N_float, FR_P_2, f0
+ nop.i 999
+}
-// Get final P and Q
-// Q = Q*S[m]*r^2 + S[m]
-// P = P*r^3 + r
{ .mfi
- nop.m 999
- fma.s1 sincos_Q = sincos_srsq,sincos_Q, sincos_Sm
- nop.i 999
+ nop.m 999
+(p9) fma.s1 FR_U_hi = FR_N_0, FR_d_1, f0
+ nop.i 999 ;;
}
+
{ .mfi
- nop.m 999
- fma.s1 sincos_P = sincos_rcub,sincos_P, sincos_r_exact
- nop.i 999
-};;
+ nop.m 999
+//
+// Either S <= -2**(-14) or S >= 2**(-14)
+// or -2**(-14) < s < 2**(-14)
+//
+(p8) fma.s1 FR_r = FR_s, f1, FR_w
+ nop.i 999
+}
-// If sin(denormal), force underflow to be set
{ .mfi
- nop.m 999
-(p10) fmpy.d.s0 fp_tmp = sincos_NORM_f8,sincos_NORM_f8
- nop.i 999
-};;
+ nop.m 999
+(p9) fma.s1 FR_w = FR_N_float, FR_P_3, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// We need abs of both U_hi and V_hi - don't
+// worry about switched sign of V_hi.
+//
+(p9) fms.s1 FR_A = FR_U_hi, f1, FR_V_hi
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Big s: finish up c = (S - r) + w (c complete)
+// Case 4: A = U_hi + V_hi
+// Note: Worry about switched sign of V_hi, so subtract instead of add.
+//
+(p9) fnma.s1 FR_V_lo = FR_N_float, FR_P_2, FR_V_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fms.s1 FR_U_lo = FR_N_0, FR_d_1, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fmerge.s FR_V_hiabs = f0, FR_V_hi
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+// For big s: c = S - r
+// For small s do more work: U_lo = N_0 * d_1 - U_hi
+//
+(p9) fmerge.s FR_U_hiabs = f0, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// For big s: Is |r| < 2**(-3)
+// For big s: if p12 set, prepare to branch to Small_R.
+// For big s: If p13 set, prepare to branch to Normal_R.
+//
+(p8) fms.s1 FR_c = FR_s, f1, FR_r
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// For small S: V_hi = N * P_2
+// w = N * P_3
+// Note the product does not include the (-) as in the writeup
+// so (-) missing for V_hi and w.
+//
+(p8) fcmp.lt.unc.s1 p12, p13 = FR_r, FR_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fcmp.gt.s1 p12, p13 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p8) fma.s1 FR_c = FR_c, f1, FR_w
+ nop.i 999
+}
-// Final calculation
-// result = C[m]*P + Q
{ .mfb
- nop.m 999
- fma.d.s0 f8 = sincos_Cm, sincos_P, sincos_Q
- br.ret.sptk b0 // Exit for common path
-};;
+ nop.m 999
+(p9) fms.s1 FR_w = FR_N_0, FR_d_2, FR_w
+(p12) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p13) br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Big s: Vector off when |r| < 2**(-3). Recall that p8 will be true.
+// The remaining stuff is for Case 4.
+// Small s: V_lo = N * P_2 + U_hi (U_hi is in place of V_hi in writeup)
+// Note: the (-) is still missing for V_lo.
+// Small s: w = w + N_0 * d_2
+// Note: the (-) is now incorporated in w.
+//
+(p9) fcmp.ge.unc.s1 p10, p11 = FR_U_hiabs, FR_V_hiabs
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_hi = S + A
+//
+(p9) fma.s1 FR_t = FR_U_lo, f1, FR_V_lo
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// t = U_lo + V_lo
+//
+//
+(p10) fms.s1 FR_a = FR_U_hi, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p11) fma.s1 FR_a = FR_V_hi, f1, FR_A
+ nop.i 999
+}
+;;
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+{ .mfi
+ add GR_Table_Base = 528, GR_Table_Base
+//
+// Is U_hiabs >= V_hiabs?
