summaryrefslogtreecommitdiff
path: root/nptl/pthread_create.c
diff options
context:
space:
mode:
authorRoland McGrath <roland@hack.frob.com>2014-11-18 11:03:00 -0800
committerRoland McGrath <roland@hack.frob.com>2014-11-18 11:03:00 -0800
commit32fed10f0f83db9f4ff143405505cc903964a1fe (patch)
treedbcf8c6196a33d142927205e9591f2e2ce43f807 /nptl/pthread_create.c
parent107a5bf085f5c4ef8c28266a34d476724cfc3475 (diff)
downloadglibc-32fed10f0f83db9f4ff143405505cc903964a1fe.tar.gz
NPTL: Refactor createthread.c
Diffstat (limited to 'nptl/pthread_create.c')
-rw-r--r--nptl/pthread_create.c153
1 files changed, 143 insertions, 10 deletions
diff --git a/nptl/pthread_create.c b/nptl/pthread_create.c
index 0055634cd3..da3dc4603f 100644
--- a/nptl/pthread_create.c
+++ b/nptl/pthread_create.c
@@ -36,10 +36,6 @@
#include <stap-probe.h>
-/* Local function to start thread and handle cleanup. */
-static int start_thread (void *arg);
-
-
/* Nozero if debugging mode is enabled. */
int __pthread_debug;
@@ -56,7 +52,27 @@ unsigned int __nptl_nthreads = 1;
/* Code to allocate and deallocate a stack. */
#include "allocatestack.c"
-/* Code to create the thread. */
+/* createthread.c defines this function, and two macros:
+ START_THREAD_DEFN and START_THREAD_SELF (see below).
+
+ create_thread is obliged to initialize PD->stopped_start. It
+ should be true if the STOPPED_START parameter is true, or if
+ create_thread needs the new thread to synchronize at startup for
+ some other implementation reason. If PD->stopped_start will be
+ true, then create_thread is obliged to perform the operation
+ "lll_lock (PD->lock, LLL_PRIVATE)" before starting the thread.
+
+ The return value is zero for success or an errno code for failure.
+ If the return value is ENOMEM, that will be translated to EAGAIN,
+ so create_thread need not do that. On failure, *THREAD_RAN should
+ be set to true iff the thread actually started up and then got
+ cancelled before calling user code (*PD->start_routine), in which
+ case it is responsible for doing its own cleanup. */
+
+static int create_thread (struct pthread *pd, const struct pthread_attr *attr,
+ bool stopped_start, STACK_VARIABLES_PARMS,
+ bool *thread_ran);
+
#include <createthread.c>
@@ -228,10 +244,14 @@ __free_tcb (struct pthread *pd)
}
-static int
-start_thread (void *arg)
+/* Local function to start thread and handle cleanup.
+ createthread.c defines the macro START_THREAD_DEFN to the
+ declaration that its create_thread function will refer to, and
+ START_THREAD_SELF to the expression to optimally deliver the new
+ thread's THREAD_SELF value. */
+START_THREAD_DEFN
{
- struct pthread *pd = (struct pthread *) arg;
+ struct pthread *pd = START_THREAD_SELF;
#if HP_TIMING_AVAIL
/* Remember the time when the thread was started. */
@@ -439,7 +459,24 @@ start_thread (void *arg)
__exit_thread ();
/* NOTREACHED */
- return 0;
+}
+
+
+/* Return true iff obliged to report TD_CREATE events. */
+static bool
+report_thread_creation (struct pthread *pd)
+{
+ if (__glibc_unlikely (THREAD_GETMEM (THREAD_SELF, report_events)))
+ {
+ /* The parent thread is supposed to report events.
