summaryrefslogtreecommitdiff
path: root/REORG.TODO/math/k_casinh_template.c
diff options
context:
space:
mode:
Diffstat (limited to 'REORG.TODO/math/k_casinh_template.c')
-rw-r--r--REORG.TODO/math/k_casinh_template.c205
1 files changed, 205 insertions, 0 deletions
diff --git a/REORG.TODO/math/k_casinh_template.c b/REORG.TODO/math/k_casinh_template.c
new file mode 100644
index 0000000000..4ab7d4b836
--- /dev/null
+++ b/REORG.TODO/math/k_casinh_template.c
@@ -0,0 +1,205 @@
+/* Return arc hyperbolic sine for a complex float type, with the
+ imaginary part of the result possibly adjusted for use in
+ computing other functions.
+ Copyright (C) 1997-2017 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+/* Return the complex inverse hyperbolic sine of finite nonzero Z,
+ with the imaginary part of the result subtracted from pi/2 if ADJ
+ is nonzero. */
+
+CFLOAT
+M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj)
+{
+ CFLOAT res;
+ FLOAT rx, ix;
+ CFLOAT y;
+
+ /* Avoid cancellation by reducing to the first quadrant. */
+ rx = M_FABS (__real__ x);
+ ix = M_FABS (__imag__ x);
+
+ if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON)
+ {
+ /* For large x in the first quadrant, x + csqrt (1 + x * x)
+ is sufficiently close to 2 * x to make no significant
+ difference to the result; avoid possible overflow from
+ the squaring and addition. */
+ __real__ y = rx;
+ __imag__ y = ix;
+
+ if (adj)
+ {
+ FLOAT t = __real__ y;
+ __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = M_SUF (__clog) (y);
+ __real__ res += (FLOAT) M_MLIT (M_LN2);
+ }
+ else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8)
+ {
+ FLOAT s = M_HYPOT (1, rx);
+
+ __real__ res = M_LOG (rx + s);
+ if (adj)
+ __imag__ res = M_ATAN2 (s, __imag__ x);
+ else
+ __imag__ res = M_ATAN2 (ix, s);
+ }
+ else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5))
+ {
+ FLOAT s = M_SQRT ((ix + 1) * (ix - 1));
+
+ __real__ res = M_LOG (ix + s);
+ if (adj)
+ __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (s, rx);
+ }
+ else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5))
+ {
+ if (rx < M_EPSILON * M_EPSILON)
+ {
+ FLOAT ix2m1 = (ix + 1) * (ix - 1);
+ FLOAT s = M_SQRT (ix2m1);
+
+ __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (s, rx);
+ }
+ else
+ {
+ FLOAT ix2m1 = (ix + 1) * (ix - 1);
+ FLOAT rx2 = rx * rx;
+ FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
+ FLOAT d = M_SQRT (ix2m1 * ix2m1 + f);
+ FLOAT dp = d + ix2m1;
+ FLOAT dm = f / dp;
+ FLOAT r1 = M_SQRT ((dm + rx2) / 2);
+ FLOAT r2 = rx * ix / r1;
+
+ __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (ix + r2, rx + r1);
+ }
+ }
+ else if (ix == 1 && rx < M_LIT (0.5))
+ {
+ if (rx < M_EPSILON / 8)
+ {
+ __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (1, M_SQRT (rx));
+ }
+ else
+ {
+ FLOAT d = rx * M_SQRT (4 + rx * rx);
+ FLOAT s1 = M_SQRT ((d + rx * rx) / 2);
+ FLOAT s2 = M_SQRT ((d - rx * rx) / 2);
+
+ __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (1 + s2, rx + s1);
+ }
+ }
+ else if (ix < 1 && rx < M_LIT (0.5))
+ {
+ if (ix >= M_EPSILON)
+ {
+ if (rx < M_EPSILON * M_EPSILON)
+ {
+ FLOAT onemix2 = (1 + ix) * (1 - ix);
+ FLOAT s = M_SQRT (onemix2);
+
+ __real__ res = M_LOG1P (2 * rx / s) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (s, __imag__ x);
+ else
+ __imag__ res = M_ATAN2 (ix, s);
+ }
+ else
+ {
+ FLOAT onemix2 = (1 + ix) * (1 - ix);
+ FLOAT rx2 = rx * rx;
+ FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix);
+ FLOAT d = M_SQRT (onemix2 * onemix2 + f);
+ FLOAT dp = d + onemix2;
+ FLOAT dm = f / dp;
+ FLOAT r1 = M_SQRT ((dp + rx2) / 2);
+ FLOAT r2 = rx * ix / r1;
+
+ __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2,
+ __imag__ x));
+ else
+ __imag__ res = M_ATAN2 (ix + r2, rx + r1);
+ }
+ }
+ else
+ {
+ FLOAT s = M_HYPOT (1, rx);
+
+ __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2;
+ if (adj)
+ __imag__ res = M_ATAN2 (s, __imag__ x);
+ else
+ __imag__ res = M_ATAN2 (ix, s);
+ }
+ math_check_force_underflow_nonneg (__real__ res);
+ }
+ else
+ {
+ __real__ y = (rx - ix) * (rx + ix) + 1;
+ __imag__ y = 2 * rx * ix;
+
+ y = M_SUF (__csqrt) (y);
+
+ __real__ y += rx;
+ __imag__ y += ix;
+
+ if (adj)
+ {
+ FLOAT t = __real__ y;
+ __real__ y = M_COPYSIGN (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = M_SUF (__clog) (y);
+ }
+
+ /* Give results the correct sign for the original argument. */
+ __real__ res = M_COPYSIGN (__real__ res, __real__ x);
+ __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x));
+
+ return res;
+}