summaryrefslogtreecommitdiff
path: root/linuxthreads/man/pthread_mutex_init.man
diff options
context:
space:
mode:
Diffstat (limited to 'linuxthreads/man/pthread_mutex_init.man')
-rw-r--r--linuxthreads/man/pthread_mutex_init.man213
1 files changed, 213 insertions, 0 deletions
diff --git a/linuxthreads/man/pthread_mutex_init.man b/linuxthreads/man/pthread_mutex_init.man
new file mode 100644
index 0000000000..643b007aec
--- /dev/null
+++ b/linuxthreads/man/pthread_mutex_init.man
@@ -0,0 +1,213 @@
+.TH PTHREAD_MUTEX 3 LinuxThreads
+
+.XREF pthread_mutex_lock
+.XREF pthread_mutex_unlock
+.XREF pthread_mutex_trylock
+.XREF pthread_mutex_destroy
+
+.SH NAME
+pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock, pthread_mutex_destroy \- operations on mutexes
+
+.SH SYNOPSIS
+#include <pthread.h>
+
+pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;
+
+pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
+
+pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
+
+int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);
+
+int pthread_mutex_lock(pthread_mutex_t *mutex);
+
+int pthread_mutex_trylock(pthread_mutex_t *mutex);
+
+int pthread_mutex_unlock(pthread_mutex_t *mutex);
+
+int pthread_mutex_destroy(pthread_mutex_t *mutex);
+
+.SH DESCRIPTION
+A mutex is a MUTual EXclusion device, and is useful for protecting
+shared data structures from concurrent modifications, and implementing
+critical sections and monitors.
+
+A mutex has two possible states: unlocked (not owned by any thread),
+and locked (owned by one thread). A mutex can never be owned by two
+different threads simultaneously. A thread attempting to lock a mutex
+that is already locked by another thread is suspended until the owning
+thread unlocks the mutex first.
+
+!pthread_mutex_init! initializes the mutex object pointed to by
+|mutex| according to the mutex attributes specified in |mutexattr|.
+If |mutexattr| is !NULL!, default attributes are used instead.
+
+The LinuxThreads implementation supports only one mutex attributes,
+the |mutex kind|, which is either ``fast'', ``recursive'', or
+``error checking''. The kind of a mutex determines whether
+it can be locked again by a thread that already owns it.
+The default kind is ``fast''. See !pthread_mutexattr_init!(3) for more
+information on mutex attributes.
+
+Variables of type !pthread_mutex_t! can also be initialized
+statically, using the constants !PTHREAD_MUTEX_INITIALIZER! (for fast
+mutexes), !PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP! (for recursive
+mutexes), and !PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP! (for error checking
+mutexes).
+
+!pthread_mutex_lock! locks the given mutex. If the mutex is currently
+unlocked, it becomes locked and owned by the calling thread, and
+!pthread_mutex_lock! returns immediately. If the mutex is already
+locked by another thread, !pthread_mutex_lock! suspends the calling
+thread until the mutex is unlocked.
+
+If the mutex is already locked by the calling thread, the behavior of
+!pthread_mutex_lock! depends on the kind of the mutex. If the mutex is
+of the ``fast'' kind, the calling thread is suspended until the mutex
+is unlocked, thus effectively causing the calling thread to
+deadlock. If the mutex is of the ``error checking'' kind,
+!pthread_mutex_lock! returns immediately with the error code !EDEADLK!.
+If the mutex is of the ``recursive'' kind, !pthread_mutex_lock!
+succeeds and returns immediately, recording the number of times the
+calling thread has locked the mutex. An equal number of
+!pthread_mutex_unlock! operations must be performed before the mutex
+returns to the unlocked state.
+
+!pthread_mutex_trylock! behaves identically to !pthread_mutex_lock!,
+except that it does not block the calling thread if the mutex is
+already locked by another thread (or by the calling thread in the case
+of a ``fast'' mutex). Instead, !pthread_mutex_trylock! returns
+immediately with the error code !EBUSY!.
