summaryrefslogtreecommitdiff
path: root/sysdeps
diff options
context:
space:
mode:
authorStefan Liebler <stli@linux.vnet.ibm.com>2016-12-20 15:12:48 +0100
committerStefan Liebler <stli@linux.vnet.ibm.com>2016-12-20 15:12:48 +0100
commitdd037fb3df286b7c2d0b0c6f8d02a2dd8a8e8a08 (patch)
tree6a2cf84e658ddd3271b2a93c61c83aac4070e1d0 /sysdeps
parent53c5c3d5ac238901c13f28a73ba05b0678094e80 (diff)
downloadglibc-dd037fb3df286b7c2d0b0c6f8d02a2dd8a8e8a08.tar.gz
S390: Optimize lock-elision by decrementing adapt_count at unlock.
This patch decrements the adapt_count while unlocking the futex instead of before aquiring the futex as it is done on power, too. Furthermore a transaction is only started if the futex is currently free. This check is done after starting the transaction, too. If the futex is not free and the transaction nesting depth is one, we can simply end the started transaction instead of aborting it. The implementation of this check was faulty as it always ended the started transaction. By using the fallback path, the the outermost transaction was aborted. Now the outermost transaction is aborted directly. This patch also adds some commentary and aligns the code in elision-trylock.c to the code in elision-lock.c as possible. ChangeLog: * sysdeps/unix/sysv/linux/s390/lowlevellock.h (__lll_unlock_elision, lll_unlock_elision): Add adapt_count argument. * sysdeps/unix/sysv/linux/s390/elision-lock.c: (__lll_lock_elision): Decrement adapt_count while unlocking instead of before locking. * sysdeps/unix/sysv/linux/s390/elision-trylock.c (__lll_trylock_elision): Likewise. * sysdeps/unix/sysv/linux/s390/elision-unlock.c: (__lll_unlock_elision): Likewise.
Diffstat (limited to 'sysdeps')
-rw-r--r--sysdeps/unix/sysv/linux/s390/elision-lock.c37
-rw-r--r--sysdeps/unix/sysv/linux/s390/elision-trylock.c62
-rw-r--r--sysdeps/unix/sysv/linux/s390/elision-unlock.c29
-rw-r--r--sysdeps/unix/sysv/linux/s390/lowlevellock.h4
4 files changed, 78 insertions, 54 deletions
diff --git a/sysdeps/unix/sysv/linux/s390/elision-lock.c b/sysdeps/unix/sysv/linux/s390/elision-lock.c
index 3dd7fbcd18..4a7d546253 100644
--- a/sysdeps/unix/sysv/linux/s390/elision-lock.c
+++ b/sysdeps/unix/sysv/linux/s390/elision-lock.c
@@ -50,31 +50,30 @@ __lll_lock_elision (int *futex, short *adapt_count, EXTRAARG int private)
critical section uses lock elision) and outside of transactions. Thus,
we need to use atomic accesses to avoid data races. However, the
value of adapt_count is just a hint, so relaxed MO accesses are
- sufficient. */
- if (atomic_load_relaxed (adapt_count) > 0)
- {
- /* Lost updates are possible, but harmless. Due to races this might lead
- to *adapt_count becoming less than zero. */
- atomic_store_relaxed (adapt_count,
- atomic_load_relaxed (adapt_count) - 1);
- goto use_lock;
- }
-
- if (aconf.try_tbegin > 0)
+ sufficient.
+ Do not begin a transaction if another cpu has locked the
+ futex with normal locking. If adapt_count is zero, it remains and the
+ next pthread_mutex_lock call will try to start a transaction again. */
+ if (atomic_load_relaxed (futex) == 0
+ && atomic_load_relaxed (adapt_count) <= 0 && aconf.try_tbegin > 0)
{
int status = __libc_tbegin_retry ((void *) 0, aconf.try_tbegin - 1);
if (__builtin_expect (status == _HTM_TBEGIN_STARTED,
_HTM_TBEGIN_STARTED))
{
- if (__builtin_expect (*futex == 0, 1))
+ /* Check the futex to make sure nobody has touched it in the
+ mean time. This forces the futex into the cache and makes
+ sure the transaction aborts if some other cpu uses the
+ lock (writes the futex). */
+ if (__builtin_expect (atomic_load_relaxed (futex) == 0, 1))
/* Lock was free. Return to user code in a transaction. */
return 0;
/* Lock was busy. Fall back to normal locking. */
- if (__builtin_expect (__libc_tx_nesting_depth (), 1))
+ if (__builtin_expect (__libc_tx_nesting_depth () <= 1, 1))
{
/* In a non-nested transaction there is no need to abort,
- which is expensive. */
+ which is expensive. Simply end the started transaction. */
__libc_tend ();
/* Don't try to use transactions for the next couple of times.
