diff options
Diffstat (limited to 'powerpc-cpu/sysdeps/powerpc/powerpc32/power4')
12 files changed, 0 insertions, 2792 deletions
diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Implies b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Implies deleted file mode 100644 index b2ac1558f5..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Implies +++ /dev/null @@ -1 +0,0 @@ -powerpc/powerpc32/powerpc64
\ No newline at end of file diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Makefile b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Makefile deleted file mode 100644 index 60aa508ba4..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/Makefile +++ /dev/null @@ -1,6 +0,0 @@ -# Makefile fragment for POWER4/5/5+. - -ifeq ($(subdir),string) -CFLAGS-wordcopy.c += --param max-variable-expansions-in-unroller=2 --param max-unroll-times=2 -funroll-loops -fpeel-loops -ftree-loop-linear -CFLAGS-memmove.c += --param max-variable-expansions-in-unroller=2 --param max-unroll-times=2 -funroll-loops -fpeel-loops -ftree-loop-linear -endif diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies deleted file mode 100644 index 128f8aadcb..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies +++ /dev/null @@ -1 +0,0 @@ -powerpc/powerpc32/powerpc64/fpu diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile deleted file mode 100644 index a6fa75ecbc..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile +++ /dev/null @@ -1,5 +0,0 @@ -# Makefile fragment for POWER4/5/5+ with FPU. - -ifeq ($(subdir),math) -CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops -ftree-loop-linear -endif diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c deleted file mode 100644 index 4a232e27bf..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c +++ /dev/null @@ -1,549 +0,0 @@ - -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001, 2006 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/************************************************************************/ -/* MODULE_NAME: mpa.c */ -/* */ -/* FUNCTIONS: */ -/* mcr */ -/* acr */ -/* cr */ -/* cpy */ -/* cpymn */ -/* norm */ -/* denorm */ -/* mp_dbl */ -/* dbl_mp */ -/* add_magnitudes */ -/* sub_magnitudes */ -/* add */ -/* sub */ -/* mul */ -/* inv */ -/* dvd */ -/* */ -/* Arithmetic functions for multiple precision numbers. */ -/* Relative errors are bounded */ -/************************************************************************/ - - -#include "endian.h" -#include "mpa.h" -#include "mpa2.h" -#include <sys/param.h> /* For MIN() */ -/* mcr() compares the sizes of the mantissas of two multiple precision */ -/* numbers. Mantissas are compared regardless of the signs of the */ -/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ -/* disregarded. */ -static int mcr(const mp_no *x, const mp_no *y, int p) { - long i; - long p2 = p; - for (i=1; i<=p2; i++) { - if (X[i] == Y[i]) continue; - else if (X[i] > Y[i]) return 1; - else return -1; } - return 0; -} - - - -/* acr() compares the absolute values of two multiple precision numbers */ -int __acr(const mp_no *x, const mp_no *y, int p) { - long i; - - if (X[0] == ZERO) { - if (Y[0] == ZERO) i= 0; - else i=-1; - } - else if (Y[0] == ZERO) i= 1; - else { - if (EX > EY) i= 1; - else if (EX < EY) i=-1; - else i= mcr(x,y,p); - } - - return i; -} - - -/* cr90 compares the values of two multiple precision numbers */ -int __cr(const mp_no *x, const mp_no *y, int p) { - int i; - - if (X[0] > Y[0]) i= 1; - else if (X[0] < Y[0]) i=-1; - else if (X[0] < ZERO ) i= __acr(y,x,p); - else i= __acr(x,y,p); - - return i; -} - - -/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ -void __cpy(const mp_no *x, mp_no *y, int p) { - long i; - - EY = EX; - for (i=0; i <= p; i++) Y[i] = X[i]; - - return; -} - - -/* Copy a multiple precision number x of precision m into a */ -/* multiple precision number y of precision n. In case n>m, */ -/* the digits of y beyond the m'th are set to zero. In case */ -/* n<m, the digits of x beyond the n'th are ignored. */ -/* x=y is permissible. */ - -void __cpymn(const mp_no *x, int m, mp_no *y, int n) { - - long i,k; - long n2 = n; - long m2 = m; - - EY = EX; k=MIN(m2,n2); - for (i=0; i <= k; i++) Y[i] = X[i]; - for ( ; i <= n2; i++) Y[i] = ZERO; - - return; -} - -/* Convert a multiple precision number *x into a double precision */ -/* number *y, normalized case (|x| >= 2**(-1022))) */ -static void norm(const mp_no *x, double *y, int p) -{ - #define R radixi.d - long i; -#if 0 - int k; -#endif - double a,c,u,v,z[5]; - if (p<5) { - if (p==1) c = X[1]; - else if (p==2) c = X[1] + R* X[2]; - else if (p==3) c = X[1] + R*(X[2] + R* X[3]); - else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); - } - else { - for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) - {a *= TWO; z[1] *= TWO; } - - for (i=2; i<5; i++) { - z[i] = X[i]*a; - u = (z[i] + CUTTER)-CUTTER; - if (u > z[i]) u -= RADIX; - z[i] -= u; - z[i-1] += u*RADIXI; - } - - u = (z[3] + TWO71) - TWO71; - if (u > z[3]) u -= TWO19; - v = z[3]-u; - - if (v == TWO18) { - if (z[4] == ZERO) { - for (i=5; i <= p; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } - } - } - else z[3] += ONE; - } - - c = (z[1] + R *(z[2] + R * z[3]))/a; - } - - c *= X[0]; - - for (i=1; i<EX; i++) c *= RADIX; - for (i=1; i>EX; i--) c *= RADIXI; - - *y = c; - return; -#undef R -} - -/* Convert a multiple precision number *x into a double precision */ -/* number *y, denormalized case (|x| < 2**(-1022))) */ -static void denorm(const mp_no *x, double *y, int p) -{ - long i,k; - long p2 = p; - double c,u,z[5]; -#if 0 - double a,v; -#endif - -#define R radixi.d - if (EX<-44 || (EX==-44 && X[1]<TWO5)) - { *y=ZERO; return; } - - if (p2==1) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else if (p2==2) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; k=1;} - z[3] = X[k]; - } - - u = (z[3] + TWO57) - TWO57; - if (u > z[3]) u -= TWO5; - - if (u==z[3]) { - for (i=k+1; i <= p2; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } - } - } - - c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); - - *y = c*TWOM1032; - return; - -#undef R -} - -/* Convert a multiple precision number *x into a double precision number *y. */ -/* The result is correctly rounded to the nearest/even. *x is left unchanged */ - -void __mp_dbl(const mp_no *x, double *y, int p) { -#if 0 - int i,k; - double a,c,u,v,z[5]; -#endif - - if (X[0] == ZERO) {*y = ZERO; return; } - - if (EX> -42) norm(x,y,p); - else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); - else denorm(x,y,p); -} - - -/* dbl_mp() converts a double precision number x into a multiple precision */ -/* number *y. If the precision p is too small the result is truncated. x is */ -/* left unchanged. */ - -void __dbl_mp(double x, mp_no *y, int p) { - - long i,n; - long p2 = p; - double u; - - /* Sign */ - if (x == ZERO) {Y[0] = ZERO; return; } - else if (x > ZERO) Y[0] = ONE; - else {Y[0] = MONE; x=-x; } - - /* Exponent */ - for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; - for ( ; x < ONE; EY -= ONE) x *= RADIX; - - /* Digits */ - n=MIN(p2,4); - for (i=1; i<=n; i++) { - u = (x + TWO52) - TWO52; - if (u>x) u -= ONE; - Y[i] = u; x -= u; x *= RADIX; } - for ( ; i<=p2; i++) Y[i] = ZERO; - return; -} - - -/* add_magnitudes() adds the magnitudes of *x & *y assuming that */ -/* abs(*x) >= abs(*y) > 0. */ -/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ -/* No guard digit is used. The result equals the exact sum, truncated. */ -/* *x & *y are left unchanged. */ - -static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; - long p2 = p; - - EZ = EX; - - i=p2; j=p2+ EY - EX; k=p2+1; - - if (j<1) - {__cpy(x,z,p); return; } - else Z[k] = ZERO; - - for (; j>0; i--,j--) { - Z[k] += X[i] + Y[j]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } - else EZ += ONE; -} - - -/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ -/* abs(*x) > abs(*y) > 0. */ -/* The sign of the difference *z is undefined. x&y may overlap but not x&z */ -/* or y&z. One guard digit is used. The error is less than one ulp. */ -/* *x & *y are left unchanged. */ - -static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; - long