diff options
Diffstat (limited to 'stdlib/strtod_l.c')
-rw-r--r-- | stdlib/strtod_l.c | 66 |
1 files changed, 52 insertions, 14 deletions
diff --git a/stdlib/strtod_l.c b/stdlib/strtod_l.c index a8a7ea8f23..a0cd4f1afe 100644 --- a/stdlib/strtod_l.c +++ b/stdlib/strtod_l.c @@ -153,17 +153,18 @@ extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1]; #endif #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; }) -#define NDIG (MAX_10_EXP - MIN_10_EXP + 2 * MANT_DIG) -#define HEXNDIG ((MAX_EXP - MIN_EXP + 7) / 8 + 2 * MANT_DIG) #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB) #define RETURN(val,end) \ do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \ return val; } while (0) -/* Maximum size necessary for mpn integers to hold floating point numbers. */ -#define MPNSIZE (howmany (MAX_EXP + 2 * MANT_DIG, BITS_PER_MP_LIMB) \ - + 2) +/* Maximum size necessary for mpn integers to hold floating point + numbers. The largest number we need to hold is 10^n where 2^-n is + 1/4 ulp of the smallest representable value (that is, n = MANT_DIG + - MIN_EXP + 2). Approximate using 10^3 < 2^10. */ +#define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \ + BITS_PER_MP_LIMB) + 2) /* Declare an mpn integer variable that big. */ #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size /* Copy an mpn integer value. */ @@ -1281,23 +1282,60 @@ ____STRTOF_INTERNAL (nptr, endptr, group, loc) int expbit; int neg_exp; int more_bits; + int need_frac_digits; mp_limb_t cy; mp_limb_t *psrc = den; mp_limb_t *pdest = num; const struct mp_power *ttab = &_fpioconst_pow10[0]; - assert (dig_no > int_no && exponent <= 0); + assert (dig_no > int_no + && exponent <= 0 + && exponent >= MIN_10_EXP - (DIG + 1)); + /* We need to compute MANT_DIG - BITS fractional bits that lie + within the mantissa of the result, the following bit for + rounding, and to know whether any subsequent bit is 0. + Computing a bit with value 2^-n means looking at n digits after + the decimal point. */ + if (bits > 0) + { + /* The bits required are those immediately after the point. */ + assert (int_no > 0 && exponent == 0); + need_frac_digits = 1 + MANT_DIG - bits; + } + else + { + /* The number is in the form .123eEXPONENT. */ + assert (int_no == 0 && *startp != L_('0')); + /* The number is at least 10^(EXPONENT-1), and 10^3 < + 2^10. */ + int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1; + /* The number is at least 2^-NEG_EXP_2. We need up to + MANT_DIG bits following that bit. */ + need_frac_digits = neg_exp_2 + MANT_DIG; + /* However, we never need bits beyond 1/4 ulp of the smallest + representable value. (That 1/4 ulp bit is only needed to + determine tinyness on machines where tinyness is determined + after rounding.) */ + if (need_frac_digits > MANT_DIG - MIN_EXP + 2) + need_frac_digits = MANT_DIG - MIN_EXP + 2; + /* At this point, NEED_FRAC_DIGITS is the total number of + digits needed after the point, but some of those may be + leading 0s. */ + need_frac_digits += exponent; + /* Any cases underflowing enough that none of the fractional + digits are needed should have been caught earlier (such + cases are on the order of 10^-n or smaller where 2^-n is + the least subnormal). */ + assert (need_frac_digits > 0); + } + + if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no) + need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no; - /* For the fractional part we need not process too many digits. One - decimal digits gives us log_2(10) ~ 3.32 bits. If we now compute - ceil(BITS / 3) =: N - digits we should have enough bits for the result. The remaining - decimal digits give us the information that more bits are following. - This can be used while rounding. (Two added as a safety margin.) */ - if ((intmax_t) dig_no > (intmax_t) int_no + (MANT_DIG - bits + 2) / 3 + 2) + if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits) { - dig_no = int_no + (MANT_DIG - bits + 2) / 3 + 2; + dig_no = int_no + need_frac_digits; more_bits = 1; } else |