+//
+(p9) fma.s1 FR_C_hi = FR_s, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mmi
+ ldfe FR_C_1 = [GR_Table_Base], 16 ;;
+ ldfe FR_C_2 = [GR_Table_Base], 64
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+//
+// c = c + C_lo finished.
+// Load C_2
+//
+ ldfe FR_S_1 = [GR_Table_Base], 16
+//
+// C_lo = S - C_hi
+//
+ fma.s1 FR_t = FR_t, f1, FR_w ;;
+}
+//
+// r and c have been computed.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-3)
+// Get [i_0,i_1] - two lsb of N_fix.
+// Load S_1
+//
+
+{ .mfi
+ ldfe FR_S_2 = [GR_Table_Base], 64
+//
+// t = t + w
+//
+(p10) fms.s1 FR_a = FR_a, f1, FR_V_hi
+ cmp.eq.unc p9, p10 = 0x0, GR_i_0
+}
+
+{ .mfi
+ nop.m 999
+//
+// For larger u than v: a = U_hi - A
+// Else a = V_hi - A (do an add to account for missing (-) on V_hi
+//
+ fms.s1 FR_C_lo = FR_s, f1, FR_C_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p11) fms.s1 FR_a = FR_U_hi, f1, FR_a
+ cmp.eq.unc p11, p12 = 0x0, GR_i_1
+}
+
+{ .mfi
+ nop.m 999
+//
+// If u > v: a = (U_hi - A) + V_hi
+// Else a = (V_hi - A) + U_hi
+// In each case account for negative missing from V_hi.
+//
+ fma.s1 FR_C_lo = FR_C_lo, f1, FR_A
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_lo = (S - C_hi) + A
+//
+ fma.s1 FR_t = FR_t, f1, FR_a
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// t = t + a
+//
+ fma.s1 FR_C_lo = FR_C_lo, f1, FR_t
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// C_lo = C_lo + t
+// Adjust Table_Base to beginning of table
+//
+ fma.s1 FR_r = FR_C_hi, f1, FR_C_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Load S_2
+//
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// Table_Base points to C_1
+// r = C_hi + C_lo
+//
+ fms.s1 FR_c = FR_C_hi, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: poly = S_2 * FR_rsq + S_1
+// else poly = C_2 * FR_rsq + C_1
+//
+(p11) fma.s1 FR_Input_X = f0, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_Input_X = f0, f1, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Compute r_cube = FR_rsq * r
+//
+(p11) fma.s1 FR_poly = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
+}
-////////// x = 0/Inf/NaN path //////////////////
-_SINCOS_SPECIAL_ARGS:
-.pred.rel "mutex",p8,p9
-// sin(+/-0) = +/-0
-// sin(Inf) = NaN
-// sin(NaN) = NaN
{ .mfi
- nop.m 999
-(p8) fma.d.s0 f8 = f8, f0, f0 // sin(+/-0,NaN,Inf)
- nop.i 999
+ nop.m 999
+//
+// Compute FR_rsq = r * r
+// Is i_1 == 0 ?
+//
+ fma.s1 FR_r_cubed = FR_rsq, FR_r, f0
+ nop.i 999 ;;
}
-// cos(+/-0) = 1.0
-// cos(Inf) = NaN
-// cos(NaN) = NaN
+
+{ .mfi
+ nop.m 999
+//
+// c = C_hi - r
+// Load C_1
+//
+ fma.s1 FR_c = FR_c, f1, FR_C_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: poly = r_cube * poly + c
+// else poly = FR_rsq * poly
+//
+(p10) fms.s1 FR_Input_X = f0, f1, FR_Input_X
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_1 ==0: Result = r
+// else Result = 1.0
+//
+(p11) fma.s1 FR_poly = FR_r_cubed, FR_poly, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if i_0 !=0: Result = -Result
+//
+(p9) fma.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+ nop.i 999 ;;
+}
+
{ .mfb
- nop.m 999
-(p9) fma.d.s0 f8 = f8, f0, f1 // cos(+/-0,NaN,Inf)
- br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
-};;
+ nop.m 999
+(p10) fms.d.s0 FR_Input_X = FR_Input_X, f1, FR_poly
+//
+// if i_0 == 0: Result = Result + poly
+// else Result = Result - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_SMALL_R):
+
+{ .mii
+ nop.m 999
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+//
+//
+// Compare both i_1 and i_0 with 0.