p2 = p; - - EZ = EX; - - if (EX == EY) { - i=j=k=p2; - Z[k] = Z[k+1] = ZERO; } - else { - j= EX - EY; - if (j > p2) {__cpy(x,z,p); return; } - else { - i=p2; j=p2+1-j; k=p2; - if (Y[j] > ZERO) { - Z[k+1] = RADIX - Y[j--]; - Z[k] = MONE; } - else { - Z[k+1] = ZERO; - Z[k] = ZERO; j--;} - } - } - - for (; j>0; i--,j--) { - Z[k] += (X[i] - Y[j]); - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (i=1; Z[i] == ZERO; i++) ; - EZ = EZ - i + 1; - for (k=1; i <= p2+1; ) - Z[k++] = Z[i++]; - for (; k <= p2; ) - Z[k++] = ZERO; - - return; -} - - -/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ -/* but not x&z or y&z. One guard digit is used. The error is less than */ -/* one ulp. *x & *y are left unchanged. */ - -void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - int n; - - if (X[0] == ZERO) {__cpy(y,z,p); return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] == Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } - else Z[0] = ZERO; - } - return; -} - - -/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ -/* overlap but not x&z or y&z. One guard digit is used. The error is */ -/* less than one ulp. *x & *y are left unchanged. */ - -void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - int n; - - if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] != Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - else Z[0] = ZERO; - } - return; -} - - -/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ -/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ -/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ -/* *x & *y are left unchanged. */ - -void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i, i1, i2, j, k, k2; - long p2 = p; - double u, zk, zk2; - - /* Is z=0? */ - if (X[0]*Y[0]==ZERO) - { Z[0]=ZERO; return; } - - /* Multiply, add and carry */ - k2 = (p2<3) ? p2+p2 : p2+3; - zk = Z[k2]=ZERO; - for (k=k2; k>1; ) { - if (k > p2) {i1=k-p2; i2=p2+1; } - else {i1=1; i2=k; } -#if 1 - /* rearange this inner loop to allow the fmadd instructions to be - independent and execute in parallel on processors that have - dual symetrical FP pipelines. */ - if (i1 < (i2-1)) - { - /* make sure we have at least 2 iterations */ - if (((i2 - i1) & 1L) == 1L) - { - /* Handle the odd iterations case. */ - zk2 = x->d[i2-1]*y->d[i1]; - } - else - zk2 = zero.d; - /* Do two multiply/adds per loop iteration, using independent - accumulators; zk and zk2. */ - for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) - { - zk += x->d[i]*y->d[j]; - zk2 += x->d[i+1]*y->d[j-1]; - } - zk += zk2; /* final sum. */ - } - else - { - /* Special case when iterations is 1. */ - zk += x->d[i1]*y->d[i1]; - } -#else - /* The orginal code. */ - for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; -#endif - - u = (zk + CUTTER)-CUTTER; - if (u > zk) u -= RADIX; - Z[k] = zk - u; - zk = u*RADIXI; - --k; - } - Z[k] = zk; - - /* Is there a carry beyond the most significant digit? */ - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i]=Z[i+1]; - EZ = EX + EY - 1; } - else - EZ = EX + EY; - - Z[0] = X[0] * Y[0]; - return; -} - - -/* Invert a multiple precision number. Set *y = 1 / *x. */ -/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ -/* 2.001*r**(1-p) for p>3. */ -/* *x=0 is not permissible. *x is left unchanged. */ - -void __inv(const mp_no *x, mp_no *y, int p) { - long i; -#if 0 - int l; -#endif - double t; - mp_no z,w; - static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, - 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; - const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; - - __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); - t=ONE/t; __dbl_mp(t,y,p); EY -= EX; - - for (i=0; i<np1[p]; i++) { - __cpy(y,&w,p); - __mul(x,&w,y,p); - __sub(&mptwo,y,&z,p); - __mul(&w,&z,y,p); - } - return; -} - - -/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */ -/* are left unchanged. x&y may overlap but not x&z or y&z. */ -/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */ -/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */ - -void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - mp_no w; - - if (X[0] == ZERO) Z[0] = ZERO; - else {__inv(y,&w,p); __mul(x,&w,z,p);} - return; -} diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c deleted file mode 100644 index ad147a89a6..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c +++ /dev/null @@ -1,94 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001, 2006 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/*************************************************************************/ -/* MODULE_NAME:slowpow.c */ -/* */ -/* FUNCTION:slowpow */ -/* */ -/*FILES NEEDED:mpa.h */ -/* mpa.c mpexp.c mplog.c halfulp.c */ -/* */ -/* Given two IEEE double machine numbers y,x , routine computes the */ -/* correctly rounded (to nearest) value of x^y. Result calculated by */ -/* multiplication (in halfulp.c) or if result isn't accurate enough */ -/* then routine converts x and y into multi-precision doubles and */ -/* recompute. */ -/*************************************************************************/ - -#include "mpa.h" -#include "math_private.h" - -void __mpexp (mp_no * x, mp_no * y, int p); -void __mplog (mp_no * x, mp_no * y, int p); -double ulog (double); -double __halfulp (double x, double y); - -double -__slowpow (double x, double y, double z) -{ - double res, res1; - long double ldw, ldz, ldpp; - static const long double ldeps = 0x4.0p-96; - - res = __halfulp (x, y); /* halfulp() returns -10 or x^y */ - if (res >= 0) - return res; /* if result was really computed by halfulp */ - /* else, if result was not really computed by halfulp */ - - /* Compute pow as long double, 106 bits */ - ldz = __ieee754_logl ((long double) x); - ldw = (long double) y *ldz; - ldpp = __ieee754_expl (ldw); - res = (double) (ldpp + ldeps); - res1 = (double) (ldpp - ldeps); - - if (res != res1) /* if result still not accurate enough */ - { /* use mpa for higher persision. */ - mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; - static const mp_no eps = { -3, {1.0, 4.0} }; - int p; - - p = 10; /* p=precision 240 bits */ - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(x) = z */ - __mul (&mpy, &mpz, &mpw, p); /* y * z =w */ - __mpexp (&mpw, &mpp, p); /* e^w =pp */ - __add (&mpp, &eps, &mpr, p); /* pp+eps =r */ - __mp_dbl (&mpr, &res, p); - __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */ - __mp_dbl (&mpr1, &res1, p); /* converting into double precision */ - if (res == res1) - return res; - - /* if we get here result wasn't calculated exactly, continue for - more exact calculation using 768 bits. */ - p = 32; - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(c)=z */ - __mul (&mpy, &mpz, &mpw, p); /* y*z =w */ - __mpexp (&mpw, &mpp, p); /* e^w=pp */ - __mp_dbl (&mpp, &res, p); /* converting into double precision */ - } - return res; -} diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcmp.S b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcmp.S deleted file mode 100644 index 4715302739..