summaryrefslogtreecommitdiff
path: root/sysdeps/powerpc/power4/fpu/mpa.c
diff options
context:
space:
mode:
authorSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-08 11:38:41 +0530
committerSiddhesh Poyarekar <siddhesh@redhat.com>2013-03-08 11:38:41 +0530
commit6d9145d817e570cd986bb088cf2af0bf51ac7dde (patch)
tree145d9913f7ccb0479b1da335e207efc1d034c9c5 /sysdeps/powerpc/power4/fpu/mpa.c
parentf5ad94e02ab6b086506cef1f3fea6fe4218073e6 (diff)
downloadglibc-6d9145d817e570cd986bb088cf2af0bf51ac7dde.tar.gz
Consolidate copies of mp code in powerpc
Retain a single copy of the mp code in power4 instead of the two identical copies in powerpc32 and powerpc64.
Diffstat (limited to 'sysdeps/powerpc/power4/fpu/mpa.c')
-rw-r--r--sysdeps/powerpc/power4/fpu/mpa.c214
1 files changed, 214 insertions, 0 deletions
diff --git a/sysdeps/powerpc/power4/fpu/mpa.c b/sysdeps/powerpc/power4/fpu/mpa.c
new file mode 100644
index 0000000000..1858c97407
--- /dev/null
+++ b/sysdeps/powerpc/power4/fpu/mpa.c
@@ -0,0 +1,214 @@
+
+/*
+ * IBM Accurate Mathematical Library
+ * written by International Business Machines Corp.
+ * Copyright (C) 2001-2013 Free Software Foundation, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation; either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* Define __mul and __sqr and use the rest from generic code. */
+#define NO__MUL
+#define NO__SQR
+
+#include <sysdeps/ieee754/dbl-64/mpa.c>
+
+/* Multiply *X and *Y and store result in *Z. X and Y may overlap but not X
+ and Z or Y and Z. For P in [1, 2, 3], the exact result is truncated to P
+ digits. In case P > 3 the error is bounded by 1.001 ULP. */
+void
+__mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
+{
+ long i, i1, i2, j, k, k2;
+ long p2 = p;
+ double u, zk, zk2;
+
+ /* Is z=0? */
+ if (__glibc_unlikely (X[0] * Y[0] == ZERO))
+ {
+ Z[0] = ZERO;
+ return;
+ }
+
+ /* Multiply, add and carry */
+ k2 = (p2 < 3) ? p2 + p2 : p2 + 3;
+ zk = Z[k2] = ZERO;
+ for (k = k2; k > 1;)
+ {
+ if (k > p2)
+ {
+ i1 = k - p2;
+ i2 = p2 + 1;
+ }
+ else
+ {
+ i1 = 1;
+ i2 = k;
+ }
+#if 1
+ /* Rearrange this inner loop to allow the fmadd instructions to be
+ independent and execute in parallel on processors that have
+ dual symmetrical FP pipelines. */
+ if (i1 < (i2 - 1))
+ {
+ /* Make sure we have at least 2 iterations. */
+ if (((i2 - i1) & 1L) == 1L)
+ {
+ /* Handle the odd iterations case. */
+ zk2 = x->d[i2 - 1] * y->d[i1];
+ }
+ else
+ zk2 = 0.0;
+ /* Do two multiply/adds per loop iteration, using independent
+ accumulators; zk and zk2. */
+ for (i = i1, j = i2 - 1; i < i2 - 1; i += 2, j -= 2)
+ {
+ zk += x->d[i] * y->d[j];
+ zk2 += x->d[i + 1] * y->d[j - 1];
+ }
+ zk += zk2; /* Final sum. */
+ }
+ else
+ {
+ /* Special case when iterations is 1. */
+ zk += x->d[i1] * y->d[i1];
+ }
+#else
+ /* The original code. */
+ for (i = i1, j = i2 - 1; i < i2; i++, j--)
+ zk += X[i] * Y[j];
+#endif
+
+ u = (zk + CUTTER) - CUTTER;
+ if (u > zk)
+ u -= RADIX;
+ Z[k] = zk - u;
+ zk = u * RADIXI;
+ --k;
+ }
+ Z[k] = zk;
+
+ int e = EX + EY;
+ /* Is there a carry beyond the most significant digit? */
+ if (Z[1] == ZERO)
+ {
+ for (i = 1; i <= p2; i++)
+ Z[i] = Z[i + 1];
+ e--;
+ }
+
+ EZ = e;
+ Z[0] = X[0] * Y[0];
+}
+
+/* Square *X and store result in *Y. X and Y may not overlap. For P in
+ [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
+ error is bounded by 1.001 ULP. This is a faster special case of
+ multiplication. */
+void
+__sqr (const mp_no *x, mp_no *y, int p)
+{
+ long i, j, k, ip;
+ double u, yk;
+
+ /* Is z=0? */
+ if (__glibc_unlikely (X[0] == ZERO))
+ {
+ Y[0] = ZERO;
+ return;
+ }
+
+ /* We need not iterate through all X's since it's pointless to
+ multiply zeroes. */
+ for (ip = p; ip > 0; ip--)
+ if (X[ip] != ZERO)
+ break;
+
+ k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
+
+ while (k > 2 * ip + 1)
+ Y[k--] = ZERO;
+
+ yk = ZERO;
+
+ while (k > p)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* In __mul, this loop (and the one within the next while loop) run
+ between a range to calculate the mantissa as follows:
+
+ Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
+ + X[n] * Y[k]
+
+ For X == Y, we can get away with summing halfway and doubling the
+ result. For cases where the range size is even, the mid-point needs
+ to be added separately (above). */
+ for (i = k - p, j = p; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+
+ while (k > 1)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* Likewise for this loop. */
+ for (i = 1, j = k - 1; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+ Y[k] = yk;
+
+ /* Squares are always positive. */
+ Y[0] = 1.0;
+
+ int e = EX * 2;
+ /* Is there a carry beyond the most significant digit? */
+ if (__glibc_unlikely (Y[1] == ZERO))
+ {
+ for (i = 1; i <= p; i++)
+ Y[i] = Y[i + 1];
+ e--;
+ }
+ EY = e;
+}