diff options
author | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
---|---|---|
committer | Ulrich Drepper <drepper@redhat.com> | 2004-12-22 20:10:10 +0000 |
commit | a334319f6530564d22e775935d9c91663623a1b4 (patch) | |
tree | b5877475619e4c938e98757d518bb1e9cbead751 /powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu | |
parent | 0ecb606cb6cf65de1d9fc8a919bceb4be476c602 (diff) | |
download | glibc-a334319f6530564d22e775935d9c91663623a1b4.tar.gz |
(CFLAGS-tst-align.c): Add -mpreferred-stack-boundary=4.
Diffstat (limited to 'powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu')
4 files changed, 0 insertions, 649 deletions
diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies deleted file mode 100644 index 128f8aadcb..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Implies +++ /dev/null @@ -1 +0,0 @@ -powerpc/powerpc32/powerpc64/fpu diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile deleted file mode 100644 index a6fa75ecbc..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/Makefile +++ /dev/null @@ -1,5 +0,0 @@ -# Makefile fragment for POWER4/5/5+ with FPU. - -ifeq ($(subdir),math) -CFLAGS-mpa.c += --param max-unroll-times=4 -funroll-loops -fpeel-loops -ftree-loop-linear -endif diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c deleted file mode 100644 index 4a232e27bf..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c +++ /dev/null @@ -1,549 +0,0 @@ - -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001, 2006 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/************************************************************************/ -/* MODULE_NAME: mpa.c */ -/* */ -/* FUNCTIONS: */ -/* mcr */ -/* acr */ -/* cr */ -/* cpy */ -/* cpymn */ -/* norm */ -/* denorm */ -/* mp_dbl */ -/* dbl_mp */ -/* add_magnitudes */ -/* sub_magnitudes */ -/* add */ -/* sub */ -/* mul */ -/* inv */ -/* dvd */ -/* */ -/* Arithmetic functions for multiple precision numbers. */ -/* Relative errors are bounded */ -/************************************************************************/ - - -#include "endian.h" -#include "mpa.h" -#include "mpa2.h" -#include <sys/param.h> /* For MIN() */ -/* mcr() compares the sizes of the mantissas of two multiple precision */ -/* numbers. Mantissas are compared regardless of the signs of the */ -/* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */ -/* disregarded. */ -static int mcr(const mp_no *x, const mp_no *y, int p) { - long i; - long p2 = p; - for (i=1; i<=p2; i++) { - if (X[i] == Y[i]) continue; - else if (X[i] > Y[i]) return 1; - else return -1; } - return 0; -} - - - -/* acr() compares the absolute values of two multiple precision numbers */ -int __acr(const mp_no *x, const mp_no *y, int p) { - long i; - - if (X[0] == ZERO) { - if (Y[0] == ZERO) i= 0; - else i=-1; - } - else if (Y[0] == ZERO) i= 1; - else { - if (EX > EY) i= 1; - else if (EX < EY) i=-1; - else i= mcr(x,y,p); - } - - return i; -} - - -/* cr90 compares the values of two multiple precision numbers */ -int __cr(const mp_no *x, const mp_no *y, int p) { - int i; - - if (X[0] > Y[0]) i= 1; - else if (X[0] < Y[0]) i=-1; - else if (X[0] < ZERO ) i= __acr(y,x,p); - else i= __acr(x,y,p); - - return i; -} - - -/* Copy a multiple precision number. Set *y=*x. x=y is permissible. */ -void __cpy(const mp_no *x, mp_no *y, int p) { - long i; - - EY = EX; - for (i=0; i <= p; i++) Y[i] = X[i]; - - return; -} - - -/* Copy a multiple precision number x of precision m into a */ -/* multiple precision number y of precision n. In case n>m, */ -/* the digits of y beyond the m'th are set to zero. In case */ -/* n<m, the digits of x beyond the n'th are ignored. */ -/* x=y is permissible. */ - -void __cpymn(const mp_no *x, int m, mp_no *y, int n) { - - long i,k; - long n2 = n; - long m2 = m; - - EY = EX; k=MIN(m2,n2); - for (i=0; i <= k; i++) Y[i] = X[i]; - for ( ; i <= n2; i++) Y[i] = ZERO; - - return; -} - -/* Convert a multiple precision