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcmp.S +++ /dev/null @@ -1,985 +0,0 @@ -/* Optimized strcmp implementation for PowerPC64. - Copyright (C) 2003, 2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA - 02110-1301 USA. */ - -#include <sysdep.h> -#include <bp-sym.h> -#include <bp-asm.h> - -/* int [r3] memcmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */ - -EALIGN (BP_SYM(memcmp), 4, 0) - CALL_MCOUNT - -#define rTMP r0 -#define rRTN r3 -#define rSTR1 r3 /* first string arg */ -#define rSTR2 r4 /* second string arg */ -#define rN r5 /* max string length */ -#define rWORD1 r6 /* current word in s1 */ -#define rWORD2 r7 /* current word in s2 */ -#define rWORD3 r8 /* next word in s1 */ -#define rWORD4 r9 /* next word in s2 */ -#define rWORD5 r10 /* next word in s1 */ -#define rWORD6 r11 /* next word in s2 */ -#define rBITDIF r12 /* bits that differ in s1 & s2 words */ -#define rWORD7 r30 /* next word in s1 */ -#define rWORD8 r31 /* next word in s2 */ - - xor rTMP, rSTR2, rSTR1 - cmplwi cr6, rN, 0 - cmplwi cr1, rN, 12 - clrlwi. rTMP, rTMP, 30 - clrlwi rBITDIF, rSTR1, 30 - cmplwi cr5, rBITDIF, 0 - beq- cr6, L(zeroLength) - dcbt 0,rSTR1 - dcbt 0,rSTR2 -/* If less than 8 bytes or not aligned, use the unaligned - byte loop. */ - blt cr1, L(bytealigned) - stwu 1,-64(1) - cfi_adjust_cfa_offset(64) - stw r31,48(1) - cfi_offset(31,(48-64)) - stw r30,44(1) - cfi_offset(30,(44-64)) - bne L(unaligned) -/* At this point we know both strings have the same alignment and the - compare length is at least 8 bytes. rBITDIF contains the low order - 2 bits of rSTR1 and cr5 contains the result of the logical compare - of rBITDIF to 0. If rBITDIF == 0 then we are already word - aligned and can perform the word aligned loop. - - Otherwise we know the two strings have the same alignment (but not - yet word aligned). So we force the string addresses to the next lower - word boundary and special case this first word using shift left to - eliminate bits preceeding the first byte. Since we want to join the - normal (word aligned) compare loop, starting at the second word, - we need to adjust the length (rN) and special case the loop - versioning for the first word. This insures that the loop count is - correct and the first word (shifted) is in the expected register pair. */ - .align 4 -L(samealignment): - clrrwi rSTR1, rSTR1, 2 - clrrwi rSTR2, rSTR2, 2 - beq cr5, L(Waligned) - add rN, rN, rBITDIF - slwi r11, rBITDIF, 3 - srwi rTMP, rN, 4 /* Divide by 16 */ - andi. rBITDIF, rN, 12 /* Get the word remainder */ - lwz rWORD1, 0(rSTR1) - lwz rWORD2, 0(rSTR2) - cmplwi cr1, rBITDIF, 8 - cmplwi cr7, rN, 16 - clrlwi rN, rN, 30 - beq L(dPs4) - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - bgt cr1, L(dPs3) - beq cr1, L(dPs2) - -/* Remainder is 4 */ - .align 3 -L(dsP1): - slw rWORD5, rWORD1, r11 - slw rWORD6, rWORD2, r11 - cmplw cr5, rWORD5, rWORD6 - blt cr7, L(dP1x) -/* Do something useful in this cycle since we have to branch anyway. */ - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - cmplw cr0, rWORD1, rWORD2 - b L(dP1e) -/* Remainder is 8 */ - .align 4 -L(dPs2): - slw rWORD5, rWORD1, r11 - slw rWORD6, rWORD2, r11 - cmplw cr6, rWORD5, rWORD6 - blt cr7, L(dP2x) -/* Do something useful in this cycle since we have to branch anyway. */ - lwz rWORD7, 4(rSTR1) - lwz rWORD8, 4(rSTR2) - cmplw cr5, rWORD7, rWORD8 - b L(dP2e) -/* Remainder is 12 */ - .align 4 -L(dPs3): - slw rWORD3, rWORD1, r11 - slw rWORD4, rWORD2, r11 - cmplw cr1, rWORD3, rWORD4 - b L(dP3e) -/* Count is a multiple of 16, remainder is 0 */ - .align 4 -L(dPs4): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - slw rWORD1, rWORD1, r11 - slw rWORD2, rWORD2, r11 - cmplw cr0, rWORD1, rWORD2 - b L(dP4e) - -/* At this point we know both strings are word aligned and the - compare length is at least 8 bytes. */ - .align 4 -L(Waligned): - andi. rBITDIF, rN, 12 /* Get the word remainder */ - srwi rTMP, rN, 4 /* Divide by 16 */ - cmplwi cr1, rBITDIF, 8 - cmplwi cr7, rN, 16 - clrlwi rN, rN, 30 - beq L(dP4) - bgt cr1, L(dP3) - beq cr1, L(dP2) - -/* Remainder is 4 */ - .align 4 -L(dP1): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ -/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early - (8-15 byte compare), we want to use only volatile registers. This - means we can avoid restoring non-volatile registers since we did not - change any on the early exit path. The key here is the non-early - exit path only cares about the condition code (cr5), not about which - register pair was used. */ - lwz rWORD5, 0(rSTR1) - lwz rWORD6, 0(rSTR2) - cmplw cr5, rWORD5, rWORD6 - blt cr7, L(dP1x) - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - cmplw cr0, rWORD1, rWORD2 -L(dP1e): - lwz rWORD3, 8(rSTR1) - lwz rWORD4, 8(rSTR2) - cmplw cr1, rWORD3, rWORD4 - lwz rWORD5, 12(rSTR1) - lwz rWORD6, 12(rSTR2) - cmplw cr6, rWORD5, rWORD6 - bne cr5, L(dLcr5) - bne cr0, L(dLcr0) - - lwzu rWORD7, 16(rSTR1) - lwzu rWORD8, 16(rSTR2) - bne cr1, L(dLcr1) - cmplw cr5, rWORD7, rWORD8 - bdnz L(dLoop) - bne cr6, L(dLcr6) - lwz r30,44(1) - lwz r31,48(1) - .align 3 -L(dP1x): - slwi. r12, rN, 3 - bne cr5, L(dLcr5) - subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ - lwz 1,0(1) - bne L(d00) - li rRTN, 0 - blr - -/* Remainder is 8 */ - .align 4 -L(dP2): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - lwz rWORD5, 0(rSTR1) - lwz rWORD6, 0(rSTR2) - cmplw cr6, rWORD5, rWORD6 - blt cr7, L(dP2x) - lwz rWORD7, 4(rSTR1) - lwz rWORD8, 4(rSTR2) - cmplw cr5, rWORD7, rWORD8 -L(dP2e): - lwz rWORD1, 8(rSTR1) - lwz rWORD2, 8(rSTR2) - cmplw cr0, rWORD1, rWORD2 - lwz rWORD3, 12(rSTR1) - lwz rWORD4, 12(rSTR2) - cmplw cr1, rWORD3, rWORD4 - addi rSTR1, rSTR1, 4 - addi rSTR2, rSTR2, 4 - bne cr6, L(dLcr6) - bne cr5, L(dLcr5) - b L(dLoop2) -/* Again we are on a early exit path (16-23 byte compare), we want to - only use volatile registers and avoid restoring non-volatile - registers. */ - .align 4 -L(dP2x): - lwz rWORD3, 4(rSTR1) - lwz rWORD4, 4(rSTR2) - cmplw cr5, rWORD3, rWORD4 - slwi. r12, rN, 3 - bne cr6, L(dLcr6) - addi rSTR1, rSTR1, 4 - addi rSTR2, rSTR2, 4 - bne cr5, L(dLcr5) - subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ - lwz 1,0(1) - bne L(d00) - li rRTN, 0 - blr - -/* Remainder is 12 */ - .align 4 -L(dP3): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - lwz rWORD3, 0(rSTR1) - lwz rWORD4, 0(rSTR2) - cmplw cr1, rWORD3, rWORD4 -L(dP3e): - lwz rWORD5, 4(rSTR1) - lwz rWORD6, 4(rSTR2) - cmplw cr6, rWORD5, rWORD6 - blt cr7, L(dP3x) - lwz rWORD7, 8(rSTR1) - lwz rWORD8, 8(rSTR2) - cmplw cr5, rWORD7, rWORD8 - lwz rWORD1, 12(rSTR1) - lwz rWORD2, 12(rSTR2) - cmplw cr0, rWORD1, rWORD2 - addi rSTR1, rSTR1, 8 - addi rSTR2, rSTR2, 8 - bne cr1, L(dLcr1) - bne cr6, L(dLcr6) - b L(dLoop1) -/* Again we are on a early exit path (24-31 byte compare), we want to - only use volatile registers and avoid restoring non-volatile - registers. */ - .align 4 -L(dP3x): - lwz rWORD1, 8(rSTR1) - lwz rWORD2, 8(rSTR2) - cmplw cr5, rWORD1, rWORD2 - slwi. r12, rN, 3 - bne cr1, L(dLcr1) - addi rSTR1, rSTR1, 8 - addi rSTR2, rSTR2, 8 - bne cr6, L(dLcr6) - subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ - bne cr5, L(dLcr5) - lwz 1,0(1) - bne L(d00) - li rRTN, 0 - blr - -/* Count is a multiple of 16, remainder is 0 */ - .align 4 -L(dP4): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - lwz rWORD1, 0(rSTR1) - lwz rWORD2, 0(rSTR2) - cmplw cr0, rWORD1, rWORD2 -L(dP4e): - lwz rWORD3, 4(rSTR1) - lwz rWORD4, 4(rSTR2) - cmplw cr1, rWORD3, rWORD4 - lwz rWORD5, 8(rSTR1) - lwz rWORD6, 8(rSTR2) - cmplw cr6, rWORD5, rWORD6 - lwzu rWORD7, 12(rSTR1) - lwzu rWORD8, 12(rSTR2) - cmplw cr5, rWORD7, rWORD8 - bne cr0, L(dLcr0) - bne cr1, L(dLcr1) - bdz- L(d24) /* Adjust CTR as we start with +4 */ -/* This is the primary loop */ - .align 4 -L(dLoop): - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - cmplw cr1, rWORD3, rWORD4 - bne cr6, L(dLcr6) -L(dLoop1): - lwz rWORD3, 8(rSTR1) - lwz rWORD4, 8(rSTR2) - cmplw cr6, rWORD5, rWORD6 - bne cr5, L(dLcr5) -L(dLoop2): - lwz rWORD5, 12(rSTR1) - lwz rWORD6, 12(rSTR2) - cmplw cr5, rWORD7, rWORD8 - bne cr0, L(dLcr0) -L(dLoop3): - lwzu rWORD7, 16(rSTR1) - lwzu rWORD8, 16(rSTR2) - bne- cr1, L(dLcr1) - cmplw cr0, rWORD1, rWORD2 - bdnz+ L(dLoop) - -L(dL4): - cmplw cr1, rWORD3, rWORD4 - bne cr6, L(dLcr6) - cmplw cr6, rWORD5, rWORD6 - bne cr5, L(dLcr5) - cmplw cr5, rWORD7, rWORD8 -L(d44): - bne cr0, L(dLcr0) -L(d34): - bne cr1, L(dLcr1) -L(d24): - bne cr6, L(dLcr6) -L(d14): - slwi. r12, rN, 3 - bne cr5, L(dLcr5) -L(d04): - lwz r30,44(1) - lwz r31,48(1) - lwz 1,0(1) - subfic rN, r12, 32 /* Shift count is 32 - (rN * 8). */ - beq L(zeroLength) -/* At this point we have a remainder of 1 to 3 bytes to compare. Since - we are aligned it is safe to load the whole word, and use - shift right to eliminate bits beyond the compare length. */ -L(d00): - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - srw rWORD1, rWORD1, rN - srw rWORD2, rWORD2, rN - cmplw rWORD1,rWORD2 - li rRTN,0 - beqlr - li rRTN,1 - bgtlr - li rRTN,-1 - blr - - .align 4 -L(dLcr0): - lwz r30,44(1) - lwz r31,48(1) - li rRTN, 1 - lwz 1,0(1) - bgtlr cr0 - li rRTN, -1 - blr - .align 4 -L(dLcr1): - lwz r30,44(1) - lwz r31,48(1) - li rRTN, 1 - lwz 1,0(1) - bgtlr cr1 - li rRTN, -1 - blr - .align 4 -L(dLcr6): - lwz r30,44(1) - lwz r31,48(1) - li rRTN, 