+// if i_1 == 0, set p9.
+// if i_0 == 0, set p11.
+//
+ cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Z = Z * FR_rsq
+//
+(p10) fnma.s1 FR_c = FR_c, FR_r, f0
+ cmp.eq.unc p11, p12 = 0x0, GR_i_0
+}
+;;
+
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+// r and c have been computed.
+// We know whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// |r| < 2**(-3)
+//
+// Set table_ptr1 to beginning of constant table.
+// Get [i_0,i_1] - two lsb of N_fix_gr.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+// Compute FR_rsq = r * r
+//
+
+{ .mfi
+(p9) add GR_Table_Base = 672, GR_Table_Base
+(p10) fmerge.s FR_r = f1, f1
+(p10) add GR_Table_Base = 592, GR_Table_Base ;;
+}
+//
+// Set table_ptr1 to point to S_5.
+// Set table_ptr1 to point to C_5.
+//
+
+{ .mmi
+(p9) ldfe FR_S_5 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_5
+// if (i_1 != 0) load C_5
+//
+(p9) ldfe FR_S_4 = [GR_Table_Base], -16
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p10) ldfe FR_C_5 = [GR_Table_Base], -16
+//
+// Z = FR_rsq * FR_rsq
+//
+(p9) ldfe FR_S_3 = [GR_Table_Base], -16
+//
+// Compute FR_rsq = r * r
+// if (i_1 == 0) load S_4
+// if (i_1 != 0) load C_4
+//
+ fma.s1 FR_Z = FR_rsq, FR_rsq, f0 ;;
+}
+//
+// if (i_1 == 0) load S_3
+// if (i_1 != 0) load C_3
+//
+
+{ .mmi
+(p9) ldfe FR_S_2 = [GR_Table_Base], -16 ;;
+//
+// if (i_1 == 0) load S_2
+// if (i_1 != 0) load C_2
+//
+(p9) ldfe FR_S_1 = [GR_Table_Base], -16
+ nop.i 999
+}
+
+{ .mmi
+(p10) ldfe FR_C_4 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_3 = [GR_Table_Base], -16
+ nop.i 999 ;;
+}
+
+{ .mmi
+(p10) ldfe FR_C_2 = [GR_Table_Base], -16 ;;
+(p10) ldfe FR_C_1 = [GR_Table_Base], -16
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 != 0):
+// poly_lo = FR_rsq * C_5 + C_4
+// poly_hi = FR_rsq * C_2 + C_1
+//
+(p9) fma.s1 FR_Z = FR_Z, FR_r, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0) load S_1
+// if (i_1 != 0) load C_1
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_S_5, FR_S_4
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// c = -c * r
+// dummy fmpy's to flag inexact.
+//
+(p9) fma.d.s0 FR_S_4 = FR_S_4, FR_S_4, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + C_3
+// poly_hi = FR_rsq * poly_hi
+//
+ fma.s1 FR_Z = FR_Z, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_rsq, FR_S_2, FR_S_1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0):
+// poly_lo = FR_rsq * S_5 + S_4
+// poly_hi = FR_rsq * S_2 + S_1
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_C_5, FR_C_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0):
+// Z = Z * r for only one of the small r cases - not there
+// in original implementation notes.