See above for why relaxed MO is sufficient. */
@@ -92,9 +91,9 @@ __lll_lock_elision (int *futex, short *adapt_count, EXTRAARG int private)
is zero.
The adapt_count of this inner mutex is not changed,
because using the default lock with the inner mutex
- would abort the outer transaction.
- */
+ would abort the outer transaction. */
__libc_tabort (_HTM_FIRST_USER_ABORT_CODE | 1);
+ __builtin_unreachable ();
}
}
else if (status != _HTM_TBEGIN_TRANSIENT)
@@ -110,15 +109,15 @@ __lll_lock_elision (int *futex, short *adapt_count, EXTRAARG int private)
}
else
{
- /* Same logic as above, but for for a number of temporary failures in
- a row. */
+ /* The transaction failed for some retries with
+ _HTM_TBEGIN_TRANSIENT. Use the normal locking now and for the
+ next couple of calls. */
if (aconf.skip_lock_out_of_tbegin_retries > 0)
atomic_store_relaxed (adapt_count,
aconf.skip_lock_out_of_tbegin_retries);
}
}
- use_lock:
/* Use normal locking as fallback path if transaction does not succeed. */
return LLL_LOCK ((*futex), private);
}
diff --git a/sysdeps/unix/sysv/linux/s390/elision-trylock.c b/sysdeps/unix/sysv/linux/s390/elision-trylock.c
index e21fc26253..dee66d424b 100644
--- a/sysdeps/unix/sysv/linux/s390/elision-trylock.c
+++ b/sysdeps/unix/sysv/linux/s390/elision-trylock.c
@@ -43,23 +43,36 @@ __lll_trylock_elision (int *futex, short *adapt_count)
until their try_tbegin is zero.
*/
__libc_tabort (_HTM_FIRST_USER_ABORT_CODE | 1);
+ __builtin_unreachable ();
}
- /* Only try a transaction if it's worth it. See __lll_lock_elision for
- why we need atomic accesses. Relaxed MO is sufficient because this is
- just a hint. */
- if (atomic_load_relaxed (adapt_count) <= 0)
+ /* adapt_count can be accessed concurrently; these accesses can be both
+ inside of transactions (if critical sections are nested and the outer
+ critical section uses lock elision) and outside of transactions. Thus,
+ we need to use atomic accesses to avoid data races. However, the
+ value of adapt_count is just a hint, so relaxed MO accesses are
+ sufficient.
+ Do not begin a transaction if another cpu has locked the
+ futex with normal locking. If adapt_count is zero, it remains and the
+ next pthread_mutex_lock call will try to start a transaction again. */
+ if (atomic_load_relaxed (futex) == 0
+ && atomic_load_relaxed (adapt_count) <= 0 && aconf.try_tbegin > 0)
{
- int status;
-
- if (__builtin_expect
- ((status = __libc_tbegin ((void *) 0)) == _HTM_TBEGIN_STARTED, 1))
+ int status = __libc_tbegin ((void *) 0);
+ if (__builtin_expect (status == _HTM_TBEGIN_STARTED,
+ _HTM_TBEGIN_STARTED))
{
- if (*futex == 0)
+ /* Check the futex to make sure nobody has touched it in the
+ mean time. This forces the futex into the cache and makes
+ sure the transaction aborts if some other cpu uses the
+ lock (writes the futex). */
+ if (__builtin_expect (atomic_load_relaxed (futex) == 0, 1))
+ /* Lock was free. Return to user code in a transaction. */
return 0;
- /* Lock was busy. Fall back to normal locking. */
- /* Since we are in a non-nested transaction there is no need to abort,
- which is expensive. */
+
+ /* Lock was busy. Fall back to normal locking. Since we are in
+ a non-nested transaction there is no need to abort, which is
+ expensive. Simply end the started transaction. */
__libc_tend ();
/* Note: Changing the adapt_count here might abort a transaction on a
different cpu, but that could happen anyway when the futex is
@@ -68,27 +81,18 @@ __lll_trylock_elision (int *futex, short *adapt_count)
if (aconf.skip_lock_busy > 0)
atomic_store_relaxed (adapt_count, aconf.skip_lock_busy);
}
- else
+ else if (status != _HTM_TBEGIN_TRANSIENT)
{
- if (status != _HTM_TBEGIN_TRANSIENT)
- {
- /* A persistent abort (cc 1 or 3) indicates that a retry is
- probably futile. Use the normal locking now and for the
- next couple of calls.