1 - lwz 1,0(1) - bgtlr cr6 - li rRTN, -1 - blr - .align 4 -L(dLcr5): - lwz r30,44(1) - lwz r31,48(1) -L(dLcr5x): - li rRTN, 1 - lwz 1,0(1) - bgtlr cr5 - li rRTN, -1 - blr - - .align 4 -L(bytealigned): - cfi_adjust_cfa_offset(-64) - mtctr rN /* Power4 wants mtctr 1st in dispatch group */ - -/* We need to prime this loop. This loop is swing modulo scheduled - to avoid pipe delays. The dependent instruction latencies (load to - compare to conditional branch) is 2 to 3 cycles. In this loop each - dispatch group ends in a branch and takes 1 cycle. Effectively - the first iteration of the loop only serves to load operands and - branches based on compares are delayed until the next loop. - - So we must precondition some registers and condition codes so that - we don't exit the loop early on the first iteration. */ - - lbz rWORD1, 0(rSTR1) - lbz rWORD2, 0(rSTR2) - bdz- L(b11) - cmplw cr0, rWORD1, rWORD2 - lbz rWORD3, 1(rSTR1) - lbz rWORD4, 1(rSTR2) - bdz- L(b12) - cmplw cr1, rWORD3, rWORD4 - lbzu rWORD5, 2(rSTR1) - lbzu rWORD6, 2(rSTR2) - bdz- L(b13) - .align 4 -L(bLoop): - lbzu rWORD1, 1(rSTR1) - lbzu rWORD2, 1(rSTR2) - bne- cr0, L(bLcr0) - - cmplw cr6, rWORD5, rWORD6 - bdz- L(b3i) - - lbzu rWORD3, 1(rSTR1) - lbzu rWORD4, 1(rSTR2) - bne- cr1, L(bLcr1) - - cmplw cr0, rWORD1, rWORD2 - bdz- L(b2i) - - lbzu rWORD5, 1(rSTR1) - lbzu rWORD6, 1(rSTR2) - bne- cr6, L(bLcr6) - - cmplw cr1, rWORD3, rWORD4 - bdnz+ L(bLoop) - -/* We speculatively loading bytes before we have tested the previous - bytes. But we must avoid overrunning the length (in the ctr) to - prevent these speculative loads from causing a segfault. In this - case the loop will exit early (before the all pending bytes are - tested. In this case we must complete the pending operations - before returning. */ -L(b1i): - bne- cr0, L(bLcr0) - bne- cr1, L(bLcr1) - b L(bx56) - .align 4 -L(b2i): - bne- cr6, L(bLcr6) - bne- cr0, L(bLcr0) - b L(bx34) - .align 4 -L(b3i): - bne- cr1, L(bLcr1) - bne- cr6, L(bLcr6) - b L(bx12) - .align 4 -L(bLcr0): - li rRTN, 1 - bgtlr cr0 - li rRTN, -1 - blr -L(bLcr1): - li rRTN, 1 - bgtlr cr1 - li rRTN, -1 - blr -L(bLcr6): - li rRTN, 1 - bgtlr cr6 - li rRTN, -1 - blr - -L(b13): - bne- cr0, L(bx12) - bne- cr1, L(bx34) -L(bx56): - sub rRTN, rWORD5, rWORD6 - blr - nop -L(b12): - bne- cr0, L(bx12) -L(bx34): - sub rRTN, rWORD3, rWORD4 - blr - -L(b11): -L(bx12): - sub rRTN, rWORD1, rWORD2 - blr - - .align 4 -L(zeroLengthReturn): - -L(zeroLength): - li rRTN, 0 - blr - - cfi_adjust_cfa_offset(64) - .align 4 -/* At this point we know the strings have different alignment and the - compare length is at least 8 bytes. rBITDIF contains the low order - 2 bits of rSTR1 and cr5 contains the result of the logical compare - of rBITDIF to 0. If rBITDIF == 0 then rStr1 is word aligned and can - perform the Wunaligned loop. - - Otherwise we know that rSTR1 is not aready word aligned yet. - So we can force the string addresses to the next lower word - boundary and special case this first word using shift left to - eliminate bits preceeding the first byte. Since we want to join the - normal (Wualigned) compare loop, starting at the second word, - we need to adjust the length (rN) and special case the loop - versioning for the first W. This insures that the loop count is - correct and the first W (shifted) is in the expected resister pair. */ -#define rSHL r29 /* Unaligned shift left count. */ -#define rSHR r28 /* Unaligned shift right count. */ -#define rB r27 /* Left rotation temp for rWORD2. */ -#define rD r26 /* Left rotation temp for rWORD4. */ -#define rF r25 /* Left rotation temp for rWORD6. */ -#define rH r24 /* Left rotation temp for rWORD8. */ -#define rA r0 /* Right rotation temp for rWORD2. */ -#define rC r12 /* Right rotation temp for rWORD4. */ -#define rE r0 /* Right rotation temp for rWORD6. */ -#define rG r12 /* Right rotation temp for rWORD8. */ -L(unaligned): - stw r29,40(r1) - cfi_offset(r29,(40-64)) - clrlwi rSHL, rSTR2, 30 - stw r28,36(r1) - cfi_offset(r28,(36-64)) - beq cr5, L(Wunaligned) - stw r27,32(r1) - cfi_offset(r27,(32-64)) -/* Adjust the logical start of rSTR2 to compensate for the extra bits - in the 1st rSTR1 W. */ - sub r27, rSTR2, rBITDIF -/* But do not attempt to address the W before that W that contains - the actual start of rSTR2. */ - clrrwi rSTR2, rSTR2, 2 - stw r26,28(r1) - cfi_offset(r26,(28-64)) -/* Compute the left/right shift counts for the unalign rSTR2, - compensating for the logical (W aligned) start of rSTR1. */ - clrlwi rSHL, r27, 30 - clrrwi rSTR1, rSTR1, 2 - stw r25,24(r1) - cfi_offset(r25,(24-64)) - slwi rSHL, rSHL, 3 - cmplw cr5, r27, rSTR2 - add rN, rN, rBITDIF - slwi r11, rBITDIF, 3 - stw r24,20(r1) - cfi_offset(r24,(20-64)) - subfic rSHR, rSHL, 32 - srwi rTMP, rN, 4 /* Divide by 16 */ - andi. rBITDIF, rN, 12 /* Get the W remainder */ -/* We normally need to load 2 Ws to start the unaligned rSTR2, but in - this special case those bits may be discarded anyway. Also we - must avoid loading a W where none of the bits are part of rSTR2 as - this may cross a page boundary and cause a page fault. */ - li rWORD8, 0 - blt cr5, L(dus0) - lwz rWORD8, 0(rSTR2) - la rSTR2, 4(rSTR2) - slw rWORD8, rWORD8, rSHL - -L(dus0): - lwz rWORD1, 0(rSTR1) - lwz rWORD2, 0(rSTR2) - cmplwi cr1, rBITDIF, 8 - cmplwi cr7, rN, 16 - srw rG, rWORD2, rSHR - clrlwi rN, rN, 30 - beq L(duPs4) - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - or rWORD8, rG, rWORD8 - bgt cr1, L(duPs3) - beq cr1, L(duPs2) - -/* Remainder is 4 */ - .align 4 -L(dusP1): - slw rB, rWORD2, rSHL - slw rWORD7, rWORD1, r11 - slw rWORD8, rWORD8, r11 - bge cr7, L(duP1e) -/* At this point we exit early with the first word compare - complete and remainder of 0 to 3 bytes. See L(du14) for details on - how we handle the remaining bytes. */ - cmplw cr5, rWORD7, rWORD8 - slwi. rN, rN, 3 - bne cr5, L(duLcr5) - cmplw cr7, rN, rSHR - beq L(duZeroReturn) - li rA, 0 - ble cr7, L(dutrim) - lwz rWORD2, 4(rSTR2) - srw rA, rWORD2, rSHR - b L(dutrim) -/* Remainder is 8 */ - .align 4 -L(duPs2): - slw rH, rWORD2, rSHL - slw rWORD5, rWORD1, r11 - slw rWORD6, rWORD8, r11 - b L(duP2e) -/* Remainder is 12 */ - .align 4 -L(duPs3): - slw rF, rWORD2, rSHL - slw rWORD3, rWORD1, r11 - slw rWORD4, rWORD8, r11 - b L(duP3e) -/* Count is a multiple of 16, remainder is 0 */ - .align 4 -L(duPs4): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - or rWORD8, rG, rWORD8 - slw rD, rWORD2, rSHL - slw rWORD1, rWORD1, r11 - slw rWORD2, rWORD8, r11 - b L(duP4e) - -/* At this point we know rSTR1 is word aligned and the - compare length is at least 8 bytes. */ - .align 4 -L(Wunaligned): - stw r27,32(r1) - cfi_offset(r27,(32-64)) - clrrwi rSTR2, rSTR2, 2 - stw r26,28(r1) - cfi_offset(r26,(28-64)) - srwi rTMP, rN, 4 /* Divide by 16 */ - stw r25,24(r1) - cfi_offset(r25,(24-64)) - andi. rBITDIF, rN, 12 /* Get the W remainder */ - stw r24,20(r1) - cfi_offset(r24,(24-64)) - slwi rSHL, rSHL, 3 - lwz rWORD6, 0(rSTR2) - lwzu rWORD8, 4(rSTR2) - cmplwi cr1, rBITDIF, 8 - cmplwi cr7, rN, 16 - clrlwi rN, rN, 30 - subfic rSHR, rSHL, 32 - slw rH, rWORD6, rSHL - beq L(duP4) - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - bgt cr1, L(duP3) - beq cr1, L(duP2) - -/* Remainder is 4 */ - .align 4 -L(duP1): - srw rG, rWORD8, rSHR - lwz rWORD7, 0(rSTR1) - slw rB, rWORD8, rSHL - or rWORD8, rG, rH - blt cr7, L(duP1x) -L(duP1e): - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - cmplw cr5, rWORD7, rWORD8 - srw rA, rWORD2, rSHR - slw rD, rWORD2, rSHL - or rWORD2, rA, rB - lwz rWORD3, 8(rSTR1) - lwz rWORD4, 8(rSTR2) - cmplw cr0, rWORD1, rWORD2 - srw rC, rWORD4, rSHR - slw rF, rWORD4, rSHL - bne cr5, L(duLcr5) - or rWORD4, rC, rD - lwz rWORD5, 12(rSTR1) - lwz rWORD6, 12(rSTR2) - cmplw cr1, rWORD3, rWORD4 - srw rE, rWORD6, rSHR - slw rH, rWORD6, rSHL - bne cr0, L(duLcr0) - or rWORD6, rE, rF - cmplw cr6, rWORD5, rWORD6 - b L(duLoop3) - .align 4 -/* At this point we exit early with the first word compare - complete and remainder of 0 to 3 bytes. See L(du14) for details on - how we handle the remaining bytes. */ -L(duP1x): - cmplw cr5, rWORD7, rWORD8 - slwi. rN, rN, 3 - bne cr5, L(duLcr5) - cmplw cr7, rN, rSHR - beq L(duZeroReturn) - li