+
+!pthread_mutex_unlock! unlocks the given mutex. The mutex is assumed
+to be locked and owned by the calling thread on entrance to
+!pthread_mutex_unlock!. If the mutex is of the ``fast'' kind,
+!pthread_mutex_unlock! always returns it to the unlocked state. If it
+is of the ``recursive'' kind, it decrements the locking count of the
+mutex (number of !pthread_mutex_lock! operations performed on it by
+the calling thread), and only when this count reaches zero is the
+mutex actually unlocked.
+
+On ``error checking'' mutexes, !pthread_mutex_unlock! actually checks
+at run-time that the mutex is locked on entrance, and that it was
+locked by the same thread that is now calling !pthread_mutex_unlock!.
+If these conditions are not met, an error code is returned and the
+mutex remains unchanged. ``Fast'' and ``recursive'' mutexes perform
+no such checks, thus allowing a locked mutex to be unlocked by a
+thread other than its owner. This is non-portable behavior and must
+not be relied upon.
+
+!pthread_mutex_destroy! destroys a mutex object, freeing the resources
+it might hold. The mutex must be unlocked on entrance. In the
+LinuxThreads implementation, no resources are associated with mutex
+objects, thus !pthread_mutex_destroy! actually does nothing except
+checking that the mutex is unlocked.
+
+.SH CANCELLATION
+
+None of the mutex functions is a cancellation point, not even
+!pthread_mutex_lock!, in spite of the fact that it can suspend a
+thread for arbitrary durations. This way, the status of mutexes at
+cancellation points is predictable, allowing cancellation handlers to
+unlock precisely those mutexes that need to be unlocked before the
+thread stops executing. Consequently, threads using deferred
+cancellation should never hold a mutex for extended periods of time.
+
+.SH "ASYNC-SIGNAL SAFETY"
+
+The mutex functions are not async-signal safe. What this means is that
+they should not be called from a signal handler. In particular,
+calling !pthread_mutex_lock! or !pthread_mutex_unlock! from a signal
+handler may deadlock the calling thread.
+
+.SH "RETURN VALUE"
+
+!pthread_mutex_init! always returns 0. The other mutex functions
+return 0 on success and a non-zero error code on error.
+
+.SH ERRORS
+
+The !pthread_mutex_lock! function returns the following error code
+on error:
+.RS
+.TP
+!EINVAL!
+the mutex has not been properly initialized.
+
+.TP
+!EDEADLK!
+the mutex is already locked by the calling thread
+(``error checking'' mutexes only).
+.RE
+
+The !pthread_mutex_trylock! function returns the following error codes
+on error:
+.RS
+.TP
+!EBUSY!
+the mutex could not be acquired because it was currently locked.
+
+.TP
+!EINVAL!
+the mutex has not been properly initialized.
+.RE
+
+The !pthread_mutex_unlock! function returns the following error code
+on error:
+.RS
+.TP
+!EINVAL!
+the mutex has not been properly initialized.
+
+.TP
+!EPERM!
+the calling thread does not own the mutex (``error checking'' mutexes only).
+.RE
+
+The !pthread_mutex_destroy! function returns the following error code
+on error:
+.RS
+.TP
+!EBUSY!
+the mutex is currently locked.
+.RE
+
+.SH AUTHOR
+Xavier Leroy <Xavier.Leroy@inria.fr>
+
+.SH "SEE ALSO"
+!pthread_mutexattr_init!(3),
+!pthread_mutexattr_setkind_np!(3),
+!pthread_cancel!(3).
+
+.SH EXAMPLE
+
+A shared global variable |x| can be protected by a mutex as follows:
+
+.RS
+.ft 3
+.nf
+.sp
+int x;
+pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
+.ft
+.LP
+.RE
+.fi
+
+All accesses and modifications to |x| should be bracketed by calls to
+!pthread_mutex_lock! and !pthread_mutex_unlock! as follows:
+
+.RS
+.ft 3
+.nf
+.sp
+pthread_mutex_lock(&mut);
+/* operate on x */
+pthread_mutex_unlock(&mut);
+.ft
+.LP
+.RE
+.fi
+
+