number *x into a double precision */ -/* number *y, normalized case (|x| >= 2**(-1022))) */ -static void norm(const mp_no *x, double *y, int p) -{ - #define R radixi.d - long i; -#if 0 - int k; -#endif - double a,c,u,v,z[5]; - if (p<5) { - if (p==1) c = X[1]; - else if (p==2) c = X[1] + R* X[2]; - else if (p==3) c = X[1] + R*(X[2] + R* X[3]); - else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]); - } - else { - for (a=ONE, z[1]=X[1]; z[1] < TWO23; ) - {a *= TWO; z[1] *= TWO; } - - for (i=2; i<5; i++) { - z[i] = X[i]*a; - u = (z[i] + CUTTER)-CUTTER; - if (u > z[i]) u -= RADIX; - z[i] -= u; - z[i-1] += u*RADIXI; - } - - u = (z[3] + TWO71) - TWO71; - if (u > z[3]) u -= TWO19; - v = z[3]-u; - - if (v == TWO18) { - if (z[4] == ZERO) { - for (i=5; i <= p; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } - } - } - else z[3] += ONE; - } - - c = (z[1] + R *(z[2] + R * z[3]))/a; - } - - c *= X[0]; - - for (i=1; i<EX; i++) c *= RADIX; - for (i=1; i>EX; i--) c *= RADIXI; - - *y = c; - return; -#undef R -} - -/* Convert a multiple precision number *x into a double precision */ -/* number *y, denormalized case (|x| < 2**(-1022))) */ -static void denorm(const mp_no *x, double *y, int p) -{ - long i,k; - long p2 = p; - double c,u,z[5]; -#if 0 - double a,v; -#endif - -#define R radixi.d - if (EX<-44 || (EX==-44 && X[1]<TWO5)) - { *y=ZERO; return; } - - if (p2==1) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else if (p2==2) { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;} - } - else { - if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;} - else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;} - else {z[1]= TWO10; z[2]=ZERO; k=1;} - z[3] = X[k]; - } - - u = (z[3] + TWO57) - TWO57; - if (u > z[3]) u -= TWO5; - - if (u==z[3]) { - for (i=k+1; i <= p2; i++) { - if (X[i] == ZERO) continue; - else {z[3] += ONE; break; } - } - } - - c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10); - - *y = c*TWOM1032; - return; - -#undef R -} - -/* Convert a multiple precision number *x into a double precision number *y. */ -/* The result is correctly rounded to the nearest/even. *x is left unchanged */ - -void __mp_dbl(const mp_no *x, double *y, int p) { -#if 0 - int i,k; - double a,c,u,v,z[5]; -#endif - - if (X[0] == ZERO) {*y = ZERO; return; } - - if (EX> -42) norm(x,y,p); - else if (EX==-42 && X[1]>=TWO10) norm(x,y,p); - else denorm(x,y,p); -} - - -/* dbl_mp() converts a double precision number x into a multiple precision */ -/* number *y. If the precision p is too small the result is truncated. x is */ -/* left unchanged. */ - -void __dbl_mp(double x, mp_no *y, int p) { - - long i,n; - long p2 = p; - double u; - - /* Sign */ - if (x == ZERO) {Y[0] = ZERO; return; } - else if (x > ZERO) Y[0] = ONE; - else {Y[0] = MONE; x=-x; } - - /* Exponent */ - for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI; - for ( ; x < ONE; EY -= ONE) x *= RADIX; - - /* Digits */ - n=MIN(p2,4); - for (i=1; i<=n; i++) { - u = (x + TWO52) - TWO52; - if (u>x) u -= ONE; - Y[i] = u; x -= u; x *= RADIX; } - for ( ; i<=p2; i++) Y[i] = ZERO; - return; -} - - -/* add_magnitudes() adds the magnitudes of *x & *y assuming that */ -/* abs(*x) >= abs(*y) > 0. */ -/* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */ -/* No guard digit is used. The result equals the exact sum, truncated. */ -/* *x & *y are left unchanged. */ - -static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; - long p2 = p; - - EZ = EX; - - i=p2; j=p2+ EY - EX; k=p2+1; - - if (j<1) - {__cpy(x,z,p); return; } - else Z[k] = ZERO; - - for (; j>0; i--,j--) { - Z[k] += X[i] + Y[j]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] >= RADIX) { - Z[k] -= RADIX; - Z[--k] = ONE; } - else - Z[--k] = ZERO; - } - - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i] = Z[i+1]; } - else EZ += ONE; -} - - -/* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */ -/* abs(*x) > abs(*y) > 0. */ -/* The sign