rA, 0 - ble cr7, L(dutrim) - ld rWORD2, 8(rSTR2) - srw rA, rWORD2, rSHR - b L(dutrim) -/* Remainder is 8 */ - .align 4 -L(duP2): - srw rE, rWORD8, rSHR - lwz rWORD5, 0(rSTR1) - or rWORD6, rE, rH - slw rH, rWORD8, rSHL -L(duP2e): - lwz rWORD7, 4(rSTR1) - lwz rWORD8, 4(rSTR2) - cmplw cr6, rWORD5, rWORD6 - srw rG, rWORD8, rSHR - slw rB, rWORD8, rSHL - or rWORD8, rG, rH - blt cr7, L(duP2x) - lwz rWORD1, 8(rSTR1) - lwz rWORD2, 8(rSTR2) - cmplw cr5, rWORD7, rWORD8 - bne cr6, L(duLcr6) - srw rA, rWORD2, rSHR - slw rD, rWORD2, rSHL - or rWORD2, rA, rB - lwz rWORD3, 12(rSTR1) - lwz rWORD4, 12(rSTR2) - cmplw cr0, rWORD1, rWORD2 - bne cr5, L(duLcr5) - srw rC, rWORD4, rSHR - slw rF, rWORD4, rSHL - or rWORD4, rC, rD - addi rSTR1, rSTR1, 4 - addi rSTR2, rSTR2, 4 - cmplw cr1, rWORD3, rWORD4 - b L(duLoop2) - .align 4 -L(duP2x): - cmplw cr5, rWORD7, rWORD8 - addi rSTR1, rSTR1, 4 - addi rSTR2, rSTR2, 4 - bne cr6, L(duLcr6) - slwi. rN, rN, 3 - bne cr5, L(duLcr5) - cmplw cr7, rN, rSHR - beq L(duZeroReturn) - li rA, 0 - ble cr7, L(dutrim) - lwz rWORD2, 4(rSTR2) - srw rA, rWORD2, rSHR - b L(dutrim) - -/* Remainder is 12 */ - .align 4 -L(duP3): - srw rC, rWORD8, rSHR - lwz rWORD3, 0(rSTR1) - slw rF, rWORD8, rSHL - or rWORD4, rC, rH -L(duP3e): - lwz rWORD5, 4(rSTR1) - lwz rWORD6, 4(rSTR2) - cmplw cr1, rWORD3, rWORD4 - srw rE, rWORD6, rSHR - slw rH, rWORD6, rSHL - or rWORD6, rE, rF - lwz rWORD7, 8(rSTR1) - lwz rWORD8, 8(rSTR2) - cmplw cr6, rWORD5, rWORD6 - bne cr1, L(duLcr1) - srw rG, rWORD8, rSHR - slw rB, rWORD8, rSHL - or rWORD8, rG, rH - blt cr7, L(duP3x) - lwz rWORD1, 12(rSTR1) - lwz rWORD2, 12(rSTR2) - cmplw cr5, rWORD7, rWORD8 - bne cr6, L(duLcr6) - srw rA, rWORD2, rSHR - slw rD, rWORD2, rSHL - or rWORD2, rA, rB - addi rSTR1, rSTR1, 8 - addi rSTR2, rSTR2, 8 - cmplw cr0, rWORD1, rWORD2 - b L(duLoop1) - .align 4 -L(duP3x): - addi rSTR1, rSTR1, 8 - addi rSTR2, rSTR2, 8 - bne cr1, L(duLcr1) - cmplw cr5, rWORD7, rWORD8 - bne cr6, L(duLcr6) - slwi. rN, rN, 3 - bne cr5, L(duLcr5) - cmplw cr7, rN, rSHR - beq L(duZeroReturn) - li rA, 0 - ble cr7, L(dutrim) - lwz rWORD2, 4(rSTR2) - srw rA, rWORD2, rSHR - b L(dutrim) - -/* Count is a multiple of 16, remainder is 0 */ - .align 4 -L(duP4): - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group */ - srw rA, rWORD8, rSHR - lwz rWORD1, 0(rSTR1) - slw rD, rWORD8, rSHL - or rWORD2, rA, rH -L(duP4e): - lwz rWORD3, 4(rSTR1) - lwz rWORD4, 4(rSTR2) - cmplw cr0, rWORD1, rWORD2 - srw rC, rWORD4, rSHR - slw rF, rWORD4, rSHL - or rWORD4, rC, rD - lwz rWORD5, 8(rSTR1) - lwz rWORD6, 8(rSTR2) - cmplw cr1, rWORD3, rWORD4 - bne cr0, L(duLcr0) - srw rE, rWORD6, rSHR - slw rH, rWORD6, rSHL - or rWORD6, rE, rF - lwzu rWORD7, 12(rSTR1) - lwzu rWORD8, 12(rSTR2) - cmplw cr6, rWORD5, rWORD6 - bne cr1, L(duLcr1) - srw rG, rWORD8, rSHR - slw rB, rWORD8, rSHL - or rWORD8, rG, rH - cmplw cr5, rWORD7, rWORD8 - bdz- L(du24) /* Adjust CTR as we start with +4 */ -/* This is the primary loop */ - .align 4 -L(duLoop): - lwz rWORD1, 4(rSTR1) - lwz rWORD2, 4(rSTR2) - cmplw cr1, rWORD3, rWORD4 - bne cr6, L(duLcr6) - srw rA, rWORD2, rSHR - slw rD, rWORD2, rSHL - or rWORD2, rA, rB -L(duLoop1): - lwz rWORD3, 8(rSTR1) - lwz rWORD4, 8(rSTR2) - cmplw cr6, rWORD5, rWORD6 - bne cr5, L(duLcr5) - srw rC, rWORD4, rSHR - slw rF, rWORD4, rSHL - or rWORD4, rC, rD -L(duLoop2): - lwz rWORD5, 12(rSTR1) - lwz rWORD6, 12(rSTR2) - cmplw cr5, rWORD7, rWORD8 - bne cr0, L(duLcr0) - srw rE, rWORD6, rSHR - slw rH, rWORD6, rSHL - or rWORD6, rE, rF -L(duLoop3): - lwzu rWORD7, 16(rSTR1) - lwzu rWORD8, 16(rSTR2) - cmplw cr0, rWORD1, rWORD2 - bne- cr1, L(duLcr1) - srw rG, rWORD8, rSHR - slw rB, rWORD8, rSHL - or rWORD8, rG, rH - bdnz+ L(duLoop) - -L(duL4): - bne cr1, L(duLcr1) - cmplw cr1, rWORD3, rWORD4 - bne cr6, L(duLcr6) - cmplw cr6, rWORD5, rWORD6 - bne cr5, L(duLcr5) - cmplw cr5, rWORD7, rWORD8 -L(du44): - bne cr0, L(duLcr0) -L(du34): - bne cr1, L(duLcr1) -L(du24): - bne cr6, L(duLcr6) -L(du14): - slwi. rN, rN, 3 - bne cr5, L(duLcr5) -/* At this point we have a remainder of 1 to 3 bytes to compare. We use - shift right to eliminate bits beyond the compare length. - - However it may not be safe to load rWORD2 which may be beyond the - string length. So we compare the bit length of the remainder to - the right shift count (rSHR). If the bit count is less than or equal - we do not need to load rWORD2 (all significant bits are already in - rB). */ - cmplw cr7, rN, rSHR - beq L(duZeroReturn) - li rA, 0 - ble cr7, L(dutrim) - lwz rWORD2, 4(rSTR2) - srw rA, rWORD2, rSHR - .align 4 -L(dutrim): - lwz rWORD1, 4(rSTR1) - lwz r31,48(1) - subfic rN, rN, 32 /* Shift count is 32 - (rN * 8). */ - or rWORD2, rA, rB - lwz r30,44(1) - lwz r29,40(r1) - srw rWORD1, rWORD1, rN - srw rWORD2, rWORD2, rN - lwz r28,36(r1) - lwz r27,32(r1) - cmplw rWORD1,rWORD2 - li rRTN,0 - beq L(dureturn26) - li rRTN,1 - bgt L(dureturn26) - li rRTN,-1 - b L(dureturn26) - .align 4 -L(duLcr0): - lwz r31,48(1) - lwz r30,44(1) - li rRTN, 1 - bgt cr0, L(dureturn29) - lwz r29,40(r1) - lwz r28,36(r1) - li rRTN, -1 - b L(dureturn27) - .align 4 -L(duLcr1): - lwz r31,48(1) - lwz r30,44(1) - li rRTN, 1 - bgt cr1, L(dureturn29) - lwz r29,40(r1) - lwz r28,36(r1) - li rRTN, -1 - b L(dureturn27) - .align 4 -L(duLcr6): - lwz r31,48(1) - lwz r30,44(1) - li rRTN, 1 - bgt cr6, L(dureturn29) - lwz r29,40(r1) - lwz r28,36(r1) - li rRTN, -1 - b L(dureturn27) - .align 4 -L(duLcr5): - lwz r31,48(1) - lwz r30,44(1) - li rRTN, 1 - bgt cr5, L(dureturn29) - lwz r29,40(r1) - lwz r28,36(r1) - li rRTN, -1 - b L(dureturn27) - .align 3 -L(duZeroReturn): - li rRTN,0 - .align 4 -L(dureturn): - lwz r31,48(1) - lwz r30,44(1) -L(dureturn29): - lwz r29,40(r1) - lwz r28,36(r1) -L(dureturn27): - lwz r27,32(r1) -L(dureturn26): - lwz r26,28(r1) -L(dureturn25): - lwz r25,24(r1) - lwz r24,20(r1) - lwz 1,0(1) - blr -END (BP_SYM (memcmp)) - -libc_hidden_builtin_def (memcmp) -weak_alias (memcmp, bcmp) diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcopy.h b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcopy.h deleted file mode 100644 index c05208da55..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcopy.h +++ /dev/null @@ -1,113 +0,0 @@ -/* memcopy.h -- definitions for memory copy functions. Generic C version. - Copyright (C) 1991, 1992, 1993, 1997, 2004, 2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Torbjorn Granlund (tege@sics.se). - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 USA. */ - -/* The strategy of the memory functions is: - - 1. Copy bytes until the destination pointer is aligned. - - 2. Copy words in unrolled loops. If the source and destination - are not aligned in the same way, use word memory operations, - but shift and merge two read words before writing. - - 3. Copy the few remaining bytes. - - This is fast on processors that have at least 10 registers for - allocation by GCC, and that can access memory at reg+const in one - instruction. - - I made an "exhaustive" test of this memmove when I wrote it, - exhaustive in the sense that I tried all alignment and length - combinations, with and without overlap. */ - -#include <sysdeps/generic/memcopy.h> - -/* The macros defined in this file are: - - BYTE_COPY_FWD(dst_beg_ptr, src_beg_ptr, nbytes_to_copy) - - BYTE_COPY_BWD(dst_end_ptr, src_end_ptr, nbytes_to_copy) - - WORD_COPY_FWD(dst_beg_ptr, src_beg_ptr, nbytes_remaining, nbytes_to_copy) - - WORD_COPY_BWD(dst_end_ptr, src_end_ptr, nbytes_remaining, nbytes_to_copy) - - MERGE(old_word, sh_1, new_word, sh_2) - [I fail to understand. I feel stupid. --roland] -*/ - - -/* Threshold value for when to enter the unrolled loops. */ -#undef OP_T_THRES -#define OP_T_THRES 16 - -/* Copy exactly NBYTES bytes from SRC_BP to DST_BP, - without any assumptions about alignment of the pointers. */ -#undef BYTE_COPY_FWD -#define BYTE_COPY_FWD(dst_bp, src_bp, nbytes) \ - do \ - { \ - size_t __nbytes = (nbytes); \ - if (__nbytes & 1) \ - { \ - ((byte *) dst_bp)[0] = ((byte *) src_bp)[0]; \ - src_bp += 1; \ - dst_bp += 1; \ - __nbytes -= 1; \ - } \ - while (__nbytes > 0) \ - { \ - byte __x = ((byte *) src_bp)[0]; \ - byte __y = ((byte *) src_bp)[1]; \ - src_bp += 2; \ - __nbytes -= 2; \ - ((byte *) dst_bp)[0] = __x; \ - ((byte *) dst_bp)[1] = __y; \ - dst_bp += 2; \ - } \ - } while (0) - -/* Copy exactly NBYTES_TO_COPY bytes from SRC_END_PTR to DST_END_PTR, - beginning at the bytes right before the pointers and continuing towards - smaller addresses. Don't assume anything about alignment of the - pointers. */ -#undef BYTE_COPY_BWD -#define BYTE_COPY_BWD(dst_ep, src_ep, nbytes) \ - do \ - { \ - size_t __nbytes = (nbytes); \ - if (__nbytes & 1) \ - { \ - src_ep -= 1; \ - dst_ep -= 1; \ - ((byte *) dst_ep)[0] = ((byte *) src_ep)[0]; \ - __nbytes -= 1; \ - } \ - while (__nbytes > 0) \ - { \ - byte __x, __y; \ - src_ep -= 2; \ - __y = ((byte *) src_ep)[1]; \ - __x = ((byte *) src_ep)[0]; \ - dst_ep -= 2; \ - __nbytes -= 2; \ - ((byte *) dst_ep)[1] = __y; \ - ((byte *) dst_ep)[0] = __x; \ - } \ - } while (0) diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcpy.S b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcpy.S deleted file mode 100644 index c48db2f3df..