diff options
Diffstat (limited to 'sysdeps/alpha/alphaev6/stxcpy.S')
-rw-r--r-- | sysdeps/alpha/alphaev6/stxcpy.S | 314 |
1 files changed, 314 insertions, 0 deletions
diff --git a/sysdeps/alpha/alphaev6/stxcpy.S b/sysdeps/alpha/alphaev6/stxcpy.S new file mode 100644 index 0000000000..6a8b92c70f --- /dev/null +++ b/sysdeps/alpha/alphaev6/stxcpy.S @@ -0,0 +1,314 @@ +/* Copyright (C) 2000-2014 Free Software Foundation, Inc. + Contributed by Richard Henderson (rth@tamu.edu) + EV6 optimized by Rick Gorton <rick.gorton@alpha-processor.com>. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library. If not, see + <http://www.gnu.org/licenses/>. */ + +/* Copy a null-terminated string from SRC to DST. + + This is an internal routine used by strcpy, stpcpy, and strcat. + As such, it uses special linkage conventions to make implementation + of these public functions more efficient. + + On input: + t9 = return address + a0 = DST + a1 = SRC + + On output: + t8 = bitmask (with one bit set) indicating the last byte written + a0 = unaligned address of the last *word* written + + Furthermore, v0, a3-a5, t11, and t12 are untouched. +*/ + + +#include <sysdep.h> + + .arch ev6 + .set noat + .set noreorder + + .text + .type __stxcpy, @function + .globl __stxcpy + .usepv __stxcpy, no + + cfi_startproc + cfi_return_column (t9) + + /* On entry to this basic block: + t0 == the first destination word for masking back in + t1 == the first source word. */ + .align 4 +stxcpy_aligned: + /* Create the 1st output word and detect 0's in the 1st input word. */ + lda t2, -1 # E : build a mask against false zero + mskqh t2, a1, t2 # U : detection in the src word (stall) + mskqh t1, a1, t3 # U : + ornot t1, t2, t2 # E : (stall) + + mskql t0, a1, t0 # U : assemble the first output word + cmpbge zero, t2, t10 # E : bits set iff null found + or t0, t3, t1 # E : (stall) + bne t10, $a_eos # U : (stall) + + /* On entry to this basic block: + t0 == the first destination word for masking back in + t1 == a source word not containing a null. */ + /* Nops here to separate store quads from load quads */ + +$a_loop: + stq_u t1, 0(a0) # L : + addq a0, 8, a0 # E : + nop + nop + + ldq_u t1, 0(a1) # L : Latency=3 + addq a1, 8, a1 # E : + cmpbge zero, t1, t10 # E : (3 cycle stall) + beq t10, $a_loop # U : (stall for t10) + + /* Take care of the final (partial) word store. + On entry to this basic block we have: + t1 == the source word containing the null + t10 == the cmpbge mask that found it. */ +$a_eos: + negq t10, t6 # E : find low bit set + and t10, t6, t8 # E : (stall) + /* For the sake of the cache, don't read a destination word + if we're not going to need it. */ + and t8, 0x80, t6 # E : (stall) + bne t6, 1f # U : (stall) + + /* We're doing a partial word store and so need to combine + our source and original destination words. */ + ldq_u t0, 0(a0) # L : Latency=3 + subq t8, 1, t6 # E : + zapnot t1, t6, t1 # U : clear src bytes >= null (stall) + or t8, t6, t10 # E : (stall) + + zap t0, t10, t0 # E : clear dst bytes <= null + or t0, t1, t1 # E : (stall) + nop + nop + +1: stq_u t1, 0(a0) # L : + ret (t9) # L0 : Latency=3 + nop + nop + + .align 4 +__stxcpy: + /* Are source and destination co-aligned? */ + xor a0, a1, t0 # E : + unop # E : + and t0, 7, t0 # E : (stall) + bne t0, $unaligned # U : (stall) + + /* We are co-aligned; take care of a partial first word. */ + ldq_u t1, 0(a1) # L : load first src word + and a0, 7, t0 # E : take care not to load a word ... + addq a1, 8, a1 # E : + beq t0, stxcpy_aligned # U : ... if we wont need it (stall) + + ldq_u t0, 0(a0) # L : + br stxcpy_aligned # L0 : Latency=3 + nop + nop + + +/* The source and destination are not co-aligned. Align the destination + and cope. We have to be very careful about not reading too much and + causing a SEGV. */ + + .align 4 +$u_head: + /* We know just enough now to be able to assemble the first + full source word. We can still find a zero at the end of it + that prevents us from outputting the whole thing. + + On entry to this basic block: + t0 == the first dest word, for masking back in, if needed else 0 + t1 == the low bits of the first source word + t6 == bytemask that is -1 in dest word bytes */ + + ldq_u t2, 8(a1) # L : + addq a1, 8, a1 # E : + extql t1, a1, t1 # U : (stall on a1) + extqh t2, a1, t4 # U : (stall on a1) + + mskql t0, a0, t0 # U : + or t1, t4, t1 # E : + mskqh t1, a0, t1 # U : (stall on t1) + or t0, t1, t1 # E : (stall on t1) + + or t1, t6, t6 # E : + cmpbge zero, t6, t10 # E : (stall) + lda t6, -1 # E : for masking just below + bne t10, $u_final # U : (stall) + + mskql t6, a1, t6 # U : mask out the bits we have + or t6, t2, t2 # E : already extracted before (stall) + cmpbge zero, t2, t10 # E : testing