- Be careful to avoid writing to the lock. */
- if (aconf.skip_trylock_internal_abort > 0)
- *adapt_count = aconf.skip_trylock_internal_abort;
- }
+ /* A persistent abort (cc 1 or 3) indicates that a retry is
+ probably futile. Use the normal locking now and for the
+ next couple of calls.
+ Be careful to avoid writing to the lock. */
+ if (aconf.skip_trylock_internal_abort > 0)
+ *adapt_count = aconf.skip_trylock_internal_abort;
}
/* Could do some retries here. */
}
- else
- {
- /* Lost updates are possible, but harmless. Due to races this might lead
- to *adapt_count becoming less than zero. */
- atomic_store_relaxed (adapt_count,
- atomic_load_relaxed (adapt_count) - 1);
- }
+ /* Use normal locking as fallback path if transaction does not succeed. */
return lll_trylock (*futex);
}
diff --git a/sysdeps/unix/sysv/linux/s390/elision-unlock.c b/sysdeps/unix/sysv/linux/s390/elision-unlock.c
index 0b1ade9e5f..e68d970799 100644
--- a/sysdeps/unix/sysv/linux/s390/elision-unlock.c
+++ b/sysdeps/unix/sysv/linux/s390/elision-unlock.c
@@ -21,16 +21,37 @@
#include <htm.h>
int
-__lll_unlock_elision(int *futex, int private)
+__lll_unlock_elision(int *futex, short *adapt_count, int private)
{
/* If the lock is free, we elided the lock earlier. This does not
necessarily mean that we are in a transaction, because the user code may
- have closed the transaction, but that is impossible to detect reliably. */
- if (*futex == 0)
+ have closed the transaction, but that is impossible to detect reliably.
+ Relaxed MO access to futex is sufficient as we only need a hint, if we
+ started a transaction or acquired the futex in e.g. elision-lock.c. */
+ if (atomic_load_relaxed (futex) == 0)
{
__libc_tend ();
}
else
- lll_unlock ((*futex), private);
+ {
+ /* Update the adapt_count while unlocking before completing the critical
+ section. adapt_count is accessed concurrently outside of a
+ transaction or an aquired lock e.g. in elision-lock.c so we need to use
+ atomic accesses. However, the value of adapt_count is just a hint, so
+ relaxed MO accesses are sufficient.
+ If adapt_count would be decremented while locking, multiple
+ CPUs trying to lock the locked mutex will decrement adapt_count to
+ zero and another CPU will try to start a transaction, which will be
+ immediately aborted as the mutex is locked.
+ If adapt_count would be decremented while unlocking after completing
+ the critical section, possible waiters will be waked up before
+ decrementing the adapt_count. Those waked up waiters could have
+ destroyed and freed this mutex! */
+ short adapt_count_val = atomic_load_relaxed (adapt_count);
+ if (adapt_count_val > 0)
+ atomic_store_relaxed (adapt_count, adapt_count_val - 1);
+
+ lll_unlock ((*futex), private);
+ }
return 0;
}
diff --git a/sysdeps/unix/sysv/linux/s390/lowlevellock.h b/sysdeps/unix/sysv/linux/s390/lowlevellock.h
index ada2e5b484..09a933f421 100644
--- a/sysdeps/unix/sysv/linux/s390/lowlevellock.h
+++ b/sysdeps/unix/sysv/linux/s390/lowlevellock.h
@@ -33,7 +33,7 @@ extern int __lll_timedlock_elision
extern int __lll_lock_elision (int *futex, short *adapt_count, int private)
attribute_hidden;
-extern int __lll_unlock_elision(int *futex, int private)
+extern int __lll_unlock_elision(int *futex, short *adapt_count, int private)
attribute_hidden;
extern int __lll_trylock_elision(int *futex, short *adapt_count)
@@ -42,7 +42,7 @@ extern int __lll_trylock_elision(int *futex, short *adapt_count)
# define lll_lock_elision(futex, adapt_count, private) \
__lll_lock_elision (&(futex), &(adapt_count), private)
# define lll_unlock_elision(futex, adapt_count, private) \
- __lll_unlock_elision (&(futex), private)
+ __lll_unlock_elision (&(futex), &(adapt_count), private)
# define lll_trylock_elision(futex, adapt_count) \
__lll_trylock_elision(&(futex), &(adapt_count))
# endif /* ENABLE_LOCK_ELISION */