+//
+(p9) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_S_3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_rsq, FR_C_2, FR_C_1
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.d.s0 FR_C_1 = FR_C_1, FR_C_1, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_lo = FR_rsq * poly_lo + S_3
+// poly_hi = FR_rsq * poly_hi
+//
+(p10) fma.s1 FR_poly_lo = FR_rsq, FR_poly_lo, FR_C_3
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 == 0): dummy fmpy's to flag inexact
+// r = 1
+//
+(p9) fma.s1 FR_poly_hi = FR_r, FR_poly_hi, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_hi = r * poly_hi
+//
+ fma.s1 FR_poly = FR_Z, FR_poly_lo, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.s1 FR_r = f0, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// poly_hi = Z * poly_lo + c
+// if i_0 == 1: r = -r
+//
+ fma.s1 FR_poly = FR_poly, f1, FR_poly_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_r, f1, FR_poly
+ nop.i 999
+}
-_SINCOS_UNORM:
-// Here if x=unorm
{ .mfb
- getf.exp sincos_r_signexp = sincos_NORM_f8 // Get signexp of x
- fcmp.eq.s0 p11,p0 = f8, f0 // Dummy op to set denorm flag
- br.cond.sptk _SINCOS_COMMON2 // Return to main path
-};;
+ nop.m 999
+//
+// poly = poly + poly_hi
+//
+(p11) fma.d.s0 FR_Input_X = FR_r, f1, FR_poly
+//
+// if (i_0 == 0) Result = r + poly
+// if (i_0 != 0) Result = r - poly
+//
+ br.ret.sptk b0 ;;
+}
+L(SINCOS_NORMAL_R):
-GLOBAL_IEEE754_END(cos)
+{ .mii
+ nop.m 999
+ extr.u GR_i_1 = GR_N_Inc, 0, 1 ;;
+//
+// Set table_ptr1 and table_ptr2 to base address of
+// constant table.
+ cmp.eq.unc p9, p10 = 0x0, GR_i_1 ;;
+}
+
+{ .mfi
+ nop.m 999
+ fma.s1 FR_rsq = FR_r, FR_r, f0
+ extr.u GR_i_0 = GR_N_Inc, 1, 1 ;;
+}
-//////////// x >= 2^27 - large arguments routine call ////////////
-LOCAL_LIBM_ENTRY(__libm_callout_sincos)
-_SINCOS_LARGE_ARGS:
-.prologue
{ .mfi
- mov GR_SAVE_r_sincos = sincos_r_sincos // Save sin or cos
- nop.f 999
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS = ar.pfs
+ nop.m 999
+ frcpa.s1 FR_r_hi, p6 = f1, FR_r
+ cmp.eq.unc p11, p12 = 0x0, GR_i_0
}
;;
+// ******************************************************************
+// ******************************************************************
+// ******************************************************************
+//
+// r and c have been computed.
+// We known whether this is the sine or cosine routine.
+// Make sure ftz mode is set - should be automatic when using wre
+// Get [i_0,i_1] - two lsb of N_fix_gr alone.
+//
+
+{ .mmi
+ nop.m 999
+ addl GR_Table_Base = @ltoff(FSINCOS_CONSTANTS#), gp
+ nop.i 999
+}
+;;
+
+{ .mmi
+ ld8 GR_Table_Base = [GR_Table_Base]
+ nop.m 999
+ nop.i 999
+}
+;;
+
+
{ .mfi
- mov GR_SAVE_GP = gp
- nop.f 999
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0 = b0
+(p10) add GR_Table_Base = 384, GR_Table_Base
+(p12) fms.s1 FR_Input_X = f0, f1, f1
+(p9) add GR_Table_Base = 224, GR_Table_Base ;;
}
-.body
-{ .mbb
- setf.sig sincos_save_tmp = sincos_GR_all_ones// inexact set
- nop.b 999
-(p8) br.call.sptk.many b0 = __libm_sin_large# // sin(large_X)
+{ .mmf
+ nop.m 999
+(p10) ldfe FR_QQ_8 = [GR_Table_Base], 16
+//
+// if (i_1==0) poly = poly * FR_rsq + PP_1_lo
+// else poly = FR_rsq * poly
+//
+(p11) fma.s1 FR_Input_X = f0, f1, f1 ;;
+}
-};;
+{ .mmf
+(p10) ldfe FR_QQ_7 = [GR_Table_Base], 16
+//
+// Adjust table pointers based on i_0
+// Compute rsq = r * r
+//
+(p9) ldfe FR_PP_8 = [GR_Table_Base], 16
+ fma.s1 FR_r_cubed = FR_r, FR_rsq, f0 ;;
+}
-{ .mbb
- cmp.ne p9,p0 = GR_SAVE_r_sincos, r0 // set p9 if cos
- nop.b 999
-(p9) br.call.sptk.many b0 = __libm_cos_large# // cos(large_X)
-};;
+{ .mmf
+(p9) ldfe FR_PP_7 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_6 = [GR_Table_Base], 16
+//
+// Load PP_8 and QQ_8; PP_7 and QQ_7
+//
+ frcpa.s1 FR_r_hi, p6 = f1, FR_r_hi ;;
+}
+//
+// if (i_1==0) poly = PP_7 + FR_rsq * PP_8.