eos (stall) + bne t10, $u_late_head_exit # U : (stall) + + /* Finally, we've got all the stupid leading edge cases taken care + of and we can set up to enter the main loop. */ + + stq_u t1, 0(a0) # L : store first output word + addq a0, 8, a0 # E : + extql t2, a1, t0 # U : position ho-bits of lo word + ldq_u t2, 8(a1) # U : read next high-order source word + + addq a1, 8, a1 # E : + cmpbge zero, t2, t10 # E : (stall for t2) + nop # E : + bne t10, $u_eos # U : (stall) + + /* Unaligned copy main loop. In order to avoid reading too much, + the loop is structured to detect zeros in aligned source words. + This has, unfortunately, effectively pulled half of a loop + iteration out into the head and half into the tail, but it does + prevent nastiness from accumulating in the very thing we want + to run as fast as possible. + + On entry to this basic block: + t0 == the shifted high-order bits from the previous source word + t2 == the unshifted current source word + + We further know that t2 does not contain a null terminator. */ + + .align 3 +$u_loop: + extqh t2, a1, t1 # U : extract high bits for current word + addq a1, 8, a1 # E : (stall) + extql t2, a1, t3 # U : extract low bits for next time (stall) + addq a0, 8, a0 # E : + + or t0, t1, t1 # E : current dst word now complete + ldq_u t2, 0(a1) # L : Latency=3 load high word for next time + stq_u t1, -8(a0) # L : save the current word (stall) + mov t3, t0 # E : + + cmpbge zero, t2, t10 # E : test new word for eos + beq t10, $u_loop # U : (stall) + nop + nop + + /* We've found a zero somewhere in the source word we just read. + If it resides in the lower half, we have one (probably partial) + word to write out, and if it resides in the upper half, we + have one full and one partial word left to write out. + + On entry to this basic block: + t0 == the shifted high-order bits from the previous source word + t2 == the unshifted current source word. */ +$u_eos: + extqh t2, a1, t1 # U : + or t0, t1, t1 # E : first (partial) source word complete (stall) + cmpbge zero, t1, t10 # E : is the null in this first bit? (stall) + bne t10, $u_final # U : (stall) + +$u_late_head_exit: + stq_u t1, 0(a0) # L : the null was in the high-order bits + addq a0, 8, a0 # E : + extql t2, a1, t1 # U : + cmpbge zero, t1, t10 # E : (stall) + + /* Take care of a final (probably partial) result word. + On entry to this basic block: + t1 == assembled source word + t10 == cmpbge mask that found the null. */ +$u_final: + negq t10, t6 # E : isolate low bit set + and t6, t10, t8 # E : (stall) + and t8, 0x80, t6 # E : avoid dest word load if we can (stall) + bne t6, 1f # U : (stall) + + ldq_u t0, 0(a0) # E : + subq t8, 1, t6 # E : + or t6, t8, t10 # E : (stall) + zapnot t1, t6, t1 # U : kill source bytes >= null (stall) + + zap t0, t10, t0 # U : kill dest bytes <= null (2 cycle data stall) + or t0, t1, t1 # E : (stall) + nop + nop + +1: stq_u t1, 0(a0) # L : + ret (t9) # L0 : Latency=3 + nop + nop + + /* Unaligned copy entry point. */ + .align 4 +$unaligned: + + ldq_u t1, 0(a1) # L : load first source word + and a0, 7, t4 # E : find dest misalignment + and a1, 7, t5 # E : find src misalignment + /* Conditionally load the first destination word and a bytemask + with 0xff indicating that the destination byte is sacrosanct. */ + mov zero, t0 # E : + + mov zero, t6 # E : + beq t4, 1f # U : + ldq_u t0, 0(a0) # L : + lda t6, -1 # E : + + mskql t6, a0, t6 # U : + nop + nop + nop +1: + subq a1, t4, a1 # E : sub dest misalignment from src addr + /* If source misalignment is larger than dest misalignment, we need + extra startup checks to avoid SEGV. */ + cmplt t4, t5, t8 # E : + beq t8, $u_head # U : + lda t2, -1 # E : mask out leading garbage in source + + mskqh t2, t5, t2 # U : + ornot t1, t2, t3 # E : (stall) + cmpbge zero, t3, t10 # E : is there a zero? (stall) + beq t10, $u_head # U : (stall) + + /* At this point we've found a zero in the first partial word of + the source. We need to isolate the valid source data and mask + it into the original destination data. (Incidentally, we know + that we'll need at least one byte of that original dest word.) */ + + ldq_u t0, 0(a0) # L : + negq t10, t6 # E : build bitmask of bytes <= zero + and t6, t10, t8 # E : (stall) + and a1, 7, t5 # E : + + subq t8, 1, t6 # E : + or t6, t8, t10 # E : (stall) + srl t8, t5, t8 # U : adjust final null return value + zapnot t2, t10, t2 # U : prepare source word; mirror changes (stall) + + and t1, t2, t1 # E : to source validity mask + extql t2, a1, t2 # U : + extql t1, a1, t1 # U : (stall) + andnot t0, t2, t0 # .. e1 : zero place for source to reside (stall) + + or t0, t1, t1 # e1 : and put it there + stq_u t1, 0(a0) # .. e0 : (stall) + ret (t9) # e1 : + + cfi_endproc |