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memcpy.S +++ /dev/null @@ -1,425 +0,0 @@ -/* Optimized memcpy implementation for PowerPC32 on PowerPC64. - Copyright (C) 2003, 2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA - 02110-1301 USA. */ - -#include <sysdep.h> -#include <bp-sym.h> -#include <bp-asm.h> - -/* __ptr_t [r3] memcpy (__ptr_t dst [r3], __ptr_t src [r4], size_t len [r5]); - Returns 'dst'. - - Memcpy handles short copies (< 32-bytes) using a binary move blocks - (no loops) of lwz/stw. The tail (remaining 1-3) bytes is handled - with the appropriate combination of byte and halfword load/stores. - There is minimal effort to optimize the alignment of short moves. - - Longer moves (>= 32-bytes) justify the effort to get at least the - destination word (4-byte) aligned. Further optimization is - possible when both source and destination are word aligned. - Each case has an optimized unrolled loop. */ - -EALIGN (BP_SYM (memcpy), 5, 0) - CALL_MCOUNT - - stwu 1,-32(1) - cfi_adjust_cfa_offset(32) - stw 30,20(1) - cfi_offset(30,(20-32)) - mr 30,3 - cmplwi cr1,5,31 - stw 31,24(1) - cfi_offset(31,(24-32)) - neg 0,3 - andi. 11,3,3 /* check alignment of dst. */ - clrlwi 0,0,30 /* Number of bytes until the 1st word of dst. */ - clrlwi 10,4,30 /* check alignment of src. */ - cmplwi cr6,5,8 - ble- cr1,.L2 /* If move < 32 bytes use short move code. */ - cmplw cr6,10,11 - mr 12,4 - srwi 9,5,2 /* Number of full words remaining. */ - mtcrf 0x01,0 - mr 31,5 - beq .L0 - - subf 31,0,5 - /* Move 0-3 bytes as needed to get the destination word aligned. */ -1: bf 31,2f - lbz 6,0(12) - addi 12,12,1 - stb 6,0(3) - addi 3,3,1 -2: bf 30,0f - lhz 6,0(12) - addi 12,12,2 - sth 6,0(3) - addi 3,3,2 -0: - clrlwi 10,12,30 /* check alignment of src again. */ - srwi 9,31,2 /* Number of full words remaining. */ - - /* Copy words from source to destination, assuming the destination is - aligned on a word boundary. - - At this point we know there are at least 25 bytes left (32-7) to copy. - The next step is to determine if the source is also word aligned. - If not branch to the unaligned move code at .L6. which uses - a load, shift, store strategy. - - Otherwise source and destination are word aligned, and we can use - the optimized word copy loop. */ -.L0: - clrlwi 11,31,30 /* calculate the number of tail bytes */ - mtcrf 0x01,9 - bne- cr6,.L6 /* If source is not word aligned. */ - - /* Move words where destination and source are word aligned. - Use an unrolled loop to copy 4 words (16-bytes) per iteration. - If the the copy is not an exact multiple of 16 bytes, 1-3 - words are copied as needed to set up the main loop. After - the main loop exits there may be a tail of 1-3 bytes. These bytes are - copied a halfword/byte at a time as needed to preserve alignment. */ - - srwi 8,31,4 /* calculate the 16 byte loop count */ - cmplwi cr1,9,4 - cmplwi cr6,11,0 - mr 11,12 - - bf 30,1f - lwz 6,0(12) - lwz 7,4(12) - addi 11,12,8 - mtctr 8 - stw 6,0(3) - stw 7,4(3) - addi 10,3,8 - bf 31,4f - lwz 0,8(12) - stw 0,8(3) - blt cr1,3f - addi 11,12,12 - addi 10,3,12 - b 4f - .align 4 -1: - mr 10,3 - mtctr 8 - bf 31,4f - lwz 6,0(12) - addi 11,12,4 - stw 6,0(3) - addi 10,3,4 - - .align 4 -4: - lwz 6,0(11) - lwz 7,4(11) - lwz 8,8(11) - lwz 0,12(11) - stw 6,0(10) - stw 7,4(10) - stw 8,8(10) - stw 0,12(10) - addi 11,11,16 - addi 10,10,16 - bdnz 4b -3: - clrrwi 0,31,2 - mtcrf 0x01,31 - beq cr6,0f -.L9: - add 3,3,0 - add 12,12,0 - -/* At this point we have a tail of 0-3 bytes and we know that the - destination is word aligned. */ -2: bf 30,1f - lhz 6,0(12) - addi 12,12,2 - sth 6,0(3) - addi 3,3,2 -1: bf 31,0f - lbz 6,0(12) - stb 6,0(3) -0: - /* Return original dst pointer. */ - mr 3,30 - lwz 30,20(1) - lwz 31,24(1) - addi 1,1,32 - blr - -/* Copy up to 31 bytes. This is divided into two cases 0-8 bytes and - 9-31 bytes. Each case is handled without loops, using binary - (1,2,4,8) tests. - - In the short (0-8 byte) case no attempt is made to force alignment - of either source or destination. The hardware will handle the - unaligned load/stores with small delays for crossing 32- 64-byte, and - 4096-byte boundaries. Since these short moves are unlikely to be - unaligned or cross these boundaries, the overhead to force - alignment is not justified. - - The longer (9-31 byte) move is more likely to cross 32- or 64-byte - boundaries. Since only loads are sensitive to the 32-/64-byte - boundaries it is more important to align the source than the - destination. If the source is not already word aligned, we first - move 1-3 bytes as needed. While the destination and stores may - still be unaligned, this is only an issue for page (4096 byte - boundary) crossing, which should be rare for these short moves. - The hardware handles this case automatically with a small delay. */ - - .align 4 -.L2: - mtcrf 0x01,5 - neg 8,4 - clrrwi 11,4,2 - andi. 0,8,3 - ble cr6,.LE8 /* Handle moves of 0-8 bytes. */ -/* At least 9 bytes left. Get the source word aligned. */ - cmplwi cr1,5,16 - mr 10,5 - mr 12,4 - cmplwi cr6,0,2 - beq .L3 /* If the source is already word aligned skip this. */ -/* Copy 1-3 bytes to get source address word aligned. */ - lwz 6,0(11) - subf 10,0,5 - add 12,4,0 - blt cr6,5f - srwi 7,6,16 - bgt cr6,3f - sth 6,0(3) - b 7f - .align 4 -3: - stb 7,0(3) - sth 6,1(3) - b 7f - .align 4 -5: - stb 6,0(3) -7: - cmplwi cr1,10,16 - add 3,3,0 - mtcrf 0x01,10 - .align 4 -.L3: -/* At least 6 bytes left and the source is word aligned. */ - blt cr1,8f -16: /* Move 16 bytes. */ - lwz 6,0(12) - lwz 7,4(12) - stw 6,0(3) - lwz 6,8(12) - stw 7,4(3) - lwz 7,12(12) - addi 12,12,16 - stw 6,8(3) - stw 7,12(3) - addi 3,3,16 -8: /* Move 8 bytes. */ - bf 28,4f - lwz 6,0(12) - lwz 7,4(12) - addi 12,12,8 - stw 6,0(3) - stw 7,4(3) - addi 3,3,8 -4: /* Move 4 bytes. */ - bf 29,2f - lwz 6,0(12) - addi 12,12,4 - stw 6,0(3) - addi 3,3,4 -2: /* Move 2-3 bytes. */ - bf 30,1f - lhz 6,0(12) - sth 6,0(3) - bf 31,0f - lbz 7,2(12) - stb 7,2(3) - mr 3,30 - lwz 30,20(1) - addi 1,1,32 - blr -1: /* Move 1 byte. */ - bf 31,0f - lbz 6,0(12) - stb 6,0(3) -0: - /* Return original dst pointer. */ - mr 3,30 - lwz 30,20(1) - addi 1,1,32 - blr - -/* Special case to copy 0-8 bytes. */ - .align 4 -.LE8: - mr 12,4 - bne cr6,4f - lwz 6,0(4) - lwz 7,4(4) - stw 6,0(3) - stw 7,4(3) - /* Return original dst pointer. */ - mr 3,30 - lwz 30,20(1) - addi 1,1,32 - blr - .align 4 -4: bf 29,2b - lwz 6,0(4) - stw 6,0(3) -6: - bf 30,5f - lhz 7,4(4) - sth 7,4(3) - bf 31,0f - lbz 8,6(4) - stb 8,6(3) - mr 3,30 - lwz 30,20(1) - addi 1,1,32 - blr - .align 4 -5: - bf 31,0f - lbz 6,4(4) - stb 6,4(3) - .align 4 -0: - /* Return original dst pointer. */ - mr 3,30 - lwz 30,20(1) - addi 1,1,32 - blr - - .align 4 -.L6: - - /* Copy words where the destination is aligned but the source is - not. Use aligned word loads from the source, shifted to realign - the data, to allow aligned destination stores. - Use an unrolled loop to copy 4 words (16-bytes) per iteration. - A single word is retained for storing at loop exit to avoid walking - off the end of a page within the loop. - If the copy is not an exact multiple of 16 bytes, 1-3 - words are copied as needed to set up the main loop. After - the main