+ Check whether the TD_CREATE event is needed, too. */
+ const size_t idx = __td_eventword (TD_CREATE);
+ const uint32_t mask = __td_eventmask (TD_CREATE);
+
+ return ((mask & (__nptl_threads_events.event_bits[idx]
+ | pd->eventbuf.eventmask.event_bits[idx])) != 0);
+ }
+ return false;
}
@@ -543,6 +580,15 @@ __pthread_create_2_1 (newthread, attr, start_routine, arg)
THREAD_COPY_POINTER_GUARD (pd);
#endif
+ /* Verify the sysinfo bits were copied in allocate_stack if needed. */
+#ifdef NEED_DL_SYSINFO
+ CHECK_THREAD_SYSINFO (pd);
+#endif
+
+ /* Inform start_thread (above) about cancellation state that might
+ translate into inherited signal state. */
+ pd->parent_cancelhandling = THREAD_GETMEM (THREAD_SELF, cancelhandling);
+
/* Determine scheduling parameters for the thread. */
if (__builtin_expect ((iattr->flags & ATTR_FLAG_NOTINHERITSCHED) != 0, 0)
&& (iattr->flags & (ATTR_FLAG_SCHED_SET | ATTR_FLAG_POLICY_SET)) != 0)
@@ -593,8 +639,95 @@ __pthread_create_2_1 (newthread, attr, start_routine, arg)
LIBC_PROBE (pthread_create, 4, newthread, attr, start_routine, arg);
+ /* One more thread. We cannot have the thread do this itself, since it
+ might exist but not have been scheduled yet by the time we've returned
+ and need to check the value to behave correctly. We must do it before
+ creating the thread, in case it does get scheduled first and then
+ might mistakenly think it was the only thread. In the failure case,
+ we momentarily store a false value; this doesn't matter because there
+ is no kosher thing a signal handler interrupting us right here can do
+ that cares whether the thread count is correct. */
+ atomic_increment (&__nptl_nthreads);
+
+ bool thread_ran = false;
+
/* Start the thread. */
- retval = create_thread (pd, iattr, STACK_VARIABLES_ARGS);
+ if (__glibc_unlikely (report_thread_creation (pd)))
+ {
+ /* Create the thread. We always create the thread stopped
+ so that it does not get far before we tell the debugger. */
+ retval = create_thread (pd, iattr, true, STACK_VARIABLES_ARGS,
+ &thread_ran);
+ if (retval == 0)
+ {
+ /* create_thread should have set this so that the logic below can
+ test it. */
+ assert (pd->stopped_start);
+
+ /* Now fill in the information about the new thread in
+ the newly created thread's data structure. We cannot let
+ the new thread do this since we don't know whether it was
+ already scheduled when we send the event. */
+ pd->eventbuf.eventnum = TD_CREATE;
+ pd->eventbuf.eventdata = pd;
+
+ /* Enqueue the descriptor. */
+ do
+ pd->nextevent = __nptl_last_event;
+ while (atomic_compare_and_exchange_bool_acq (&__nptl_last_event,
+ pd, pd->nextevent)
+ != 0);
+
+ /* Now call the function which signals the event. */
+ __nptl_create_event ();
+ }
+ }
+ else
+ retval = create_thread (pd, iattr, false, STACK_VARIABLES_ARGS,
+ &thread_ran);
+
+ if (__glibc_unlikely (retval != 0))
+ {
+ /* If thread creation "failed", that might mean that the thread got
+ created and ran a little--short of running user code--but then
+ create_thread cancelled it. In that case, the thread will do all
+ its own cleanup just like a normal thread exit after a successful
+ creation would do. */
+
+ if (thread_ran)
+ assert (pd->stopped_start);
+ else
+ {
+ /* Oops, we lied for a second. */
+ atomic_decrement (&__nptl_nthreads);
+
+ /* Perhaps a thread wants to change the IDs and is waiting for this
+ stillborn thread. */
+ if (__glibc_unlikely (atomic_exchange_acq (&pd->setxid_futex, 0)
+ == -2))
+ lll_futex_wake (&pd->setxid_futex, 1, LLL_PRIVATE);
+
+ /* Free the resources. */
+ __deallocate_stack (pd);
+ }
+
+ /* We have to translate error codes. */
+ if (retval == ENOMEM)
+ retval = EAGAIN;
+ }
+ else
+ {
+ if (pd->stopped_start)
+ /* The thread blocked on this lock either because we're doing TD_CREATE
+ event reporting, or for some other reason that create_thread chose.
+ Now let it run free. */
+ lll_unlock (pd->lock, LLL_PRIVATE);
+
+ /* We now have for sure more than one thread. The main thread might
+ not yet have the flag set. No need to set the global variable
+ again if this is what we use. */
+ THREAD_SETMEM (THREAD_SELF, header.multiple_threads, 1);
+ }
out:
if (__glibc_unlikely (free_cpuset))