diff options
Diffstat (limited to 'linuxthreads/man/pthread_mutex_init.man')
-rw-r--r-- | linuxthreads/man/pthread_mutex_init.man | 213 |
1 files changed, 213 insertions, 0 deletions
diff --git a/linuxthreads/man/pthread_mutex_init.man b/linuxthreads/man/pthread_mutex_init.man new file mode 100644 index 0000000000..643b007aec --- /dev/null +++ b/linuxthreads/man/pthread_mutex_init.man @@ -0,0 +1,213 @@ +.TH PTHREAD_MUTEX 3 LinuxThreads + +.XREF pthread_mutex_lock +.XREF pthread_mutex_unlock +.XREF pthread_mutex_trylock +.XREF pthread_mutex_destroy + +.SH NAME +pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_destroy \- operations on mutexes + +.SH SYNOPSIS +#include <pthread.h> + +pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER; + +pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP; + +pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP; + +int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr); + +int pthread_mutex_lock(pthread_mutex_t *mutex); + +int pthread_mutex_trylock(pthread_mutex_t *mutex); + +int pthread_mutex_unlock(pthread_mutex_t *mutex); + +int pthread_mutex_destroy(pthread_mutex_t *mutex); + +.SH DESCRIPTION +A mutex is a MUTual EXclusion device, and is useful for protecting +shared data structures from concurrent modifications, and implementing +critical sections and monitors. + +A mutex has two possible states: unlocked (not owned by any thread), +and locked (owned by one thread). A mutex can never be owned by two +different threads simultaneously. A thread attempting to lock a mutex +that is already locked by another thread is suspended until the owning +thread unlocks the mutex first. + +!pthread_mutex_init! initializes the mutex object pointed to by +|mutex| according to the mutex attributes specified in |mutexattr|. +If |mutexattr| is !NULL!, default attributes are used instead. + +The LinuxThreads implementation supports only one mutex attributes, +the |mutex kind|, which is either ``fast'', ``recursive'', or +``error checking''. The kind of a mutex determines whether +it can be locked again by a thread that already owns it. +The default kind is ``fast''. See !pthread_mutexattr_init!(3) for more +information on mutex attributes. + +Variables of type !pthread_mutex_t! can also be initialized +statically, using the constants !PTHREAD_MUTEX_INITIALIZER! (for fast +mutexes), !PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP! (for recursive +mutexes), and !PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP! (for error checking +mutexes). + +!pthread_mutex_lock! locks the given mutex. If the mutex is currently +unlocked, it becomes locked and owned by the calling thread, and +!pthread_mutex_lock! returns immediately. If the mutex is already +locked by another thread, !pthread_mutex_lock! suspends the calling +thread until the mutex is unlocked. + +If the mutex is already locked by the calling thread, the behavior of +!pthread_mutex_lock! depends on the kind of the mutex. If the mutex is +of the ``fast'' kind, the calling thread is suspended until the mutex +is unlocked, thus effectively causing the calling thread to +deadlock. If the mutex is of the ``error checking'' kind, +!pthread_mutex_lock! returns immediately with the error code !EDEADLK!. +If the mutex is of the ``recursive'' kind, !pthread_mutex_lock! +succeeds and returns immediately, recording the number of times the +calling thread has locked the mutex. An equal number of +!pthread_mutex_unlock! operations must be performed before the mutex +returns to the unlocked state. + +!pthread_mutex_trylock! behaves identically to !pthread_mutex_lock!, +except that it does not block the calling thread if the mutex is +already locked by another thread (or by the calling thread in the case +of a ``fast'' mutex). Instead, !pthread_mutex_trylock! returns +immediately with the error code !EBUSY!. + +!pthread_mutex_unlock! unlocks the given mutex. The mutex is assumed +to be locked and owned by the calling thread on entrance to +!pthread_mutex_unlock!. If the mutex is of the ``fast'' kind, +!pthread_mutex_unlock! always returns it to the unlocked state. If it +is of the ``recursive'' kind, it decrements the locking count of the +mutex (number of !pthread_mutex_lock! operations performed on it by +the calling thread), and only when this count reaches zero is the +mutex actually unlocked. + +On ``error checking'' mutexes, !pthread_mutex_unlock! actually checks +at run-time that the mutex is locked on entrance, and that it was +locked by the same thread that is now calling !pthread_mutex_unlock!. +If these conditions are not met, an error code is returned and the +mutex remains unchanged. ``Fast'' and ``recursive'' mutexes perform +no such checks, thus allowing a locked mutex to be unlocked by a +thread other than its owner. This is non-portable behavior and must +not be relied upon. + +!pthread_mutex_destroy! destroys a mutex object, freeing the resources +it might hold. The mutex must be unlocked on entrance. In the +LinuxThreads implementation, no resources are associated with mutex +objects, thus !pthread_mutex_destroy! actually does nothing except +checking that the mutex is unlocked. + +.SH CANCELLATION + +None of the mutex functions is a cancellation point, not even +!pthread_mutex_lock!, in spite of the fact that it can suspend a +thread for arbitrary durations. This way, the status of mutexes at +cancellation points is predictable, allowing cancellation handlers to +unlock precisely those mutexes that need to be unlocked before the +thread stops executing. Consequently, threads using deferred +cancellation should never hold a mutex for extended periods of time. + +.SH "ASYNC-SIGNAL SAFETY" + +The mutex functions are not async-signal safe. What this means is that +they should not be called from a signal handler. In particular, +calling !pthread_mutex_lock! or !pthread_mutex_unlock! from a signal +handler may deadlock the calling thread. + +.SH "RETURN VALUE" + +!pthread_mutex_init! always returns 0. The other mutex functions +return 0 on success and a non-zero error code on error. + +.SH ERRORS + +The !pthread_mutex_lock! function returns the following error code +on error: +.RS +.TP +!EINVAL! +the mutex has not been properly initialized. + +.TP +!EDEADLK! +the mutex is already locked by the calling thread +(``error checking'' mutexes only). +.RE + +The !pthread_mutex_trylock! function returns the following error codes +on error: +.RS +.TP +!EBUSY! +the mutex could not be acquired because it was currently locked. + +.TP +!EINVAL! +the mutex has not been properly initialized. +.RE + +The !pthread_mutex_unlock! function returns the following error code +on error: +.RS +.TP +!EINVAL! +the mutex has not been properly initialized. + +.TP +!EPERM! +the calling thread does not own the mutex (``error checking'' mutexes only). +.RE + +The !pthread_mutex_destroy! function returns the following error code +on error: +.RS +.TP +!EBUSY! +the mutex is currently locked. +.RE + +.SH AUTHOR +Xavier Leroy <Xavier.Leroy@inria.fr> + +.SH "SEE ALSO" +!pthread_mutexattr_init!(3), +!pthread_mutexattr_setkind_np!(3), +!pthread_cancel!(3). + +.SH EXAMPLE + +A shared global variable |x| can be protected by a mutex as follows: + +.RS +.ft 3 +.nf +.sp +int x; +pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER; +.ft +.LP +.RE +.fi + +All accesses and modifications to |x| should be bracketed by calls to +!pthread_mutex_lock! and !pthread_mutex_unlock! as follows: + +.RS +.ft 3 +.nf +.sp +pthread_mutex_lock(&mut); +/* operate on x */ +pthread_mutex_unlock(&mut); +.ft +.LP +.RE +.fi + + |