loop exits there may be a tail of 1-3 bytes. These bytes are - copied a halfword/byte at a time as needed to preserve alignment. */ - - - cmplwi cr6,11,0 /* are there tail bytes left ? */ - subf 5,10,12 /* back up src pointer to prev word alignment */ - slwi 10,10,3 /* calculate number of bits to shift 1st word left */ - addi 11,9,-1 /* we move one word after the loop */ - srwi 8,11,2 /* calculate the 16 byte loop count */ - lwz 6,0(5) /* load 1st src word into R6 */ - mr 4,3 - lwz 7,4(5) /* load 2nd src word into R7 */ - mtcrf 0x01,11 - subfic 9,10,32 /* number of bits to shift 2nd word right */ - mtctr 8 - bf 30,1f - - /* there are at least two words to copy, so copy them */ - slw 0,6,10 /* shift 1st src word to left align it in R0 */ - srw 8,7,9 /* shift 2nd src word to right align it in R8 */ - or 0,0,8 /* or them to get word to store */ - lwz 6,8(5) /* load the 3rd src word */ - stw 0,0(4) /* store the 1st dst word */ - slw 0,7,10 /* now left align 2nd src word into R0 */ - srw 8,6,9 /* shift 3rd src word to right align it in R8 */ - or 0,0,8 /* or them to get word to store */ - lwz 7,12(5) - stw 0,4(4) /* store the 2nd dst word */ - addi 4,4,8 - addi 5,5,16 - bf 31,4f - /* there is a third word to copy, so copy it */ - slw 0,6,10 /* shift 3rd src word to left align it in R0 */ - srw 8,7,9 /* shift 4th src word to right align it in R8 */ - or 0,0,8 /* or them to get word to store */ - stw 0,0(4) /* store 3rd dst word */ - mr 6,7 - lwz 7,0(5) - addi 5,5,4 - addi 4,4,4 - b 4f - .align 4 -1: - slw 0,6,10 /* shift 1st src word to left align it in R0 */ - srw 8,7,9 /* shift 2nd src word to right align it in R8 */ - addi 5,5,8 - or 0,0,8 /* or them to get word to store */ - bf 31,4f - mr 6,7 - lwz 7,0(5) - addi 5,5,4 - stw 0,0(4) /* store the 1st dst word */ - addi 4,4,4 - - .align 4 -4: - /* copy 16 bytes at a time */ - slw 0,6,10 - srw 8,7,9 - or 0,0,8 - lwz 6,0(5) - stw 0,0(4) - slw 0,7,10 - srw 8,6,9 - or 0,0,8 - lwz 7,4(5) - stw 0,4(4) - slw 0,6,10 - srw 8,7,9 - or 0,0,8 - lwz 6,8(5) - stw 0,8(4) - slw 0,7,10 - srw 8,6,9 - or 0,0,8 - lwz 7,12(5) - stw 0,12(4) - addi 5,5,16 - addi 4,4,16 - bdnz+ 4b -8: - /* calculate and store the final word */ - slw 0,6,10 - srw 8,7,9 - or 0,0,8 - stw 0,0(4) -3: - clrrwi 0,31,2 - mtcrf 0x01,31 - bne cr6,.L9 /* If the tail is 0 bytes we are done! */ - - /* Return original dst pointer. */ - mr 3,30 - lwz 30,20(1) - lwz 31,24(1) - addi 1,1,32 - blr -END (BP_SYM (memcpy)) - -libc_hidden_builtin_def (memcpy) diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memset.S b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memset.S deleted file mode 100644 index b07ed3c2d3..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/memset.S +++ /dev/null @@ -1,228 +0,0 @@ -/* Optimized memset implementation for PowerPC64. - Copyright (C) 1997,99, 2000,02,03, 2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA - 02110-1301 USA. */ - -#include <sysdep.h> -#include <bp-sym.h> -#include <bp-asm.h> - -/* __ptr_t [r3] memset (__ptr_t s [r3], int c [r4], size_t n [r5])); - Returns 's'. - - The memset is done in three sizes: byte (8 bits), word (32 bits), - cache line (1024 bits). There is a special case for setting cache lines - to 0, to take advantage of the dcbz instruction. */ - -EALIGN (BP_SYM (memset), 5, 0) - CALL_MCOUNT - -#define rTMP r0 -#define rRTN r3 /* Initial value of 1st argument. */ -#define rMEMP0 r3 /* Original value of 1st arg. */ -#define rCHR r4 /* Char to set in each byte. */ -#define rLEN r5 /* Length of region to set. */ -#define rMEMP r6 /* Address at which we are storing. */ -#define rALIGN r7 /* Number of bytes we are setting now (when aligning). */ -#define rMEMP2 r8 - -#define rNEG64 r8 /* Constant -64 for clearing with dcbz. */ -#define rCLS r8 /* Cache line size (known to be 128). */ -#define rCLM r9 /* Cache line size mask to check for cache alignment. */ -L(_memset): -/* Take care of case for size <= 4. */ - cmplwi cr1, rLEN, 4 - andi. rALIGN, rMEMP0, 3 - mr rMEMP, rMEMP0 - ble- cr1, L(small) - -/* Align to word boundary. */ - cmplwi cr5, rLEN, 31 - rlwimi rCHR, rCHR, 8, 16, 23 /* Replicate byte to halfword. */ - beq+ L(aligned) - mtcrf 0x01, rMEMP0 - subfic rALIGN, rALIGN, 4 - add rMEMP, rMEMP, rALIGN - sub rLEN, rLEN, rALIGN - bf+ 31, L(g0) - stb rCHR, 0(rMEMP0) - bt 30, L(aligned) -L(g0): - sth rCHR, -2(rMEMP) - -/* Handle the case of size < 31. */ -L(aligned): - mtcrf 0x01, rLEN - rlwimi rCHR, rCHR, 16, 0, 15 /* Replicate halfword to word. */ - ble cr5, L(medium) -/* Align to 32-byte boundary. */ - andi. rALIGN, rMEMP, 0x1C - subfic rALIGN, rALIGN, 0x20 - beq L(caligned) - mtcrf 0x01, rALIGN - add rMEMP, rMEMP, rALIGN - sub rLEN, rLEN, rALIGN - cmplwi cr1, rALIGN, 0x10 - mr rMEMP2, rMEMP - bf 28, L(a1) - stw rCHR, -4(rMEMP2) - stwu rCHR, -8(rMEMP2) -L(a1): blt cr1, L(a2) - stw rCHR, -4(rMEMP2) - stw rCHR, -8(rMEMP2) - stw rCHR, -12(rMEMP2) - stwu rCHR, -16(rMEMP2) -L(a2): bf 29, L(caligned) - stw rCHR, -4(rMEMP2) - -/* Now aligned to a 32 byte boundary. */ -L(caligned): - cmplwi cr1, rCHR, 0 - clrrwi. rALIGN, rLEN, 5 - mtcrf 0x01, rLEN - beq cr1, L(zloopstart) /* Special case for clearing memory using dcbz. */ -L(nondcbz): - srwi rTMP, rALIGN, 5 - mtctr rTMP - beq L(medium) /* We may not actually get to do a full line. */ - clrlwi. rLEN, rLEN, 27 - add rMEMP, rMEMP, rALIGN - li rNEG64, -0x40 - bdz L(cloopdone) - - .align 4 -L(c3): dcbtst rNEG64, rMEMP - stw rCHR, -4(rMEMP) - stw rCHR, -8(rMEMP) - stw rCHR, -12(rMEMP) - stw rCHR, -16(rMEMP) - stw rCHR, -20(rMEMP) - stw rCHR, -24(rMEMP) - stw rCHR, -28(rMEMP) - stwu rCHR, -32(rMEMP) - bdnz L(c3) -L(cloopdone): - stw rCHR, -4(rMEMP) - stw rCHR, -8(rMEMP) - stw rCHR, -12(rMEMP) - stw rCHR, -16(rMEMP) - cmplwi cr1, rLEN, 16 - stw rCHR, -20(rMEMP) - stw rCHR, -24(rMEMP) - stw rCHR, -28(rMEMP) - stwu rCHR, -32(rMEMP) - beqlr - add rMEMP, rMEMP, rALIGN - b L(medium_tail2) - - .align 5 -/* Clear lines of memory in 128-byte chunks. */ -L(zloopstart): -/* If the remaining length is less the 32 bytes, don't bother getting - the cache line size. */ - beq L(medium) - li rCLS,128 /* cache line size is 128 */ - dcbt 0,rMEMP -L(getCacheAligned): - cmplwi cr1,rLEN,32 - andi. rTMP,rMEMP,127 - blt cr1,L(handletail32) - beq L(cacheAligned) - addi rMEMP,rMEMP,32 - addi rLEN,rLEN,-32 - stw rCHR,-32(rMEMP) - stw rCHR,-28(rMEMP) - stw rCHR,-24(rMEMP) - stw rCHR,-20(rMEMP) - stw rCHR,-16(rMEMP) - stw rCHR,-12(rMEMP) - stw rCHR,-8(rMEMP) - stw rCHR,-4(rMEMP) - b L(getCacheAligned) - -/* Now we are aligned to the cache line and can use dcbz. */ - .align 4 -L(cacheAligned): - cmplw cr1,rLEN,rCLS - blt cr1,L(handletail32) - dcbz 0,rMEMP - subf rLEN,rCLS,rLEN - add rMEMP,rMEMP,rCLS - b L(cacheAligned) - -/* We are here because the cache line size was set and the remainder - (rLEN) is less than the actual cache line size. - So set up the preconditions for L(nondcbz) and go there. */ -L(handletail32): - clrrwi. rALIGN, rLEN, 5 - b L(nondcbz) - - .align 5 -L(small): -/* Memset of 4 bytes or less. */ - cmplwi cr5, rLEN, 1 - cmplwi cr1, rLEN, 3 - bltlr cr5 - stb rCHR, 0(rMEMP) - beqlr cr5 - stb rCHR, 1(rMEMP) - bltlr cr1 - stb rCHR, 2(rMEMP) - beqlr cr1 - stb rCHR, 3(rMEMP) - blr - -/* Memset of 0-31 bytes. */ - .align 5 -L(medium): - cmplwi cr1, rLEN, 16 -L(medium_tail2): - add rMEMP, rMEMP, rLEN -L(medium_tail): - bt- 31, L(medium_31t) - bt- 30, L(medium_30t) -L(medium_30f): - bt- 29, L(medium_29t) -L(medium_29f): - bge- cr1, L(medium_27t) - bflr- 28 - stw rCHR, -4(rMEMP) - stw rCHR, -8(rMEMP) - blr - -L(medium_31t): - stbu rCHR, -1(rMEMP) - bf- 30, L(medium_30f) -L(medium_30t): - sthu rCHR, -2(rMEMP) - bf- 29, L(medium_29f) -L(medium_29t): - stwu rCHR, -4(rMEMP) - blt- cr1, L(medium_27f) -L(medium_27t): - stw rCHR, -4(rMEMP) - stw rCHR, -8(rMEMP) - stw rCHR, -12(rMEMP) - stwu rCHR, -16(rMEMP) -L(medium_27f): - bflr- 28 -L(medium_28t): - stw rCHR, -4(rMEMP) - stw rCHR, -8(rMEMP) - blr -END (BP_SYM (memset)) -libc_hidden_builtin_def (memset) diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/strncmp.S b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/strncmp.S deleted file mode 100644 index fc0835ebe0..