diff options
author | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
---|---|---|
committer | Ulrich Drepper <drepper@gmail.com> | 2012-01-07 11:19:05 -0500 |
commit | d75a0a62b12c35ee85f786d5f8d155ab39909411 (patch) | |
tree | c3479d23878ef4ab05629d4a60f4f7623269c1dd /sysdeps/ia64/fpu/e_expf.S | |
parent | dcc9756b5bfbb2b97f73bad863d7e1c4002bea98 (diff) | |
download | glibc-d75a0a62b12c35ee85f786d5f8d155ab39909411.tar.gz |
Remove IA-64 support
Diffstat (limited to 'sysdeps/ia64/fpu/e_expf.S')
-rw-r--r-- | sysdeps/ia64/fpu/e_expf.S | 716 |
1 files changed, 0 insertions, 716 deletions
diff --git a/sysdeps/ia64/fpu/e_expf.S b/sysdeps/ia64/fpu/e_expf.S deleted file mode 100644 index 6fe0a833e2..0000000000 --- a/sysdeps/ia64/fpu/e_expf.S +++ /dev/null @@ -1,716 +0,0 @@ -.file "expf.s" - - -// Copyright (c) 2000 - 2005, Intel Corporation -// All rights reserved. -// -// Contributed 2000 by the Intel Numerics Group, Intel Corporation -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. - -// History -//********************************************************************* -// 02/02/00 Original version -// 04/04/00 Unwind support added -// 08/15/00 Bundle added after call to __libm_error_support to properly -// set [the previously overwritten] GR_Parameter_RESULT. -// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case -// 12/07/00 Widen main path, shorten x=inf, nan paths -// 03/15/01 Fix monotonicity problem around x=0 for round to +inf -// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path -// 05/20/02 Cleaned up namespace and sf0 syntax -// 07/26/02 Algorithm changed, accuracy improved -// 09/26/02 support of higher precision inputs added, underflow threshold -// corrected -// 11/15/02 Improved performance on Itanium 2, added possible over/under paths -// 05/30/03 Set inexact flag on unmasked overflow/underflow -// 03/31/05 Reformatted delimiters between data tables -// -// -// API -//********************************************************************* -// float expf(float) -// -// Overview of operation -//********************************************************************* -// Take the input x. w is "how many log2/128 in x?" -// w = x * 64/log2 -// NJ = int(w) -// x = NJ*log2/64 + R - -// NJ = 64*n + j -// x = n*log2 + (log2/64)*j + R -// -// So, exp(x) = 2^n * 2^(j/64)* exp(R) -// -// T = 2^n * 2^(j/64) -// Construct 2^n -// Get 2^(j/64) table -// actually all the entries of 2^(j/64) table are stored in DP and -// with exponent bits set to 0 -> multiplication on 2^n can be -// performed by doing logical "or" operation with bits presenting 2^n - -// exp(R) = 1 + (exp(R) - 1) -// P = exp(R) - 1 approximated by Taylor series of 3rd degree -// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2 -// - -// The final result is reconstructed as follows -// exp(x) = T + T*P - -// Special values -//********************************************************************* -// expf(+0) = 1.0 -// expf(-0) = 1.0 - -// expf(+qnan) = +qnan -// expf(-qnan) = -qnan -// expf(+snan) = +qnan -// expf(-snan) = -qnan - -// expf(-inf) = +0 -// expf(+inf) = +inf - -// Overflow and Underflow -//********************************************************************* -// expf(x) = largest single normal when -// x = 88.72283 = 0x42b17217 - -// expf(x) = smallest single normal when -// x = -87.33654 = 0xc2aeac4f - -// expf(x) = largest round-to-nearest single