+// else poly = QQ_7 + FR_rsq * QQ_8.
+//
+
+{ .mmb
+(p9) ldfe FR_PP_6 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_5 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p9) ldfe FR_PP_5 = [GR_Table_Base], 16
+(p10) ldfe FR_S_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmb
+(p10) ldfe FR_QQ_1 = [GR_Table_Base], 16
+(p9) ldfe FR_C_1 = [GR_Table_Base], 16
+ nop.b 999 ;;
+}
+
+{ .mmi
+(p10) ldfe FR_QQ_4 = [GR_Table_Base], 16 ;;
+(p9) ldfe FR_PP_1 = [GR_Table_Base], 16
+ nop.i 999 ;;
+}
+
+{ .mmf
+(p10) ldfe FR_QQ_3 = [GR_Table_Base], 16
+//
+// if (i_1=0) corr = corr + c*c
+// else corr = corr * c
+//
+(p9) ldfe FR_PP_4 = [GR_Table_Base], 16
+(p10) fma.s1 FR_poly = FR_rsq, FR_QQ_8, FR_QQ_7 ;;
+}
+//
+// if (i_1=0) poly = rsq * poly + PP_5
+// else poly = rsq * poly + QQ_5
+// Load PP_4 or QQ_4
+//
+
+{ .mmf
+(p9) ldfe FR_PP_3 = [GR_Table_Base], 16
+(p10) ldfe FR_QQ_2 = [GR_Table_Base], 16
+//
+// r_hi = frcpa(frcpa(r)).
+// r_cube = r * FR_rsq.
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_PP_8, FR_PP_7 ;;
+}
+//
+// Do dummy multiplies so inexact is always set.
+//
+
+{ .mfi
+(p9) ldfe FR_PP_2 = [GR_Table_Base], 16
+//
+// r_lo = r - r_hi
+//
+(p9) fma.s1 FR_U_lo = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mmf
+ nop.m 999
+(p9) ldfe FR_PP_1_lo = [GR_Table_Base], 16
+(p10) fma.s1 FR_corr = FR_S_1, FR_r_cubed, FR_r
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_6
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_lo = r_hi * r_hi
+// else U_lo = r_hi + r
+//
+(p9) fma.s1 FR_corr = FR_C_1, FR_rsq, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) corr = C_1 * rsq
+// else corr = S_1 * r_cubed + r
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_6
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_hi, f1, FR_r
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_hi = r_hi + U_hi
+// else U_hi = QQ_1 * U_hi + 1
+//
+(p9) fma.s1 FR_U_lo = FR_r, FR_r_hi, FR_U_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// U_hi = r_hi * r_hi
+//
+ fms.s1 FR_r_lo = FR_r, f1, FR_r_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// Load PP_1, PP_6, PP_5, and C_1
+// Load QQ_1, QQ_6, QQ_5, and S_1
+//
+ fma.s1 FR_U_hi = FR_r_hi, FR_r_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_5
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fnma.s1 FR_corr = FR_corr, FR_c, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) U_lo = r * r_hi + U_lo
+// else U_lo = r_lo * U_lo
+//
+(p9) fma.s1 FR_corr = FR_corr, FR_c, FR_c
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_5
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 =0) U_hi = r + U_hi
+// if (i_1 =0) U_lo = r_lo * U_lo
+//
+//
+(p9) fma.d.s0 FR_PP_5 = FR_PP_5, FR_PP_4, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r, FR_r, FR_U_lo
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1=0) poly = poly * rsq + PP_6