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/strncmp.S +++ /dev/null @@ -1,176 +0,0 @@ -/* Optimized strcmp implementation for PowerPC32. - Copyright (C) 2003, 2006 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA - 02110-1301 USA. */ - -#include <sysdep.h> -#include <bp-sym.h> -#include <bp-asm.h> - -/* See strlen.s for comments on how the end-of-string testing works. */ - -/* int [r3] strncmp (const char *s1 [r3], const char *s2 [r4], size_t size [r5]) */ - -EALIGN (BP_SYM(strncmp), 4, 0) - -#define rTMP r0 -#define rRTN r3 -#define rSTR1 r3 /* first string arg */ -#define rSTR2 r4 /* second string arg */ -#define rN r5 /* max string length */ -/* Note: The Bounded pointer support in this code is broken. This code - was inherited from PPC32 and and that support was never completed. - Current PPC gcc does not support -fbounds-check or -fbounded-pointers. */ -#define rWORD1 r6 /* current word in s1 */ -#define rWORD2 r7 /* current word in s2 */ -#define rWORD3 r10 -#define rWORD4 r11 -#define rFEFE r8 /* constant 0xfefefeff (-0x01010101) */ -#define r7F7F r9 /* constant 0x7f7f7f7f */ -#define rNEG r10 /* ~(word in s1 | 0x7f7f7f7f) */ -#define rBITDIF r11 /* bits that differ in s1 & s2 words */ - - dcbt 0,rSTR1 - or rTMP, rSTR2, rSTR1 - lis r7F7F, 0x7f7f - dcbt 0,rSTR2 - clrlwi. rTMP, rTMP, 30 - cmplwi cr1, rN, 0 - lis rFEFE, -0x101 - bne L(unaligned) -/* We are word alligned so set up for two loops. first a word - loop, then fall into the byte loop if any residual. */ - srwi. rTMP, rN, 2 - clrlwi rN, rN, 30 - addi rFEFE, rFEFE, -0x101 - addi r7F7F, r7F7F, 0x7f7f - cmplwi cr1, rN, 0 - beq L(unaligned) - - mtctr rTMP /* Power4 wants mtctr 1st in dispatch group. */ - lwz rWORD1, 0(rSTR1) - lwz rWORD2, 0(rSTR2) - b L(g1) - -L(g0): - lwzu rWORD1, 4(rSTR1) - bne- cr1, L(different) - lwzu rWORD2, 4(rSTR2) -L(g1): add rTMP, rFEFE, rWORD1 - nor rNEG, r7F7F, rWORD1 - bdz L(tail) - and. rTMP, rTMP, rNEG - cmpw cr1, rWORD1, rWORD2 - beq+ L(g0) - -/* OK. We've hit the end of the string. We need to be careful that - we don't compare two strings as different because of gunk beyond - the end of the strings... */ - -L(endstring): - and rTMP, r7F7F, rWORD1 - beq cr1, L(equal) - add rTMP, rTMP, r7F7F - xor. rBITDIF, rWORD1, rWORD2 - - andc rNEG, rNEG, rTMP - blt- L(highbit) - cntlzw rBITDIF, rBITDIF - cntlzw rNEG, rNEG - addi rNEG, rNEG, 7 - cmpw cr1, rNEG, rBITDIF - sub rRTN, rWORD1, rWORD2 - blt- cr1, L(equal) - srawi rRTN, rRTN, 31 - ori rRTN, rRTN, 1 - blr -L(equal): - li rRTN, 0 - blr - -L(different): - lwzu rWORD1, -4(rSTR1) - xor. rBITDIF, rWORD1, rWORD2 - sub rRTN, rWORD1, rWORD2 - blt- L(highbit) - srawi rRTN, rRTN, 31 - ori rRTN, rRTN, 1 - blr -L(highbit): - srwi rWORD2, rWORD2, 24 - srwi rWORD1, rWORD1, 24 - sub rRTN, rWORD1, rWORD2 - blr - - -/* Oh well. In this case, we just do a byte-by-byte comparison. */ - .align 4 -L(tail): - and. rTMP, rTMP, rNEG - cmpw cr1, rWORD1, rWORD2 - bne- L(endstring) - addi rSTR1, rSTR1, 4 - bne- cr1, L(different) - addi rSTR2, rSTR2, 4 - cmplwi cr1, rN, 0 -L(unaligned): - mtctr rN /* Power4 wants mtctr 1st in dispatch group */ - ble cr1, L(ux) -L(uz): - lbz rWORD1, 0(rSTR1) - lbz rWORD2, 0(rSTR2) - .align 4 -L(u1): - cmpwi cr1, rWORD1, 0 - bdz L(u4) - cmpw rWORD1, rWORD2 - beq- cr1, L(u4) - lbzu rWORD3, 1(rSTR1) - lbzu rWORD4, 1(rSTR2) - bne- L(u4) - cmpwi cr1, rWORD3, 0 - bdz L(u3) - cmpw rWORD3, rWORD4 - beq- cr1, L(u3) - lbzu rWORD1, 1(rSTR1) - lbzu rWORD2, 1(rSTR2) - bne- L(u3) - cmpwi cr1, rWORD1, 0 - bdz L(u4) - cmpw rWORD1, rWORD2 - beq- cr1, L(u4) - lbzu rWORD3, 1(rSTR1) - lbzu rWORD4, 1(rSTR2) - bne- L(u4) - cmpwi cr1, rWORD3, 0 - bdz L(u3) - cmpw rWORD3, rWORD4 - beq- cr1, L(u3) - lbzu rWORD1, 1(rSTR1) - lbzu rWORD2, 1(rSTR2) - beq+ L(u1) - -L(u3): sub rRTN, rWORD3, rWORD4 - blr -L(u4): sub rRTN, rWORD1, rWORD2 - blr -L(ux): - li rRTN, 0 - blr -END (BP_SYM (strncmp)) -libc_hidden_builtin_def (strncmp) - diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/wordcopy.c b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/wordcopy.c deleted file mode 100644 index f71b41dc42..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/wordcopy.c +++ /dev/null @@ -1,209 +0,0 @@ -/* _memcopy.c -- subroutines for memory copy functions. - Copyright (C) 1991, 1996 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Torbjorn Granlund (tege@sics.se). - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 USA. */ - -/* BE VERY CAREFUL IF YOU CHANGE THIS CODE...! */ - -#include <stddef.h> -#include <memcopy.h> - -/* _wordcopy_fwd_aligned -- Copy block beginning at SRCP to - block beginning at DSTP with LEN `op_t' words (not LEN bytes!). - Both SRCP and DSTP should be aligned for memory operations on `op_t's. */ - -void -_wordcopy_fwd_aligned (dstp, srcp, len) - long int dstp; - long int srcp; - size_t len; -{ - op_t a0, a1; - - if (len & 1) - { - ((op_t *) dstp)[0] = ((op_t *) srcp)[0]; - - if (len == 1) - return; - srcp += OPSIZ; - dstp += OPSIZ; - len -= 1; - } - - do - { - a0 = ((op_t *) srcp)[0]; - a1 = ((op_t *) srcp)[1]; - ((op_t *) dstp)[0] = a0; - ((op_t *) dstp)[1] = a1; - - srcp += 2 * OPSIZ; - dstp += 2 * OPSIZ; - len -= 2; - } - while (len != 0); -} - -/* _wordcopy_fwd_dest_aligned -- Copy block beginning at SRCP to - block beginning at DSTP with LEN `op_t' words (not LEN bytes!). - DSTP should be aligned for memory operations on `op_t's, but SRCP must - *not* be aligned. */ - -void -_wordcopy_fwd_dest_aligned (dstp, srcp, len) - long int dstp; - long int srcp; - size_t len; -{ - op_t a0, a1, a2; - int sh_1, sh_2; - - /* Calculate how to shift a word read at the memory operation - aligned srcp to make it aligned for copy. */ - - sh_1 = 8 * (srcp % OPSIZ); - sh_2 = 8 * OPSIZ - sh_1; - - /* Make SRCP aligned by rounding it down to the beginning of the `op_t' - it points in the middle of. */ - srcp &= -OPSIZ; - a0 = ((op_t *) srcp)[0]; - - if (len & 1) - { - a1 = ((op_t *) srcp)[1]; - ((op_t *) dstp)[0] = MERGE (a0, sh_1, a1, sh_2); - - if (len == 1) - return; - - a0 = a1; - srcp += OPSIZ; - dstp += OPSIZ; - len -= 1; - } - - do - { - a1 = ((op_t *) srcp)[1]; - a2 = ((op_t *) srcp)[2]; - ((op_t *) dstp)[0] = MERGE (a0, sh_1, a1, sh_2); - ((op_t *) dstp)[1] = MERGE (a1, sh_1, a2, sh_2); - a0 = a2; - - srcp += 2 * OPSIZ; - dstp += 2 * OPSIZ; - len -= 2; - } - while (len != 0); -} - -/* _wordcopy_bwd_aligned -- Copy block finishing right before - SRCP to block finishing right before DSTP with LEN `op_t' words - (not LEN bytes!). Both SRCP and DSTP should be aligned for memory - operations on `op_t's. */ - -void -_wordcopy_bwd_aligned (dstp, srcp, len) - long int dstp; - long int srcp; - size_t len; -{ - op_t a0, a1; - - if (len & 1) - { - srcp -= OPSIZ; - dstp -= OPSIZ; - ((op_t *) dstp)[0] = ((op_t *) srcp)[0]; - - if (len == 1) - return; - len -= 1; - } - - do - { - srcp -= 2 * OPSIZ; - dstp -= 2 * OPSIZ; - - a1 = ((op_t *) srcp)[1]; - a0 = ((op_t *) srcp)[0]; - ((op_t *) dstp)[1] = a1; - ((op_t *) dstp)[0] = a0; - - len -= 2; - } - while (len != 0); -} - -/* _wordcopy_bwd_dest_aligned -- Copy block finishing right - before SRCP to block finishing right before DSTP with LEN `op_t' - words (not LEN bytes!). DSTP should be aligned for memory - operations on `op_t', but SRCP must *not* be aligned. */ - -void -_wordcopy_bwd_dest_aligned (dstp, srcp, len) - long int dstp; - long int srcp; - size_t len; -{ - op_t a0, a1, a2; - int sh_1, sh_2; - - /* Calculate how to shift a word read at the memory operation - aligned srcp to make it aligned for copy. */ - - sh_1 = 8 * (srcp % OPSIZ); - sh_2 = 8 * OPSIZ - sh_1; - - /* Make srcp aligned by rounding it down to the beginning of the op_t - it points in the middle of. */ - srcp &= -OPSIZ; - a2 = ((op_t *) srcp)[0]; - - if (len & 1) - { - srcp -= OPSIZ; - dstp -= OPSIZ; - a1 = ((op_t *) srcp)[0]; - ((op_t *) dstp)[0] = MERGE (a1, sh_1, a2, sh_2); - - if (len == 1) - return; - - a2 = a1; - len -= 1; - } - - do - { - srcp -= 2 * OPSIZ; - dstp -= 2 * OPSIZ; - - a1 = ((op_t *) srcp)[1]; - a0 = ((op_t *) srcp)[0]; - ((op_t *) dstp)[1] = MERGE (a1, sh_1, a2, sh_2); - ((op_t *) dstp)[0] = MERGE (a0, sh_1, a1, sh_2); - a2 = a0; - - len -= 2; - } - while (len != 0); -} |