of the difference *z is undefined. x&y may overlap but not x&z */ -/* or y&z. One guard digit is used. The error is less than one ulp. */ -/* *x & *y are left unchanged. */ - -static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i,j,k; - long p2 = p; - - EZ = EX; - - if (EX == EY) { - i=j=k=p2; - Z[k] = Z[k+1] = ZERO; } - else { - j= EX - EY; - if (j > p2) {__cpy(x,z,p); return; } - else { - i=p2; j=p2+1-j; k=p2; - if (Y[j] > ZERO) { - Z[k+1] = RADIX - Y[j--]; - Z[k] = MONE; } - else { - Z[k+1] = ZERO; - Z[k] = ZERO; j--;} - } - } - - for (; j>0; i--,j--) { - Z[k] += (X[i] - Y[j]); - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (; i>0; i--) { - Z[k] += X[i]; - if (Z[k] < ZERO) { - Z[k] += RADIX; - Z[--k] = MONE; } - else - Z[--k] = ZERO; - } - - for (i=1; Z[i] == ZERO; i++) ; - EZ = EZ - i + 1; - for (k=1; i <= p2+1; ) - Z[k++] = Z[i++]; - for (; k <= p2; ) - Z[k++] = ZERO; - - return; -} - - -/* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */ -/* but not x&z or y&z. One guard digit is used. The error is less than */ -/* one ulp. *x & *y are left unchanged. */ - -void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - int n; - - if (X[0] == ZERO) {__cpy(y,z,p); return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] == Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; } - else Z[0] = ZERO; - } - return; -} - - -/* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */ -/* overlap but not x&z or y&z. One guard digit is used. The error is */ -/* less than one ulp. *x & *y are left unchanged. */ - -void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - int n; - - if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; } - else if (Y[0] == ZERO) {__cpy(x,z,p); return; } - - if (X[0] != Y[0]) { - if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; } - else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - } - else { - if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; } - else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; } - else Z[0] = ZERO; - } - return; -} - - -/* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */ -/* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */ -/* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */ -/* *x & *y are left unchanged. */ - -void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - long i, i1, i2, j, k, k2; - long p2 = p; - double u, zk, zk2; - - /* Is z=0? */ - if (X[0]*Y[0]==ZERO) - { Z[0]=ZERO; return; } - - /* Multiply, add and carry */ - k2 = (p2<3) ? p2+p2 : p2+3; - zk = Z[k2]=ZERO; - for (k=k2; k>1; ) { - if (k > p2) {i1=k-p2; i2=p2+1; } - else {i1=1; i2=k; } -#if 1 - /* rearange this inner loop to allow the fmadd instructions to be - independent and execute in parallel on processors that have - dual symetrical FP pipelines. */ - if (i1 < (i2-1)) - { - /* make sure we have at least 2 iterations */ - if (((i2 - i1) & 1L) == 1L) - { - /* Handle the odd iterations case. */ - zk2 = x->d[i2-1]*y->d[i1]; - } - else - zk2 = zero.d; - /* Do two multiply/adds per loop iteration, using independent - accumulators; zk and zk2. */ - for (i=i1,j=i2-1; i<i2-1; i+=2,j-=2) - { - zk += x->d[i]*y->d[j]; - zk2 += x->d[i+1]*y->d[j-1]; - } - zk += zk2; /* final sum. */ - } - else - { - /* Special case when iterations is 1. */ - zk += x->d[i1]*y->d[i1]; - } -#else - /* The orginal code. */ - for (i=i1,j=i2-1; i<i2; i++,j--) zk += X[i]*Y[j]; -#endif - - u = (zk + CUTTER)-CUTTER; - if (u > zk) u -= RADIX; - Z[k] = zk - u; - zk = u*RADIXI; - --k; - } - Z[k] = zk; - - /* Is there a carry beyond the most significant digit? */ - if (Z[1] == ZERO) { - for (i=1; i<=p2; i++) Z[i]=Z[i+1]; - EZ = EX + EY - 1; } - else - EZ = EX + EY; - - Z[0] = X[0] * Y[0]; - return; -} - - -/* Invert a multiple precision number. Set *y = 1 / *x. */ -/* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */ -/* 2.001*r**(1-p) for p>3. */ -/* *x=0 is not permissible. *x is left unchanged. */ - -void __inv(const mp_no *x, mp_no *y, int p) { - long i; -#if 0 - int l; -#endif - double t; - mp_no z,w; - static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3, - 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}; - const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}}; - - __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p); - t=ONE/t; __dbl_mp(t,y,p); EY -= EX; - - for (i=0; i<np1[p]; i++) { - __cpy(y,&w,p); - __mul(x,&w,y,p); - __sub(&mptwo,y,&z,p); - __mul(&w,&z,y,p); - } - return; -} - - -/* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */ -/* are left unchanged. x&y may overlap but not x&z or y&z. */ -/* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */ -/* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */ - -void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) { - - mp_no w; - - if (X[0] == ZERO) Z[0] = ZERO; - else {__inv(y,&w,p); __mul(x,&w,z,p);} - return; -} diff --git a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c b/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c deleted file mode 100644 index ad147a89a6..0000000000 --- a/powerpc-cpu/sysdeps/powerpc/powerpc32/power4/fpu/slowpow.c +++ /dev/null @@ -1,94 +0,0 @@ -/* - * IBM Accurate Mathematical Library - * written by International Business Machines Corp. - * Copyright (C) 2001, 2006 Free Software Foundation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License as published by - * the Free Software Foundation; either version 2.1 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - */ -/*************************************************************************/ -/* MODULE_NAME:slowpow.c */ -/* */ -/* FUNCTION:slowpow */ -/* */ -/*FILES NEEDED:mpa.h */ -/* mpa.c mpexp.c mplog.c halfulp.c */ -/* */ -/* Given two IEEE double machine numbers y,x , routine computes the */ -/* correctly rounded (to nearest) value of x^y. Result calculated by */ -/* multiplication (in halfulp.c) or if result isn't accurate enough */ -/* then routine converts x and y into multi-precision doubles and */ -/* recompute. */ -/*************************************************************************/ - -#include "mpa.h" -#include "math_private.h" - -void __mpexp (mp_no * x, mp_no * y, int p); -void __mplog (mp_no * x, mp_no * y, int p); -double ulog (double); -double __halfulp (double x, double y); - -double -__slowpow (double x, double y, double z) -{ - double res, res1; - long double ldw, ldz, ldpp; - static const long double ldeps = 0x4.0p-96; - - res = __halfulp (x, y); /* halfulp() returns -10 or x^y */ - if (res >= 0) - return res; /* if result was really computed by halfulp */ - /* else, if result was not really computed by halfulp */ - - /* Compute pow as long double, 106 bits */ - ldz = __ieee754_logl ((long double) x); - ldw = (long double) y *ldz; - ldpp = __ieee754_expl (ldw); - res = (double) (ldpp + ldeps); - res1 = (double) (ldpp - ldeps); - - if (res != res1) /* if result still not accurate enough */ - { /* use mpa for higher persision. */ - mp_no mpx, mpy, mpz, mpw, mpp, mpr, mpr1; - static const mp_no eps = { -3, {1.0, 4.0} }; - int p; - - p = 10; /* p=precision 240 bits */ - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(x) = z */ - __mul (&mpy, &mpz, &mpw, p); /* y * z =w */ - __mpexp (&mpw, &mpp, p); /* e^w =pp */ - __add (&mpp, &eps, &mpr, p); /* pp+eps =r */ - __mp_dbl (&mpr, &res, p); - __sub (&mpp, &eps, &mpr1, p); /* pp -eps =r1 */ - __mp_dbl (&mpr1, &res1, p); /* converting into double precision */ - if (res == res1) - return res; - - /* if we get here result wasn't calculated exactly, continue for - more exact calculation using 768 bits. */ - p = 32; - __dbl_mp (x, &mpx, p); - __dbl_mp (y, &mpy, p); - __dbl_mp (z, &mpz, p); - __mplog (&mpx, &mpz, p); /* log(c)=z */ - __mul (&mpy, &mpz, &mpw, p); /* y*z =w */ - __mpexp (&mpw, &mpp, p); /* e^w=pp */ - __mp_dbl (&mpp, &res, p); /* converting into double precision */ - } - return res; -} |