+// else poly = poly * rsq + QQ_6
+//
+(p9) fma.s1 FR_U_hi = FR_r_hi, FR_U_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_4
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_hi = FR_QQ_1, FR_U_hi, f1
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.d.s0 FR_QQ_5 = FR_QQ_5, FR_QQ_5, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1!=0) U_hi = PP_1 * U_hi
+// if (i_1!=0) U_lo = r * r + U_lo
+// Load PP_3 or QQ_3
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_4
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_lo = FR_r_lo, FR_U_lo, f0
+ nop.i 999
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_U_lo = FR_QQ_1,FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p9) fma.s1 FR_U_hi = FR_PP_1, FR_U_hi, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_3
+ nop.i 999 ;;
+}
{ .mfi
- mov gp = GR_SAVE_GP
- fma.d.s0 f8 = f8, f1, f0 // Round result to double
- mov b0 = GR_SAVE_B0
+ nop.m 999
+//
+// Load PP_2, QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_3
+ nop.i 999 ;;
}
-// Force inexact set
+
{ .mfi
- nop.m 999
- fmpy.s0 sincos_save_tmp = sincos_save_tmp, sincos_save_tmp
- nop.i 999
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_3
+// else poly = FR_rsq * poly + QQ_3
+// Load PP_1_lo
+//
+(p9) fma.s1 FR_U_lo = FR_PP_1, FR_U_lo, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1 =0) poly = poly * rsq + pp_r4
+// else poly = poly * rsq + qq_r4
+//
+(p9) fma.s1 FR_U_hi = FR_r, f1, FR_U_hi
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, FR_QQ_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) U_lo = PP_1_hi * U_lo
+// else U_lo = QQ_1 * U_lo
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_2
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_0==0) Result = 1
+// else Result = -1
+//
+ fma.s1 FR_V = FR_U_lo, f1, FR_corr
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) poly = FR_rsq * poly + PP_2
+// else poly = FR_rsq * poly + QQ_2
+//
+(p9) fma.s1 FR_poly = FR_rsq, FR_poly, FR_PP_1_lo
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p10) fma.s1 FR_poly = FR_rsq, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// V = U_lo + corr
+//
+(p9) fma.s1 FR_poly = FR_r_cubed, FR_poly, f0
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+//
+// if (i_1==0) poly = r_cube * poly
+// else poly = FR_rsq * poly
+//
+ fma.s1 FR_V = FR_poly, f1, FR_V
+ nop.i 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p12) fms.d.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+//
+// V = V + poly
+//
+(p11) fma.d.s0 FR_Input_X = FR_Input_X, FR_U_hi, FR_V
+//
+// if (i_0==0) Result = Result * U_hi + V
+// else Result = Result * U_hi - V
+//
+ br.ret.sptk b0 ;;
+}
+
+//
+// If cosine, FR_Input_X = 1
+// If sine, FR_Input_X = +/-Zero (Input FR_Input_X)
+// Results are exact, no exceptions
+//
+L(SINCOS_ZERO):
+
+{ .mmb
+ cmp.eq.unc p6, p7 = 0x1, GR_Sin_or_Cos
+ nop.m 999
+ nop.b 999 ;;