zero when -// x = -103.97208 = 0xc2cff1b5 - - -// Registers used -//********************************************************************* -// Floating Point registers used: -// f8, input -// f6,f7, f9 -> f15, f32 -> f40 - -// General registers used: -// r3, r23 -> r38 - -// Predicate registers used: -// p10 -> p15 - -// Assembly macros -//********************************************************************* -// integer registers used -// scratch -rNJ = r3 - -rTmp = r23 -rJ = r23 -rN = r24 -rTblAddr = r25 -rA3 = r26 -rExpHalf = r27 -rLn2Div64 = r28 -r17ones_m1 = r29 -rGt_ln = r29 -rRightShifter = r30 -r64DivLn2 = r31 -// stacked -GR_SAVE_PFS = r32 -GR_SAVE_B0 = r33 -GR_SAVE_GP = r34 -GR_Parameter_X = r35 -GR_Parameter_Y = r36 -GR_Parameter_RESULT = r37 -GR_Parameter_TAG = r38 - -// floating point registers used -FR_X = f10 -FR_Y = f1 -FR_RESULT = f8 -// scratch -fRightShifter = f6 -f64DivLn2 = f7 -fNormX = f9 -fNint = f10 -fN = f11 -fR = f12 -fLn2Div64 = f13 -fA2 = f14 -fA3 = f15 -// stacked -fP = f32 -fT = f33 -fMIN_SGL_OFLOW_ARG = f34 -fMAX_SGL_ZERO_ARG = f35 -fMAX_SGL_NORM_ARG = f36 -fMIN_SGL_NORM_ARG = f37 -fRSqr = f38 -fTmp = f39 -fGt_pln = f39 -fWre_urm_f8 = f40 -fFtz_urm_f8 = f40 - - -RODATA -.align 16 - -LOCAL_OBJECT_START(_expf_table) -data4 0x42b17218 // Smallest sgl arg to overflow sgl result, +88.7228 -data4 0xc2cff1b5 // Largest sgl for rnd-to-nearest 0 result, -103.9720 -data4 0x42b17217 // Largest sgl arg to give normal sgl result, +88.7228 -data4 0xc2aeac4f // Smallest sgl arg to give normal sgl result, -87.3365 -// -// 2^(j/64) table, j goes from 0 to 63 -data8 0x0000000000000000 // 2^(0/64) -data8 0x00002C9A3E778061 // 2^(1/64) -data8 0x000059B0D3158574 // 2^(2/64) -data8 0x0000874518759BC8 // 2^(3/64) -data8 0x0000B5586CF9890F // 2^(4/64) -data8 0x0000E3EC32D3D1A2 // 2^(5/64) -data8 0x00011301D0125B51 // 2^(6/64) -data8 0x0001429AAEA92DE0 // 2^(7/64) -data8 0x000172B83C7D517B // 2^(8/64) -data8 0x0001A35BEB6FCB75 // 2^(9/64) -data8 0x0001D4873168B9AA // 2^(10/64) -data8 0x0002063B88628CD6 // 2^(11/64) -data8 0x0002387A6E756238 // 2^(12/64) -data8 0x00026B4565E27CDD // 2^(13/64) -data8 0x00029E9DF51FDEE1 // 2^(14/64) -data8 0x0002D285A6E4030B // 2^(15/64) -data8 0x000306FE0A31B715 // 2^(16/64) -data8 0x00033C08B26416FF // 2^(17/64) -data8 0x000371A7373AA9CB // 2^(18/64) -data8 0x0003A7DB34E59FF7 // 2^(19/64) -data8 0x0003DEA64C123422 // 2^(20/64) -data8 0x0004160A21F72E2A // 2^(21/64) -data8 0x00044E086061892D // 2^(22/64) -data8 0x000486A2B5C13CD0 // 2^(23/64) -data8 0x0004BFDAD5362A27 // 2^(24/64) -data8 0x0004F9B2769D2CA7 // 2^(25/64) -data8 0x0005342B569D4F82 // 2^(26/64) -data8 0x00056F4736B527DA // 2^(27/64) -data8 0x0005AB07DD485429 // 2^(28/64) -data8 0x0005E76F15AD2148 // 2^(29/64) -data8 0x0006247EB03A5585 // 2^(30/64) -data8 0x0006623882552225 // 2^(31/64) -data8 0x0006A09E667F3BCD // 2^(32/64) -data8 0x0006DFB23C651A2F // 2^(33/64) -data8 0x00071F75E8EC5F74 // 2^(34/64) -data8 0x00075FEB564267C9 // 2^(35/64) -data8 0x0007A11473EB0187 // 2^(36/64) -data8 0x0007E2F336CF4E62 // 2^(37/64) -data8 0x00082589994CCE13 // 2^(38/64) -data8 0x000868D99B4492ED // 2^(39/64) -data8 0x0008ACE5422AA0DB // 2^(40/64) -data8 0x0008F1AE99157736 // 2^(41/64) -data8 0x00093737B0CDC5E5 // 2^(42/64) -data8 0x00097D829FDE4E50 // 2^(43/64) -data8 0x0009C49182A3F090 // 2^(44/64) -data8 0x000A0C667B5DE565 // 2^(45/64) -data8 0x000A5503B23E255D // 2^(46/64) -data8 0x000A9E6B5579FDBF // 2^(47/64) -data8 0x000AE89F995AD3AD // 2^(48/64) -data8 0x000B33A2B84F15FB // 2^(49/64) -data8 0x000B7F76F2FB5E47 // 2^(50/64) -data8 0x000BCC1E904BC1D2 // 2^(51/64) -data8 0x000C199BDD85529C // 2^(52/64) -data8 0x000C67F12E57D14B // 2^(53/64) -data8 0x000CB720DCEF9069 // 2^(54/64) -data8 0x000D072D4A07897C // 2^(55/64) -data8 0x000D5818DCFBA487 // 2^(56/64) -data8 0x000DA9E603DB3285 // 2^(57/64) -data8 0x000DFC97337B9B5F // 2^(58/64) -data8 0x000E502EE78B3FF6 // 2^(59/64) -data8 0x000EA4AFA2A490DA // 2^(60/64) -data8 0x000EFA1BEE615A27 // 2^(61/64) -data8 0x000F50765B6E4540 // 2^(62/64) -data8 0x000FA7C1819E90D8 // 2^(63/64) -LOCAL_OBJECT_END(_expf_table) - - -.section .text -GLOBAL_IEEE754_ENTRY(expf) - -{ .mlx - addl rTblAddr = @ltoff(_expf_table),gp - movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2) -} -{ .mlx - addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP - movl rRightShifter = 0x43E8000000000000 // DP Right Shifter -} -;; - -{ .mfi - // point to the beginning of the table - ld8 rTblAddr = [rTblAddr] - fclass.m p14, p0 = f8, 0x22 // test for -INF - shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP -} -{ .mfi - nop.m 0 - fnorm.s1 fNormX = f8 // normalized x - addl rExpHalf = 0xFFFE, r0 // exponent of 1/2 -} -;; - -{ .mfi - setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg - fclass.m p15, p0 = f8, 0x1e1 // test for NaT,NaN,+Inf - nop.i 0 -} -{ .mlx - // load Right Shifter to FP reg - setf.d fRightShifter = rRightShifter - movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR -} -;; - -{ .mfi - nop.m 0 - fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0 - nop.i 0 -} -{ .mfb - setf.s fA3 = rA3 // load A3 to FP reg -(p14) fma.s.s0 f8 = f0, f1, f0 // result if x = -inf -(p14) br.ret.spnt b0 // exit here if x = -inf -} -;; - -{ .mfi - setf.exp fA2 = rExpHalf // load A2 to FP reg - fcmp.eq.s0 p6, p0 = f8, f0 // Dummy to flag denorm - nop.i 0 -} -{ .mfb - setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg -(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf -(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf -} -;; - -{ .mfb - // overflow and underflow_zero threshold - ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8 -(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0 -(p13) br.ret.spnt b0 // exit here if x =0.0 -} -;; - - // max normal and underflow_denorm threshold -{ .mfi - ldfps fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8 - nop.f 0 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - // x*(64/ln(2)) + Right Shifter - fma.s1 fNint = fNormX, f64DivLn2, fRightShifter - nop.i 0 -} -;; - -// Divide arguments into the following categories: -// Certain Underflow p11 - -inf < x <= MAX_SGL_ZERO_ARG -// Possible Underflow p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG -// Certain Safe - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG -// Possible Overflow p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG -// Certain Overflow p15 - MIN_SGL_OFLOW_ARG <= x < +inf -// -// If the input is really a single arg, then there will never be -// "Possible Overflow" arguments. -// - -{ .mfi - nop.m 0 - // check for overflow - fcmp.ge.s1 p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - // check for underflow and tiny (+0) result - fcmp.le.s1 p11, p0 = fNormX, fMAX_SGL_ZERO_ARG - nop.i 0 -} -{ .mfb - nop.m 0 - fms.s1 fN = fNint, f1, fRightShifter // n in FP register - // branch out if overflow -(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW -} -;; - -{ .mfb - getf.sig rNJ = fNint // bits of n, j - // check for underflow and deno result - fcmp.lt.s1 p13, p0 = fNormX, fMIN_SGL_NORM_ARG - // branch out if underflow and tiny (+0) result -(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW -} -;; - -{ .mfi - nop.m 0 - // check for possible overflow - fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG - extr.u rJ = rNJ, 0, 6 // bits of j -} -{ .mfi - addl rN = 0xFFFF - 63, rNJ // biased and shifted n - fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64 - nop.i 0 -} -;; - -{ .mfi - shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table - nop.f 0 - shr rN = rN, 6 // biased n -} -;; - -{ .mfi - ld8 rJ = [rJ] - nop.f 0 - shl rN = rN, 52 // 2^n bits in DP format -} -;; - -{ .mfi - or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format - nop.f 0 - nop.i 0 -} -;; - -{ .mfi - setf.d fT = rN // 2^n * 2^(j/64) - fma.s1 fP = fA3, fR, fA2 // A3*R + A2 - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s1 fRSqr = fR, fR, f0 // R^2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R - nop.i 0 -} -;; - -{ .mbb - nop.m 0 - // branch out if possible underflow -(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW - // branch out if possible overflow result -(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW -} -;; - -{ .mfb - nop.m 0 - // final result in the absence of over- and underflow - fma.s.s0 f8 = fP, fT, fT - // exit here in the absence of over- and underflow - br.ret.sptk b0 -} -;; - -EXP_POSSIBLE_OVERFLOW: - -// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG -// This cannot happen if input is a single, only if input higher precision. -// Overflow is a possibility, not a certainty. - -// Recompute result using status field 2 with user's rounding mode, -// and wre set. If result is larger than largest single, then we have -// overflow - -{ .mfi - mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp - fsetc.s2 0x7F,0x42 // Get user's round mode, set wre - nop.i 0 -} -;; - -{ .mfi - setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp - fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x40 // Turn off wre in sf2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - nop.f 0 -(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow -} -;; - -{ .mfb - nop.m 0 - fma.s.s0 f8 = fP, fT, fT - br.ret.sptk b0 // Exit if really no overflow -} -;; - -// here if overflow -EXP_CERTAIN_OVERFLOW: -{ .mmi - addl r17ones_m1 = 0x1FFFE, r0 -;; - setf.exp fTmp = r17ones_m1 - nop.i 0 -} -;; - -{ .mfi - alloc r32=ar.pfs,0,3,4,0 - fmerge.s FR_X = f8,f8 - nop.i 0 -} -{ .mfb - mov GR_Parameter_TAG = 16 - fma.s.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result - br.cond.sptk __libm_error_region -} -;; - -EXP_POSSIBLE_UNDERFLOW: - -// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG -// Underflow is a possibility, not a certainty - -// We define an underflow when the answer with -// ftz set -// is zero (tiny numbers become zero) - -// Notice (from below) that if we have an unlimited exponent range, -// then there is an extra machine number E between the largest denormal and -// the smallest normal. - -// So if with unbounded exponent we round to E or below, then we are -// tiny and underflow has occurred. - -// But