diff options
Diffstat (limited to 'sysdeps/ia64/fpu/e_acos.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_acos.S | 1499 |
1 files changed, 770 insertions, 729 deletions
diff --git a/sysdeps/ia64/fpu/e_acos.S b/sysdeps/ia64/fpu/e_acos.S index c2b31ab85e..7e83811727 100644 --- a/sysdeps/ia64/fpu/e_acos.S +++ b/sysdeps/ia64/fpu/e_acos.S @@ -1,10 +1,10 @@ .file "acos.s" - -// Copyright (c) 2000 - 2003 Intel Corporation +// Copyright (C) 2000, 2001, Intel Corporation // All rights reserved. // -// Contributed 2000 by the Intel Numerics Group, Intel Corporation +// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, +// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are @@ -20,7 +20,9 @@ // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. - +// +// WARRANTY DISCLAIMER +// // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR @@ -35,801 +37,838 @@ // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. +// http://developer.intel.com/opensource. // History //============================================================== -// 02/02/00 Initial version -// 08/17/00 New and much faster algorithm. -// 08/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths, +// 2/02/00 Initial version +// 8/17/00 New and much faster algorithm. +// 8/30/00 Avoided bank conflicts on loads, shortened |x|=1 and x=0 paths, // fixed mfb split issue stalls. -// 05/20/02 Cleaned up namespace and sf0 syntax -// 08/02/02 New and much faster algorithm II -// 02/06/03 Reordered header: .section, .global, .proc, .align // Description //========================================= -// The acos function computes the principal value of the arc cosine of x. -// acos(0) returns Pi/2, acos(1) returns 0, acos(-1) returns Pi. +// The acos function computes the principle value of the arc sine of x. // A doman error occurs for arguments not in the range [-1,+1]. -// -// The acos function returns the arc cosine in the range [0, Pi] radians. -// -// There are 8 paths: -// 1. x = +/-0.0 -// Return acos(x) = Pi/2 + x -// -// 2. 0.0 < |x| < 0.625 -// Return acos(x) = Pi/2 - x - x^3 *PolA(x^2) -// where PolA(x^2) = A3 + A5*x^2 + A7*x^4 +...+ A35*x^32 -// -// 3. 0.625 <=|x| < 1.0 -// Return acos(x) = Pi/2 - asin(x) = -// = Pi/2 - sign(x) * ( Pi/2 - sqrt(R) * PolB(R)) -// Where R = 1 - |x|, -// PolB(R) = B0 + B1*R + B2*R^2 +...+B12*R^12 -// -// sqrt(R) is approximated using the following sequence: -// y0 = (1 + eps)/sqrt(R) - initial approximation by frsqrta, -// |eps| < 2^(-8) -// Then 3 iterations are used to refine the result: -// H0 = 0.5*y0 -// S0 = R*y0 -// -// d0 = 0.5 - H0*S0 -// H1 = H0 + d0*H0 -// S1 = S0 + d0*S0 -// -// d1 = 0.5 - H1*S1 -// H2 = H1 + d0*H1 -// S2 = S1 + d0*S1 -// -// d2 = 0.5 - H2*S2 -// S3 = S3 + d2*S3 -// -// S3 approximates sqrt(R) with enough accuracy for this algorithm -// -// So, the result should be reconstracted as follows: -// acos(x) = Pi/2 - sign(x) * (Pi/2 - S3*PolB(R)) -// -// But for optimization purposes the reconstruction step is slightly -// changed: -// acos(x) = Cpi + sign(x)*PolB(R)*S2 - sign(x)*d2*S2*PolB(R) -// where Cpi = 0 if x > 0 and Cpi = Pi if x < 0 -// -// 4. |x| = 1.0 -// Return acos(1.0) = 0.0, acos(-1.0) = Pi -// -// 5. 1.0 < |x| <= +INF -// A doman error occurs for arguments not in the range [-1,+1] -// -// 6. x = [S,Q]NaN -// Return acos(x) = QNaN -// -// 7. x is denormal -// Return acos(x) = Pi/2 - x, -// -// 8. x is unnormal -// Normalize input in f8 and return to the very beginning of the function -// -// Registers used -//============================================================== -// Floating Point registers used: -// f8, input, output -// f6, f7, f9 -> f15, f32 -> f64 -// General registers used: -// r3, r21 -> r31, r32 -> r38 +// The acos function returns the arc cosine in the range [0, +pi] radians. +// acos(1) returns +0, acos(-1) returns pi, acos(0) returns pi/2. +// acos(x) returns a Nan and raises the invalid exception for |x| >1 -// Predicate registers used: -// p0, p6 -> p14 +// The acos function