summaryrefslogtreecommitdiff
path: root/sysdeps/powerpc
diff options
context:
space:
mode:
authorJoseph Myers <joseph@codesourcery.com>2015-02-12 23:05:37 +0000
committerJoseph Myers <joseph@codesourcery.com>2015-02-12 23:05:37 +0000
commite8bd5286c68bc35be3b41e94c15c4387dcb3bec9 (patch)
treec62c20ff732d5a7955bf3eaeb73454c4a61bb92d /sysdeps/powerpc
parent96a157490c8db4c3be4495c4f9c0ca9ecaf5ae7c (diff)
downloadglibc-e8bd5286c68bc35be3b41e94c15c4387dcb3bec9.tar.gz
Fix powerpc software sqrt (bug 17964).
As Adhemerval noted in <https://sourceware.org/ml/libc-alpha/2015-01/msg00451.html>, the powerpc sqrt implementation for when _ARCH_PPCSQ is not defined is inaccurate in some cases. The problem is that this code relies on fused multiply-add, and relies on the compiler contracting a * b + c to get a fused operation. But sysdeps/ieee754/dbl-64/Makefile disables contraction for e_sqrt.c, because the implementation in that directory relies on *not* having contracted operations. While it would be possible to arrange makefiles so that an earlier sysdeps directory can disable the setting in sysdeps/ieee754/dbl-64/Makefile, it seems a lot cleaner to make the dependence on fused operations explicit in the .c file. GCC 4.6 introduced support for __builtin_fma on powerpc and other architectures with such instructions, so we can rely on that; this patch duly makes the code use __builtin_fma for all such fused operations. Tested for powerpc32 (hard float). 2015-02-12 Joseph Myers <joseph@codesourcery.com> [BZ #17964] * sysdeps/powerpc/fpu/e_sqrt.c (__slow_ieee754_sqrt): Use __builtin_fma instead of relying on contraction of a * b + c.
Diffstat (limited to 'sysdeps/powerpc')
-rw-r--r--sysdeps/powerpc/fpu/e_sqrt.c33
1 files changed, 18 insertions, 15 deletions
diff --git a/sysdeps/powerpc/fpu/e_sqrt.c b/sysdeps/powerpc/fpu/e_sqrt.c
index 0934faa5fe..9b55ef8390 100644
--- a/sysdeps/powerpc/fpu/e_sqrt.c
+++ b/sysdeps/powerpc/fpu/e_sqrt.c
@@ -99,38 +99,41 @@ __slow_ieee754_sqrt (double x)
/* Here we have three Newton-Raphson iterations each of a
division and a square root and the remainder of the
argument reduction, all interleaved. */
- sd = -(sg * sg - sx);
+ sd = -__builtin_fma (sg, sg, -sx);
fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
sy2 = sy + sy;
- sg = sy * sd + sg; /* 16-bit approximation to sqrt(sx). */
+ sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
+ sqrt(sx). */
/* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
between the store and the load. */
INSERT_WORDS (fsg, fsgi, 0);
iw_u.parts.msw = fsgi;
iw_u.parts.lsw = (0);
- e = -(sy * sg - almost_half);
- sd = -(sg * sg - sx);
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
if ((xi0 & 0x7ff00000) == 0)
goto denorm;
- sy = sy + e * sy2;
- sg = sg + sy * sd; /* 32-bit approximation to sqrt(sx). */
+ sy = __builtin_fma (e, sy2, sy);
+ sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
+ sqrt(sx). */
sy2 = sy + sy;
/* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
fsg = iw_u.value;
- e = -(sy * sg - almost_half);
- sd = -(sg * sg - sx);
- sy = sy + e * sy2;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ sd = -__builtin_fma (sg, sg, -sx);
+ sy = __builtin_fma (e, sy2, sy);
shx = sx * fsg;
- sg = sg + sy * sd; /* 64-bit approximation to sqrt(sx),
- but perhaps rounded incorrectly. */
+ sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
+ sqrt(sx), but perhaps
+ rounded incorrectly. */
sy2 = sy + sy;
g = sg * fsg;
- e = -(sy * sg - almost_half);
- d = -(g * sg - shx);
- sy = sy + e * sy2;
+ e = -__builtin_fma (sy, sg, -almost_half);
+ d = -__builtin_fma (g, sg, -shx);
+ sy = __builtin_fma (e, sy2, sy);
fesetenv_register (fe);
- return g + sy * d;
+ return __builtin_fma (sy, d, g);
denorm:
/* For denormalised numbers, we normalise, calculate the
square root, and return an adjusted result. */