notice that you can be in a situation where we are tiny, namely -// rounded to E, but when the exponent is bounded we round to smallest -// normal. So the answer can be the smallest normal with underflow. - -// E -// -----+--------------------+--------------------+----- -// | | | -// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe -// 0.1...11 2^-3ffe (biased, 1) -// largest dn smallest normal - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fma.s.s2 fFtz_urm_f8 = fP, fT, fT // Result with ftz set - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fsetc.s2 0x7F,0x40 // Turn off ftz in sf2 - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow - nop.i 0 -} -{ .mfi - nop.m 0 - fma.s.s0 f8 = fP, fT, fT // Compute result, set I, maybe U - nop.i 0 -} -;; - -{ .mbb - nop.m 0 -(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow -(p7) br.ret.sptk b0 // Exit if really no underflow -} -;; - -EXP_CERTAIN_UNDERFLOW: -// Here if x < fMAX_SGL_ZERO_ARG -// Result will be zero (or smallest denorm if round to +inf) with I, U set -{ .mmi - mov rTmp = 1 -;; - setf.exp fTmp = rTmp // Form small normal - nop.i 0 -} -;; - -{ .mfi - nop.m 0 - fmerge.se fTmp = fTmp, f64DivLn2 // Small with non-trial signif - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fma.s.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result - br.cond.sptk EXP_UNDERFLOW_COMMON -} -;; - -EXP_UNDERFLOW_COMMON: -// Determine if underflow result is zero or nonzero -{ .mfi - alloc r32=ar.pfs,0,3,4,0 - fcmp.eq.s1 p6, p0 = f8, f0 - nop.i 0 -} -;; - -{ .mfb - nop.m 0 - fmerge.s FR_X = fNormX,fNormX -(p6) br.cond.spnt EXP_UNDERFLOW_ZERO -} -;; - -EXP_UNDERFLOW_NONZERO: -// Here if x < fMIN_SGL_NORM_ARG and result nonzero; -// I, U are set -{ .mfb - mov GR_Parameter_TAG = 17 - nop.f 0 // FR_RESULT already set - br.cond.sptk __libm_error_region -} -;; - -EXP_UNDERFLOW_ZERO: -// Here if x < fMIN_SGL_NORM_ARG and result zero; -// I, U are set -{ .mfb - mov GR_Parameter_TAG = 17 - nop.f 0 // FR_RESULT already set - br.cond.sptk __libm_error_region -} -;; - -GLOBAL_IEEE754_END(expf) - - -LOCAL_LIBM_ENTRY(__libm_error_region) -.prologue -{ .mfi - add GR_Parameter_Y=-32,sp // Parameter 2 value - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs // Save ar.pfs -} -{ .mfi -.fframe 64 - add sp=-64,sp // Create new stack - nop.f 0 - mov GR_SAVE_GP=gp // Save gp -};; -{ .mmi - stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack - add GR_Parameter_X = 16,sp // Parameter 1 address -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 // Save b0 -};; -.body -{ .mfi - stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack - nop.f 0 - add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address -} -{ .mib - stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack - add GR_Parameter_Y = -16,GR_Parameter_Y - br.call.sptk b0=__libm_error_support# // Call error handling function -};; - -{ .mmi - add GR_Parameter_RESULT = 48,sp - nop.m 0 - nop.i 0 -};; - -{ .mmi - ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack -.restore sp - add sp = 64,sp // Restore stack pointer - mov b0 = GR_SAVE_B0 // Restore return address -};; -{ .mib - mov gp = GR_SAVE_GP // Restore gp - mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs - br.ret.sptk b0 // Return -};; - -LOCAL_LIBM_END(__libm_error_region) - - -.type __libm_error_support#,@function -.global __libm_error_support# |