is just like asin except that pi/2 is added at the end. // // Assembly macros //========================================= -// integer registers used -// scratch -rTblAddr = r3 - -rPiBy2Ptr = r21 -rTmpPtr3 = r22 -rDenoBound = r23 -rOne = r24 -rAbsXBits = r25 -rHalf = r26 -r0625 = r27 -rSign = r28 -rXBits = r29 -rTmpPtr2 = r30 -rTmpPtr1 = r31 - -// stacked -GR_SAVE_PFS = r32 -GR_SAVE_B0 = r33 -GR_SAVE_GP = r34 -GR_Parameter_X = r35 -GR_Parameter_Y = r36 -GR_Parameter_RESULT = r37 -GR_Parameter_TAG = r38 - -// floating point registers used -FR_X = f10 -FR_Y = f1 -FR_RESULT = f8 - - -// scratch -fXSqr = f6 -fXCube = f7 -fXQuadr = f9 -f1pX = f10 -f1mX = f11 -f1pXRcp = f12 -f1mXRcp = f13 -fH = f14 -fS = f15 -// stacked -fA3 = f32 -fB1 = f32 -fA5 = f33 -fB2 = f33 -fA7 = f34 -fPiBy2 = f34 -fA9 = f35 -fA11 = f36 -fB10 = f35 -fB11 = f36 -fA13 = f37 -fA15 = f38 -fB4 = f37 -fB5 = f38 -fA17 = f39 -fA19 = f40 -fB6 = f39 -fB7 = f40 -fA21 = f41 -fA23 = f42 -fB3 = f41 -fB8 = f42 -fA25 = f43 -fA27 = f44 -fB9 = f43 -fB12 = f44 -fA29 = f45 -fA31 = f46 -fA33 = f47 -fA35 = f48 -fBaseP = f49 -fB0 = f50 -fSignedS = f51 -fD = f52 -fHalf = f53 -fR = f54 -fCloseTo1Pol = f55 -fSignX = f56 -fDenoBound = f57 -fNormX = f58 -fX8 = f59 -fRSqr = f60 -fRQuadr = f61 -fR8 = f62 -fX16 = f63 -fCpi = f64 + +#include "libm_support.h" + +// predicate registers +//acos_pred_LEsqrt2by2 = p7 +//acos_pred_GTsqrt2by2 = p8 + +// integer registers +ASIN_Addr1 = r33 +ASIN_Addr2 = r34 +ASIN_FFFE = r35 + +GR_SAVE_B0 = r36 +GR_SAVE_PFS = r37 +GR_SAVE_GP = r38 + +GR_Parameter_X = r39 +GR_Parameter_Y = r40 +GR_Parameter_RESULT = r41 +GR_Parameter_Tag = r42 + +// floating point registers +acos_coeff_P1 = f32 +acos_coeff_P2 = f33 +acos_coeff_P3 = f34 +acos_coeff_P4 = f35 + +acos_coeff_P5 = f36 +acos_coeff_P6 = f37 +acos_coeff_P7 = f38 +acos_coeff_P8 = f39 +acos_coeff_P9 = f40 + +acos_coeff_P10 = f41 +acos_coeff_P11 = f42 +acos_coeff_P12 = f43 +acos_coeff_P13 = f44 +acos_coeff_P14 = f45 + +acos_coeff_P15 = f46 +acos_coeff_P16 = f47 +acos_coeff_P17 = f48 +acos_coeff_P18 = f49 +acos_coeff_P19 = f50 + +acos_coeff_P20 = f51 +acos_coeff_P21 = f52 +acos_const_sqrt2by2 = f53 +acos_const_piby2 = f54 +acos_abs_x = f55 + +acos_tx = f56 +acos_tx2 = f57 +acos_tx3 = f58 +acos_tx4 = f59 +acos_tx8 = f60 + +acos_tx11 = f61 +acos_1poly_p8 = f62 +acos_1poly_p19 = f63 +acos_1poly_p4 = f64 +acos_1poly_p15 = f65 + +acos_1poly_p6 = f66 +acos_1poly_p17 = f67 +acos_1poly_p0 = f68 +acos_1poly_p11 = f69 +acos_1poly_p2 = f70 + +acos_1poly_p13 = f71 +acos_series_tx = f72 +acos_t = f73 +acos_t2 = f74 +acos_t3 = f75 + +acos_t4 = f76 +acos_t8 = f77 +acos_t11 = f78 +acos_poly_p8 = f79 +acos_poly_p19 = f80 + +acos_poly_p4 = f81 +acos_poly_p15 = f82 +acos_poly_p6 = f83 +acos_poly_p17 = f84 +acos_poly_p0 = f85 + +acos_poly_p11 = f86 +acos_poly_p2 = f87 +acos_poly_p13 = f88 +acos_series_t = f89 +acos_1by2 = f90 + +acos_3by2 = f91 +acos_5by2 = f92 +acos_11by4 = f93 +acos_35by8 = f94 +acos_63by8 = f95 + +acos_231by16 = f96 +acos_y0 = f97 +acos_H0 = f98 +acos_S0 = f99 +acos_d = f100 + +acos_l1 = f101 +acos_d2 = f102 +acos_T0 = f103 +acos_d1 = f104 +acos_e0 = f105 + +acos_l2 = f106 +acos_d3 = f107 +acos_T3 = f108 +acos_S1 = f109 +acos_e1 = f110 + +acos_z = f111 +answer2 = f112 +acos_sgn_x = f113 +acos_429by16 = f114 +acos_18by4 = f115 + +acos_3by4 = f116 +acos_l3 = f117 +acos_T6 = f118 +acos_const_add = f119 // Data tables //============================================================== -RODATA + +#ifdef _LIBC +.rodata +#else +.data +#endif + .align 16 -LOCAL_OBJECT_START(acos_base_range_table) -// Ai: Polynomial coefficients for the acos(x), |x| < .625000 -// Bi: Polynomial coefficients for the acos(x), |x| > .625000 -data8 0xBFDAAB56C01AE468 //A29 -data8 0x3FE1C470B76A5B2B //A31 -data8 0xBFDC5FF82A0C4205 //A33 -data8 0x3FC71FD88BFE93F0 //A35 -data8 0xB504F333F9DE6487, 0x00003FFF //B0 -data8 0xAAAAAAAAAAAAFC18, 0x00003FFC //A3 -data8 0x3F9F1C71BC4A7823 //A9 -data8 0x3F96E8BBAAB216B2 //A11 -data8 0x3F91C4CA1F9F8A98 //A13 -data8 