+}
+
+{ .mfi
+ nop.m 999
+(p7) fmerge.s FR_Input_X = FR_Input_X, FR_Input_X
+ nop.i 999
+}
+
+{ .mfb
+ nop.m 999
+(p6) fmerge.s FR_Input_X = f1, f1
+ br.ret.sptk b0 ;;
+}
+
+L(SINCOS_SPECIAL):
+
+//
+// Path for Arg = +/- QNaN, SNaN, Inf
+// Invalid can be raised. SNaNs
+// become QNaNs
+//
+
+{ .mfb
+ nop.m 999
+ fmpy.d.s0 FR_Input_X = FR_Input_X, f0
+ br.ret.sptk b0 ;;
+}
+.endp __libm_cos_double_dbx#
+ASM_SIZE_DIRECTIVE(__libm_cos_double_dbx#)
+
+
+
+//
+// Call int pi_by_2_reduce(double* x, double *y)
+// for |arguments| >= 2**63
+// Address to save r and c as double
+//
+//
+// psp sp+64
+// sp+48 -> f0 c
+// r45 sp+32 -> f0 r
+// r44 -> sp+16 -> InputX
+// sp sp -> scratch provided to callee
+
+
+
+.proc __libm_callout_2
+__libm_callout_2:
+L(SINCOS_ARG_TOO_LARGE):
+
+.prologue
+{ .mfi
+ add r45=-32,sp // Parameter: r address
+ nop.f 0
+.save ar.pfs,GR_SAVE_PFS
+ mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+ add sp=-64,sp // Create new stack
+ nop.f 0
+ mov GR_SAVE_GP=gp // Save gp
+};;
+{ .mmi
+ stfe [r45] = f0,16 // Clear Parameter r on stack
+ add r44 = 16,sp // Parameter x address
+.save b0, GR_SAVE_B0
+ mov GR_SAVE_B0=b0 // Save b0
+};;
+.body
+{ .mib
+ stfe [r45] = f0,-16 // Clear Parameter c on stack
+ nop.i 0
+ nop.b 0
+}
+{ .mib
+ stfe [r44] = FR_Input_X // Store Parameter x on stack
+ nop.i 0
+ br.call.sptk b0=__libm_pi_by_2_reduce# ;;
};;
+
+{ .mii
+ ldfe FR_Input_X =[r44],16
+//
+// Get r and c off stack
+//
+ adds GR_Table_Base1 = -16, GR_Table_Base1
+//
+// Get r and c off stack
+//
+ add GR_N_Inc = GR_Sin_or_Cos,r8 ;;
+}
+{ .mmb
+ ldfe FR_r =[r45],16
+//
+// Get X off the stack
+// Readjust Table ptr
+//
+ ldfs FR_Two_to_M3 = [GR_Table_Base1],4
+ nop.b 999 ;;
+}
+{ .mmb
+ ldfs FR_Neg_Two_to_M3 = [GR_Table_Base1],0
+ ldfe FR_c =[r45]
+ nop.b 999 ;;
+}
+
+{ .mfi
+.restore sp
+ add sp = 64,sp // Restore stack pointer
+ fcmp.lt.unc.s1 p6, p0 = FR_r, FR_Two_to_M3
+ mov b0 = GR_SAVE_B0 // Restore return address
+};;
{ .mib
- nop.m 999
- mov ar.pfs = GR_SAVE_PFS
- br.ret.sptk b0 // Exit for large arguments routine call
+ mov gp = GR_SAVE_GP // Restore gp
+ mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
+ nop.b 0
};;
-LOCAL_LIBM_END(__libm_callout_sincos)
-.type __libm_sin_large#,@function
-.global __libm_sin_large#
-.type __libm_cos_large#,@function
-.global __libm_cos_large#
+{ .mfi
+ nop.m 999
+(p6) fcmp.gt.unc.s1 p6, p0 = FR_r, FR_Neg_Two_to_M3
+ nop.i 999 ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+(p6) br.cond.spnt L(SINCOS_SMALL_R) ;;
+}
+
+{ .mib
+ nop.m 999
+ nop.i 999
+ br.cond.sptk L(SINCOS_NORMAL_R) ;;
+}
+
+.endp __libm_callout_2
+ASM_SIZE_DIRECTIVE(__libm_callout_2)
+
+.type __libm_pi_by_2_reduce#,@function
+.global __libm_pi_by_2_reduce#
+
+.type __libm_sin_double_dbx#,@function
+.global __libm_sin_double_dbx#
+.type __libm_cos_double_dbx#,@function
+.global __libm_cos_double_dbx#