summaryrefslogtreecommitdiff
path: root/REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c')
-rw-r--r--REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c175
1 files changed, 175 insertions, 0 deletions
diff --git a/REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c b/REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c
new file mode 100644
index 0000000000..1c8977d6ad
--- /dev/null
+++ b/REORG.TODO/sysdeps/powerpc/fpu/e_sqrt.c
@@ -0,0 +1,175 @@
+/* Double-precision floating point square root.
+ Copyright (C) 1997-2017 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <math.h>
+#include <math_private.h>
+#include <fenv_libc.h>
+#include <inttypes.h>
+#include <stdint.h>
+#include <sysdep.h>
+#include <ldsodefs.h>
+
+#ifndef _ARCH_PPCSQ
+static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
+static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
+static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
+static const float two108 = 3.245185536584267269e+32;
+static const float twom54 = 5.551115123125782702e-17;
+extern const float __t_sqrt[1024];
+
+/* The method is based on a description in
+ Computation of elementary functions on the IBM RISC System/6000 processor,
+ P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
+ Basically, it consists of two interleaved Newton-Raphson approximations,
+ one to find the actual square root, and one to find its reciprocal
+ without the expense of a division operation. The tricky bit here
+ is the use of the POWER/PowerPC multiply-add operation to get the
+ required accuracy with high speed.
+
+ The argument reduction works by a combination of table lookup to
+ obtain the initial guesses, and some careful modification of the
+ generated guesses (which mostly runs on the integer unit, while the
+ Newton-Raphson is running on the FPU). */
+
+double
+__slow_ieee754_sqrt (double x)
+{
+ const float inf = a_inf.value;
+
+ if (x > 0)
+ {
+ /* schedule the EXTRACT_WORDS to get separation between the store
+ and the load. */
+ ieee_double_shape_type ew_u;
+ ieee_double_shape_type iw_u;
+ ew_u.value = (x);
+ if (x != inf)
+ {
+ /* Variables named starting with 's' exist in the
+ argument-reduced space, so that 2 > sx >= 0.5,
+ 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
+ Variables named ending with 'i' are integer versions of
+ floating-point values. */
+ double sx; /* The value of which we're trying to find the
+ square root. */
+ double sg, g; /* Guess of the square root of x. */
+ double sd, d; /* Difference between the square of the guess and x. */
+ double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
+ double sy2; /* 2*sy */
+ double e; /* Difference between y*g and 1/2 (se = e * fsy). */
+ double shx; /* == sx * fsg */
+ double fsg; /* sg*fsg == g. */
+ fenv_t fe; /* Saved floating-point environment (stores rounding
+ mode and whether the inexact exception is
+ enabled). */
+ uint32_t xi0, xi1, sxi, fsgi;
+ const float *t_sqrt;
+
+ fe = fegetenv_register ();
+ /* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
+ xi0 = ew_u.parts.msw;
+ xi1 = ew_u.parts.lsw;
+ relax_fenv_state ();
+ sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
+ /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
+ between the store and the load. */
+ iw_u.parts.msw = sxi;
+ iw_u.parts.lsw = xi1;
+ t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
+ sg = t_sqrt[0];
+ sy = t_sqrt[1];
+ /* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
+ sx = iw_u.value;
+
+ /* Here we have three Newton-Raphson iterations each of a
+ division and a square root and the remainder of the
+ argument reduction, all interleaved. */
+ sd = -__builtin_fma (sg, sg, -sx);
+ fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
+ sy2 = sy + sy;
+ sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
+ sqrt(sx). */
+
+ /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
+ between the store and the load. */
+ INSERT_WORDS (fsg, fsgi, 0);
+ iw_u.parts.msw = fsgi;
+ iw_u.parts.lsw = (0);
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
+ if ((xi0 & 0x7ff00000) == 0)
+ goto denorm;
+ sy = __builtin_fma (e, sy2, sy);
+ sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
+ sqrt(sx). */
+ sy2 = sy + sy;
+ /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
+ fsg = iw_u.value;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
+ sy = __builtin_fma (e, sy2, sy);
+ shx = sx * fsg;
+ sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
+ sqrt(sx), but perhaps
+ rounded incorrectly. */
+ sy2 = sy + sy;
+ g = sg * fsg;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ d = -__builtin_fma (g, sg, -shx);
+ sy = __builtin_fma (e, sy2, sy);
+ fesetenv_register (fe);
+ return __builtin_fma (sy, d, g);
+ denorm:
+ /* For denormalised numbers, we normalise, calculate the
+ square root, and return an adjusted result. */
+ fesetenv_register (fe);
+ return __slow_ieee754_sqrt (x * two108) * twom54;
+ }
+ }
+ else if (x < 0)
+ {
+ /* For some reason, some PowerPC32 processors don't implement
+ FE_INVALID_SQRT. */
+#ifdef FE_INVALID_SQRT
+ __feraiseexcept (FE_INVALID_SQRT);
+
+ fenv_union_t u = { .fenv = fegetenv_register () };
+ if ((u.l & FE_INVALID) == 0)
+#endif
+ __feraiseexcept (FE_INVALID);
+ x = a_nan.value;
+ }
+ return f_wash (x);
+}
+#endif /* _ARCH_PPCSQ */
+
+#undef __ieee754_sqrt
+double
+__ieee754_sqrt (double x)
+{
+ double z;
+
+#ifdef _ARCH_PPCSQ
+ asm ("fsqrt %0,%1\n" :"=f" (z):"f" (x));
+#else
+ z = __slow_ieee754_sqrt (x);
+#endif
+
+ return z;
+}
+strong_alias (__ieee754_sqrt, __sqrt_finite)