0x3F8C9DDCEDEBE7A6 //A15 -data8 0x3F877784442B1516 //A17 -data8 0x3F859C0491802BA2 //A19 -data8 0x9999999998C88B8F, 0x00003FFB //A5 -data8 0x3F6BD7A9A660BF5E //A21 -data8 0x3F9FC1659340419D //A23 -data8 0xB6DB6DB798149BDF, 0x00003FFA //A7 -data8 0xBFB3EF18964D3ED3 //A25 -data8 0x3FCD285315542CF2 //A27 -data8 0xF15BEEEFF7D2966A, 0x00003FFB //B1 -data8 0x3EF0DDA376D10FB3 //B10 -data8 0xBEB83CAFE05EBAC9 //B11 -data8 0x3F65FFB67B513644 //B4 -data8 0x3F5032FBB86A4501 //B5 -data8 0x3F392162276C7CBA //B6 -data8 0x3F2435949FD98BDF //B7 -data8 0xD93923D7FA08341C, 0x00003FF9 //B2 -data8 0x3F802995B6D90BDB //B3 -data8 0x3F10DF86B341A63F //B8 -data8 0xC90FDAA22168C235, 0x00003FFF // Pi/2 -data8 0x3EFA3EBD6B0ECB9D //B9 -data8 0x3EDE18BA080E9098 //B12 -LOCAL_OBJECT_END(acos_base_range_table) + +acos_coeff_1_table: +ASM_TYPE_DIRECTIVE(acos_coeff_1_table,@object) +data8 0xE4E7E0A423A21249 , 0x00003FF8 //P7 +data8 0xC2F7EE0200FCE2A5 , 0x0000C003 //P18 +data8 0xB745D7F6C65C20E0 , 0x00003FF9 //P5 +data8 0xF75E381A323D4D94 , 0x0000C002 //P16 +data8 0x8959C2629C1024C0 , 0x0000C002 //P20 +data8 0xAFF68E7D241292C5 , 0x00003FF8 //P9 +data8 0xB6DB6DB7260AC30D , 0x00003FFA //P3 +data8 0xD0417CE2B41CB7BF , 0x0000C000 //P14 +data8 0x81D570FEA724E3E4 , 0x0000BFFD //P12 +data8 0xAAAAAAAAAAAAC277 , 0x00003FFC //P1 +data8 0xF534912FF3E7B76F , 0x00003FFF //P21 +data8 0xc90fdaa22168c235 , 0x00003fff // pi/2 +data8 0x0000000000000000 , 0x00000000 // pad to avoid bank conflicts +ASM_SIZE_DIRECTIVE(acos_coeff_1_table) + + +acos_coeff_2_table: +ASM_TYPE_DIRECTIVE(acos_coeff_2_table,@object) +data8 0x8E26AF5F29B39A2A , 0x00003FF9 //P6 +data8 0xB4F118A4B1015470 , 0x00004003 //P17 +data8 0xF8E38E10C25990E0 , 0x00003FF9 //P4 +data8 0x80F50489AEF1CAC6 , 0x00004002 //P15 +data8 0x92728015172CFE1C , 0x00004003 //P19 +data8 0xBBC3D831D4595971 , 0x00003FF8 //P8 +data8 0x999999999952A5C3 , 0x00003FFB //P2 +data8 0x855576BE6F0975EC , 0x00003FFF //P13 +data8 0xF12420E778077D89 , 0x00003FFA //P11 +data8 0xB6590FF4D23DE003 , 0x00003FF3 //P10 +data8 0xb504f333f9de6484 , 0x00003ffe // sqrt(2)/2 +ASM_SIZE_DIRECTIVE(acos_coeff_2_table) + + +.align 32 +.global acos +ASM_TYPE_DIRECTIVE(acos,@function) .section .text -GLOBAL_LIBM_ENTRY(acos) -acos_unnormal_back: -{ .mfi - getf.d rXBits = f8 // grab bits of input value - // set p12 = 1 if x is a NaN, denormal, or zero - fclass.m p12, p0 = f8, 0xcf - adds rSign = 1, r0 -} -{ .mfi - addl rTblAddr = @ltoff(acos_base_range_table),gp - // 1 - x = 1 - |x| for positive x - fms.s1 f1mX = f1, f1, f8 - addl rHalf = 0xFFFE, r0 // exponent of 1/2 -} -;; -{ .mfi - addl r0625 = 0x3FE4, r0 // high 16 bits of 0.625 - // set p8 = 1 if x < 0 - fcmp.lt.s1 p8, p9 = f8, f0 - shl rSign = rSign, 63 // sign bit -} -{ .mfi - // point to the beginning of the table - ld8 rTblAddr = [rTblAddr] - // 1 + x = 1 - |x| for negative x - fma.s1 f1pX = f1, f1, f8 - adds rOne = 0x3FF, r0 -} -;; -{ .mfi - andcm rAbsXBits = rXBits, rSign // bits of |x| - fmerge.s fSignX = f8, f1 // signum(x) - shl r0625 = r0625, 48 // bits of DP representation of 0.625 -} -{ .mfb - setf.exp fHalf = rHalf // load A2 to FP reg - fma.s1 fXSqr = f8, f8, f0 // x^2 - // branch on special path if x is a NaN, denormal, or zero -(p12) br.cond.spnt acos_special -} -;; -{ .mfi - adds rPiBy2Ptr = 272, rTblAddr - nop.f 0 - shl rOne = rOne, 52 // bits of 1.0 -} -{ .mfi - adds rTmpPtr1 = 16, rTblAddr - nop.f 0 - // set p6 = 1 if |x| < 0.625 - cmp.lt p6, p7 = rAbsXBits, r0625 -} -;; -{ .mfi - ldfpd fA29, fA31 = [rTblAddr] // A29, fA31 - // 1 - x = 1 - |x| for positive x -(p9) fms.s1 fR = f1, f1, f8 - // point to coefficient of "near 1" polynomial -(p7) adds rTmpPtr2 = 176, rTblAddr -} -{ .mfi - ldfpd fA33, fA35 = [rTmpPtr1], 16 // A33, fA35 - // 1 + x = 1 - |x| for negative x -(p8) fma.s1 fR = f1, f1, f8 -(p6) adds rTmpPtr2 = 48, rTblAddr -} -;; -{ .mfi - ldfe fB0 = [rTmpPtr1], 16 // B0 - nop.f 0 - nop.i 0 -} -{ .mib - adds rTmpPtr3 = 16, rTmpPtr2 - // set p10 = 1 if |x| = 1.0 - cmp.eq p10, p0 = rAbsXBits, rOne - // branch on special path for |x| = 1.0 -(p10) br.cond.spnt acos_abs_1 -} -;; -{ .mfi - ldfe fA3 = [rTmpPtr2], 48 // A3 or B1 - nop.f 0 - adds rTmpPtr1 = 64, rTmpPtr3 -} -{ .mib - ldfpd fA9, fA11 = [rTmpPtr3], 16 // A9, A11 or B10, B11 - // set p11 = 1 if |x| > 1.0 - cmp.gt p11, p0 = rAbsXBits, rOne - // branch on special path for |x| > 1.0 -(p11) br.cond.spnt acos_abs_gt_1 -} -;; -{ .mfi - ldfpd fA17, fA19 = [rTmpPtr2], 16 // A17, A19 or B6, B7 - // initial approximation of 1 / sqrt(1 - x) - frsqrta.s1 f1mXRcp, p0 = f1mX - nop.i 0 -} -{ .mfi - ldfpd fA13, fA15 = [rTmpPtr3] // A13, A15 or B4, B5 - fma.s1 fXCube = fXSqr, f8, f0 // x^3 - nop.i 0 -} -;; -{ .mfi - ldfe fA5 = [rTmpPtr2], 48 // A5 or B2 - // initial approximation of 1 / sqrt(1 + x) - frsqrta.s1 f1pXRcp, p0 = f1pX - nop.i 0 -} -{ .mfi - ldfpd fA21, fA23 = [rTmpPtr1], 16 // A21, A23 or B3, B8 - fma.s1 fXQuadr = fXSqr, fXSqr, f0 // x^4 - nop.i 0 -} -;; -{ .mfi - ldfe fA7 = [rTmpPtr1] // A7 or Pi/2 - fma.s1 fRSqr = fR, fR, f0 // R^2 - nop.i 0 -} -{ .mfb - ldfpd fA25, fA27 = [rTmpPtr2] // A25, A27 or B9, B12 - nop.f 0 -(p6) br.cond.spnt acos_base_range; -} -;; +.proc acos +.align 32 -{ .mfi - nop.m 0 -(p9) fma.s1 fH = fHalf, f1mXRcp, f0 // H0 for x > 0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p9) fma.s1 fS = f1mX, f1mXRcp, f0 // S0 for x > 0 - nop.i 0 -} -;; -{ .mfi - nop.m 0 -(p8) fma.s1 fH = fHalf, f1pXRcp, f0 // H0 for x < 0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p8) fma.s1 fS = f1pX, f1pXRcp, f0 // S0 for x > 0 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fRQuadr = fRSqr, fRSqr, f0 // R^4 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fB11 = fB11, fR, fB10 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fB1 = fB1, fR, fB0 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fB5 = fB5, fR, fB4 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fB7 = fB7, fR, fB6 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fB3 = fB3, fR, fB2 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fnma.s1 fD = fH, fS, fHalf // d0 = 1/2 - H0*S0 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fR8 = fRQuadr, fRQuadr, f0 // R^4 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fB9 = fB9, fR, fB8 - nop.i 0 + +acos: + +{ .mfi + alloc r32 = ar.pfs,1,6,4,0 + fma.s1 acos_tx = f8,f8,f0 + addl ASIN_Addr2 = @ltoff(acos_coeff_2_table),gp +} +{ .mfi + mov ASIN_FFFE = 0xFFFE + fnma.s1 acos_t = f8,f8,f1 + addl ASIN_Addr1 = @ltoff(acos_coeff_1_table),gp } ;; -{.mfi - nop.m 0 - fma.s1 fB12 = fB12, fRSqr, fB11 - nop.i 0 -} -{.mfi - nop.m 0 - fma.s1 fB7 = fB7, fRSqr, fB5 - nop.i 0 -} + + +{ .mfi + setf.exp acos_1by2 = ASIN_FFFE + fmerge.s acos_abs_x = f1,f8 + nop.i 999 ;; +} + + +{ .mmf + ld8 ASIN_Addr1 = [ASIN_Addr1] + ld8 ASIN_Addr2 = [ASIN_Addr2] + fmerge.s acos_sgn_x = f8,f1 +} ;; -{.mfi - nop.m 0 - fma.s1 fB3 = fB3, fRSqr, fB1 - nop.i 0 + + +{ .mfi + nop.m 999 + fcmp.lt.s1 p11,p12 = f8, f0 + nop.i 999 ;; +} + + +{ .mfi + ldfe acos_coeff_P7 = [ASIN_Addr1],16 + fma.s1 acos_tx2 = acos_tx,acos_tx,f0 + nop.i 999 +} +{ .mfi + ldfe acos_coeff_P6 = [ASIN_Addr2],16 + fma.s1 acos_t2 = acos_t,acos_t,f0 + nop.i 999;; } + + +{ .mmf + ldfe acos_coeff_P18 = [ASIN_Addr1],16 + ldfe acos_coeff_P17 = [ASIN_Addr2],16 + fclass.m.unc p8,p0 = f8, 0xc3 //@qnan |@snan +} ;; -{ .mfi - nop.m 0 - fma.s1 fH = fH, fD, fH // H1 = H0 + H0*d0 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fS = fS, fD, fS // S1 = S0 + S0*d0 - nop.i 0 -} + + +{ .mmf + ldfe acos_coeff_P5 = [ASIN_Addr1],16 + ldfe acos_coeff_P4 = [ASIN_Addr2],16 + frsqrta.s1 acos_y0,p0 = acos_t +} ;; -{.mfi - nop.m 0 -(p9) fma.s1 fCpi = f1, f0, f0 // Cpi = 0 if x > 0 - nop.i 0 -} -{ .mfi - nop.m 0 -(p8) fma.s1 fCpi = fPiBy2, f1, fPiBy2 // Cpi = Pi if x < 0 - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P16 = [ASIN_Addr1],16 + fcmp.gt.s1 p9,p0 = acos_abs_x,f1 + nop.i 999 +} +{ .mfb + ldfe acos_coeff_P15 = [ASIN_Addr2],16 +(p8) fma.d f8 = f8,f1,f0 +(p8) br.ret.spnt b0 } ;; -{ .mfi - nop.m 0 - fma.s1 fB12 = fB12, fRSqr, fB9 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fB7 = fB7, fRQuadr, fB3 - nop.i 0 -} + + +{ .mmf + ldfe acos_coeff_P20 = [ASIN_Addr1],16 + ldfe acos_coeff_P19 = [ASIN_Addr2],16 + fclass.m.unc p10,p0 = f8, 0x07 //@zero +} ;; -{.mfi - nop.m 0 - fnma.s1 fD = fH, fS, fHalf // d1 = 1/2 - H1*S1 - nop.i 0 -} -{ .mfi - nop.m 0 - fnma.s1 fSignedS = fSignX, fS, f0 // -signum(x)*S1 - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P9 = [ASIN_Addr1],16 + fma.s1 acos_t4 = acos_t2,acos_t2,f0 +(p9) mov GR_Parameter_Tag = 58 +} +{ .mfi + ldfe acos_coeff_P8 = [ASIN_Addr2],16 + fma.s1 acos_3by2 = acos_1by2,f1,f1 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fCloseTo1Pol = fB12, fR8, fB7 - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P2 = [ASIN_Addr2],16 + fma.s1 acos_tx4 = acos_tx2,acos_tx2,f0 + nop.i 999 +} +{ .mfb + ldfe acos_coeff_P3 = [ASIN_Addr1],16 + fma.s1 acos_t3 = acos_t,acos_t2,f0 +(p9) br.cond.spnt __libm_error_region } ;; -{ .mfi - nop.m 0 - fma.s1 fH = fH, fD, fH // H2 = H1 + H1*d1 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fS = fS, fD, fS // S2 = S1 + S1*d1 - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P13 = [ASIN_Addr2],16 + fma.s1 acos_H0 = acos_y0,acos_1by2,f0 + nop.i 999 +} +{ .mfi + ldfe acos_coeff_P14 = [ASIN_Addr1],16 + fma.s1 acos_S0 = acos_y0,acos_t,f0 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - // -signum(x)* S2 = -signum(x)*(S1 + S1*d1) - fma.s1 fSignedS = fSignedS, fD, fSignedS - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P11 = [ASIN_Addr2],16 + fcmp.eq.s1 p6,p0 = acos_abs_x, f1 + nop.i 999 +} +{ .mfi + ldfe acos_coeff_P12 = [ASIN_Addr1],16 + fma.s1 acos_tx3 = acos_tx,acos_tx2,f0 + nop.i 999 } ;; -{.mfi - nop.m 0 - fnma.s1 fD = fH, fS, fHalf // d2 = 1/2 - H2*S2 - nop.i 0 + + +{ .mfi + ldfe acos_coeff_P10 = [ASIN_Addr2],16 + fma.s1 acos_1poly_p6 = acos_tx,acos_coeff_P7,acos_coeff_P6 + nop.i 999 +} +{ .mfi + ldfe acos_coeff_P1 = [ASIN_Addr1],16 + fma.s1 acos_poly_p6 = acos_t,acos_coeff_P7,acos_coeff_P6 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - // Cpi + signum(x)*PolB*S2 - fnma.s1 fCpi = fSignedS, fCloseTo1Pol, fCpi - nop.i 0 + + +{ .mfi + ldfe acos_const_sqrt2by2 = [ASIN_Addr2],16 + fma.s1 acos_5by2 = acos_3by2,f1,f1 + nop.i 999 +} +{ .mfi + ldfe acos_coeff_P21 = [ASIN_Addr1],16 + fma.s1 acos_11by4 = acos_3by2,acos_3by2,acos_1by2 + nop.i 999;; } -{ .mfi - nop.m 0 - // signum(x)*PolB * S2 - fnma.s1 fCloseTo1Pol = fSignedS, fCloseTo1Pol, f0 - nop.i 0 + + +{ .mfi + ldfe acos_const_piby2 = [ASIN_Addr1],16 + fma.s1 acos_poly_p17 = acos_t,acos_coeff_P18,acos_coeff_P17 + nop.i 999 +} +{ .mfb + nop.m 999 + fma.s1 acos_3by4 = acos_3by2,acos_1by2,f0 +(p10) br.cond.spnt L(ACOS_ZERO) // Branch to short path if x=0 } ;; -{ .mfb - nop.m 0 - // final result for 0.625 <= |x| < 1 - fma.d.s0 f8 = fCloseTo1Pol, fD, fCpi - // exit here for 0.625 <= |x| < 1 - br.ret.sptk b0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p15 = acos_t,acos_coeff_P16,acos_coeff_P15 + nop.i 999 +} +{ .mfb + nop.m 999 + fnma.s1 acos_d = acos_S0,acos_H0,acos_1by2 +(p6) br.cond.spnt L(ACOS_ABS_ONE) // Branch to short path if |x|=1 } ;; - -// here if |x| < 0.625 -.align 32 -acos_base_range: -{ .mfi - ldfe fCpi = [rPiBy2Ptr] // Pi/2 - fma.s1 fA33 = fA33, fXSqr, fA31 - nop.i 0 + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p19 = acos_t,acos_coeff_P20,acos_coeff_P19 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p4 = acos_t,acos_coeff_P5,acos_coeff_P4 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA15 = fA15, fXSqr, fA13 - nop.i 0 -} -;; -{ .mfi - nop.m 0 - fma.s1 fA29 = fA29, fXSqr, fA27 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p17 = acos_tx,acos_coeff_P18,acos_coeff_P17 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p8 = acos_t,acos_coeff_P9,acos_coeff_P8 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA25 = fA25, fXSqr, fA23 - nop.i 0 + + +{ .mfi + nop.m 999 + fms.s1 acos_35by8 = acos_5by2,acos_11by4,acos_5by2 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_63by8 = acos_5by2,acos_11by4,f1 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA21 = fA21, fXSqr, fA19 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p13 = acos_t,acos_coeff_P14,acos_coeff_P13 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_18by4 = acos_3by2,acos_5by2,acos_3by4 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA9 = fA9, fXSqr, fA7 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_l1 = acos_5by2,acos_d,acos_3by2 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_d2 = acos_d,acos_d,f0 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA5 = fA5, fXSqr, fA3 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p15 = acos_t2,acos_poly_p17,acos_poly_p15 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_T0 = acos_d,acos_S0,f0 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA35 = fA35, fXQuadr, fA33 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p19 = acos_t2,acos_coeff_P21,acos_poly_p19 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p4 = acos_t2,acos_poly_p6,acos_poly_p4 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA17 = fA17, fXQuadr, fA15 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_d1 = acos_35by8,acos_d,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_231by16 = acos_3by2,acos_35by8,acos_63by8 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fX8 = fXQuadr, fXQuadr, f0 // x^8 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p2 = acos_t,acos_coeff_P3,acos_coeff_P2 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p8 = acos_t2,acos_coeff_P10,acos_poly_p8 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA25 = fA25, fXQuadr, fA21 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p11 = acos_t,acos_coeff_P12,acos_coeff_P11 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_e0 = acos_d2,acos_l1,acos_d + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA9 = fA9, fXQuadr, fA5 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p15 = acos_tx,acos_coeff_P16,acos_coeff_P15 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p0 = acos_t,acos_coeff_P1,f1 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fms.s1 fCpi = fCpi, f1, f8 // Pi/2 - x - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p19 = acos_tx,acos_coeff_P20,acos_coeff_P19 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p4 = acos_tx,acos_coeff_P5,acos_coeff_P4 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA35 = fA35, fXQuadr, fA29 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p8 = acos_tx,acos_coeff_P9,acos_coeff_P8 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_l2 = acos_231by16,acos_d,acos_63by8 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA17 = fA17, fXSqr, fA11 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_d3 = acos_d2,acos_d,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_T3 = acos_d2,acos_T0,f0 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fX16 = fX8, fX8, f0 // x^16 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_429by16 = acos_18by4,acos_11by4,acos_231by16 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_S1 = acos_e0,acos_S0,acos_S0 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fA35 = fA35, fX8, fA25 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p4 = acos_t4,acos_poly_p8,acos_poly_p4 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p15 = acos_t4,acos_poly_p19,acos_poly_p15 + nop.i 999;; } -{ .mfi - nop.m 0 - fma.s1 fA17 = fA17, fX8, fA9 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p0 = acos_t2,acos_poly_p2,acos_poly_p0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p11 = acos_t2,acos_poly_p13,acos_poly_p11 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - fma.s1 fBaseP = fA35, fX16, fA17 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_t8 = acos_t4,acos_t4,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_e1 = acos_d2,acos_l2,acos_d1 + nop.i 999;; } -;; -{ .mfb - nop.m 0 - // final result for |x| < 0.625 - fnma.d.s0 f8 = fBaseP, fXCube, fCpi - // exit here for |x| < 0.625 path - br.ret.sptk b0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p4 = acos_tx2,acos_1poly_p6,acos_1poly_p4 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p15 = acos_tx2,acos_1poly_p17,acos_1poly_p15 + nop.i 999;; } -;; -// here if |x| = 1 -// acos(1) = 0 -// acos(-1) = Pi -.align 32 -acos_abs_1: -{ .mfi - ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2 - nop.f 0 - nop.i 0 + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p8 = acos_tx2,acos_coeff_P10,acos_1poly_p8 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p19 = acos_tx2,acos_coeff_P21,acos_1poly_p19 + nop.i 999;; } -;; -.pred.rel "mutex", p8, p9 -{ .mfi - nop.m 0 - // result for x = 1.0 -(p9) fma.d.s0 f8 = f1, f0, f0 // 0.0 - nop.i 0 -} -{.mfb - nop.m 0 - // result for x = -1.0 -(p8) fma.d.s0 f8 = fPiBy2, f1, fPiBy2 // Pi - // exit here for |x| = 1.0 - br.ret.sptk b0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p2 = acos_tx,acos_coeff_P3,acos_coeff_P2 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p13 = acos_tx,acos_coeff_P14,acos_coeff_P13 + nop.i 999;; } -;; -// here if x is a NaN, denormal, or zero -.align 32 -acos_special: -{ .mfi - // point to Pi/2 - adds rPiBy2Ptr = 272, rTblAddr - // set p12 = 1 if x is a NaN - fclass.m p12, p0 = f8, 0xc3 - nop.i 0 + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p0 = acos_tx,acos_coeff_P1,f1 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p11 = acos_tx,acos_coeff_P12,acos_coeff_P11 + nop.i 999;; } -{ .mlx - nop.m 0 - // smallest positive DP normalized number - movl rDenoBound = 0x0010000000000000 + + +{ .mfi + nop.m 999 + fma.s1 acos_l3 = acos_429by16,acos_d,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_z = acos_e1,acos_T3,acos_S1 + nop.i 999;; } -;; -{ .mfi - ldfe fPiBy2 = [rPiBy2Ptr] // Pi/2 - // set p13 = 1 if x = 0.0 - fclass.m p13, p0 = f8, 0x07 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_poly_p11 = acos_t4,acos_poly_p15,acos_poly_p11 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_T6 = acos_T3,acos_d3,f0 + nop.i 999;; } -{ .mfi - nop.m 0 - fnorm.s1 fNormX = f8 - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_t11 = acos_t8,acos_t3,f0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_poly_p0 = acos_t4,acos_poly_p4,acos_poly_p0 + nop.i 999;; } -;; -{ .mfb - // load smallest normal to FP reg - setf.d fDenoBound = rDenoBound - // answer if x is a NaN -(p12) fma.d.s0 f8 = f8,f1,f0 - // exit here if x is a NaN -(p12) br.ret.spnt b0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p4 = acos_tx4,acos_1poly_p8,acos_1poly_p4 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p15 = acos_tx4,acos_1poly_p19,acos_1poly_p15 + nop.i 999;; } -;; -{ .mfi - nop.m 0 - // absolute value of normalized x - fmerge.s fNormX = f1, fNormX - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p0 = acos_tx2,acos_1poly_p2,acos_1poly_p0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p11 = acos_tx2,acos_1poly_p13,acos_1poly_p11 + nop.i 999;; } -;; -{ .mfb - nop.m 0 - // final result for x = 0 -(p13) fma.d.s0 f8 = fPiBy2, f1, f8 - // exit here if x = 0.0 -(p13) br.ret.spnt b0 + + +{ .mfi + nop.m 999 +// fcmp.le.s1 acos_pred_LEsqrt2by2,acos_pred_GTsqrt2by2 = acos_abs_x,acos_const_sqrt2by2 + fcmp.le.s1 p7,p8 = acos_abs_x,acos_const_sqrt2by2 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_tx8 = acos_tx4,acos_tx4,f0 + nop.i 999;; } -;; -// if we still here then x is denormal or unnormal -{ .mfi - nop.m 0 - // set p14 = 1 if normalized x is greater than or - // equal to the smallest denormalized value - // So, if p14 is set to 1 it means that we deal with - // unnormal rather than with "true" denormal - fcmp.ge.s1 p14, p0 = fNormX, fDenoBound - nop.i 0 + + +{ .mfi + nop.m 999 + fma.s1 acos_z = acos_l3,acos_T6,acos_z + nop.i 999;; +} + +{ .mfi + nop.m 999 + fma.s1 acos_series_t = acos_t11,acos_poly_p11,acos_poly_p0 + nop.i 999 +} +{ .mfi + nop.m 999 +(p11) fma.s1 acos_const_add = acos_const_piby2, f1, acos_const_piby2 + nop.i 999 } ;; + { .mfi - nop.m 0 -(p14) fcmp.eq.s0 p6, p0 = f8, f0 // Set D flag if x unnormal - nop.i 0 -} -{ .mfb - nop.m 0 - // normalize unnormal input -(p14) fnorm.s1 f8 = f8 - // return to the main path -(p14) br.cond.sptk acos_unnormal_back + nop.m 999 +(p12) fma.s1 acos_const_add = f1,f0,f0 + nop.i 999 } ;; -// if we still here it means that input is "true" denormal -{ .mfb - nop.m 0 - // final result if x is denormal - fms.d.s0 f8 = fPiBy2, f1, f8 // Pi/2 - x - // exit here if x is denormal - br.ret.sptk b0 + +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p0 = acos_tx4,acos_1poly_p4,acos_1poly_p0 + nop.i 999 +} +{ .mfi + nop.m 999 + fma.s1 acos_1poly_p11 = acos_tx4,acos_1poly_p15,acos_1poly_p11 + nop.i 999;; } -;; -// here if |x| > 1.0 -// error handler should be called -.align 32 -acos_abs_gt_1: -{ .mfi - alloc r32 = ar.pfs, 0, 3, 4, 0 // get some registers - fmerge.s FR_X = f8,f8 - nop.i 0 -} -{ .mfb - mov GR_Parameter_TAG = 58 // error code - frcpa.s0 FR_RESULT, p0 = f0,f0 - // call error handler routine - br.cond.sptk __libm_error_region -} -;; -GLOBAL_LIBM_END(acos) + +{ .mfi + nop.m 999 + fma.s1 acos_tx11 = acos_tx8,acos_tx3,f0 + nop.i 999;; +} + +{ .mfi + nop.m 999 +//(acos_pred_GTsqrt2by2) fnma.s1 answer2 = acos_z,acos_series_t,acos_const_piby2 +(p8) fnma.s1 answer2 = acos_z,acos_series_t,f0 + nop.i 999;; +} + +{ .mfi + nop.m 999 + fma.s1 acos_series_tx = acos_tx11,acos_1poly_p11,acos_1poly_p0 + nop.i 999;; +} + +{ .mfi + nop.m 999 +//(acos_pred_GTsqrt2by2) fnma.d f8 = acos_sgn_x,answer2,acos_const_piby2 +(p8) fnma.d f8 = acos_sgn_x,answer2,acos_const_add + nop.i 999;; +} + +{ .mfb + nop.m 999 +//(acos_pred_LEsqrt2by2) fnma.d f8 = f8,acos_series_tx,acos_const_piby2 +(p7) fnma.d f8 = f8,acos_series_tx,acos_const_piby2 + br.ret.sptk b0 ;; +} + + +L(ACOS_ZERO): +// Here if x=0 +{ .mfb + nop.m 999 + fma.d f8 = acos_const_piby2,f1,f0 + br.ret.sptk b0 ;; +} + + +L(ACOS_ABS_ONE): +.pred.rel "mutex",p11,p12 +// Here if |x|=1 +{ .mfi + nop.m 999 +(p11) fma.d f8 = acos_const_piby2,f1,acos_const_piby2 // acos(-1)=pi + nop.i 999 +} +{ .mfb + nop.m 999 +(p12) fma.d f8 = f1,f0,f0 // acos(1)=0 + br.ret.sptk b0 ;; +} +.endp acos +ASM_SIZE_DIRECTIVE(acos) -LOCAL_LIBM_ENTRY(__libm_error_region) +.proc __libm_error_region +__libm_error_region: .prologue { .mfi add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 + nop.f 999 .save ar.pfs,GR_SAVE_PFS mov GR_SAVE_PFS=ar.pfs // Save ar.pfs } @@ -840,29 +879,28 @@ LOCAL_LIBM_ENTRY(__libm_error_region) mov GR_SAVE_GP=gp // Save gp };; { .mmi - stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack + stfs [GR_Parameter_Y] = f1,16 // Store Parameter 2 on stack add GR_Parameter_X = 16,sp // Parameter 1 address .save b0, GR_SAVE_B0 mov GR_SAVE_B0=b0 // Save b0 };; + .body + frcpa.s0 f9,p0 = f0,f0 +;; + { .mib - stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack - add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address - nop.b 0 + stfd [GR_Parameter_X] = f8 // Store Parameter 1 on stack + add GR_Parameter_RESULT = 0,GR_Parameter_Y + nop.b 0 // Parameter 3 address } { .mib - stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function + stfd [GR_Parameter_Y] = f9,-16 // Store Parameter 3 on stack + adds r32 = 48,sp + br.call.sptk b0=__libm_error_support# // Call error handling function };; { .mmi - add GR_Parameter_RESULT = 48,sp - nop.m 0 - nop.i 0 -};; -{ .mmi - ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack + ldfd f8 = [r32] // Get return result off stack .restore sp add sp = 64,sp // Restore stack pointer mov b0 = GR_SAVE_B0 // Restore return address @@ -871,8 +909,11 @@ LOCAL_LIBM_ENTRY(__libm_error_region) mov gp = GR_SAVE_GP // Restore gp mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs br.ret.sptk b0 // Return + };; -LOCAL_LIBM_END(__libm_error_region) -.type __libm_error_support#,@function -.global __libm_error_support# +.endp __libm_error_region +ASM_SIZE_DIRECTIVE(__libm_error_region) + +.type __libm_error_support,@function +.global __libm_error_support |