summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSiddhesh Poyarekar <siddhesh@redhat.com>2013-02-14 10:31:09 +0530
committerSiddhesh Poyarekar <siddhesh@redhat.com>2013-02-14 10:31:09 +0530
commitd6752ccd696c71d23cd3df8fb9cc60b61c32e65a (patch)
tree7fc0fe0151bc004056a5002c1b81c92159988085
parent70d9946a44ba381f81eb08c71cc150315cc112ad (diff)
downloadglibc-d6752ccd696c71d23cd3df8fb9cc60b61c32e65a.tar.gz
New __sqr function as a faster special case of __mul
-rw-r--r--ChangeLog13
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.c91
-rw-r--r--sysdeps/ieee754/dbl-64/mpa.h1
-rw-r--r--sysdeps/ieee754/dbl-64/mpexp.c4
-rw-r--r--sysdeps/powerpc/powerpc32/power4/fpu/mpa.c100
-rw-r--r--sysdeps/powerpc/powerpc64/power4/fpu/mpa.c100
-rw-r--r--sysdeps/x86_64/fpu/multiarch/mpa-avx.c1
-rw-r--r--sysdeps/x86_64/fpu/multiarch/mpa-fma4.c1
8 files changed, 309 insertions, 2 deletions
diff --git a/ChangeLog b/ChangeLog
index 9a35f15b7b..1121ef586c 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,16 @@
+2013-02-14 Siddhesh Poyarekar <siddhesh@redhat.com>
+
+ * sysdeps/ieee754/dbl-64/mpa.c (__sqr): New function.
+ * sysdeps/ieee754/dbl-64/mpa.h (__sqr): Declare.
+ * sysdeps/ieee754/dbl-64/mpexp.c (__mpexp): use __sqr instead
+ of __mul for squares.
+ * sysdeps/powerpc/powerpc32/power4/fpu/mpa.c (__sqr): New
+ function
+ * sysdeps/powerpc/powerpc64/power4/fpu/mpa.c (__sqr):
+ Likewise.
+ * sysdeps/x86_64/fpu/multiarch/mpa-avx.c: Define __sqr.
+ * sysdeps/x86_64/fpu/multiarch/mpa-fma4.c: Likewise.
+
2013-02-13 Joseph Myers <joseph@codesourcery.com>
[BZ #13550]
diff --git a/sysdeps/ieee754/dbl-64/mpa.c b/sysdeps/ieee754/dbl-64/mpa.c
index 5b50b0de89..542d81bdcc 100644
--- a/sysdeps/ieee754/dbl-64/mpa.c
+++ b/sysdeps/ieee754/dbl-64/mpa.c
@@ -702,6 +702,97 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
Z[0] = X[0] * Y[0];
}
+/* Square *X and store result in *Y. X and Y may not overlap. For P in
+ [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
+ error is bounded by 1.001 ULP. This is a faster special case of
+ multiplication. */
+void
+SECTION
+__sqr (const mp_no *x, mp_no *y, int p)
+{
+ long i, j, k, ip;
+ double u, yk;
+
+ /* Is z=0? */
+ if (__glibc_unlikely (X[0] == ZERO))
+ {
+ Y[0] = ZERO;
+ return;
+ }
+
+ /* We need not iterate through all X's since it's pointless to
+ multiply zeroes. */
+ for (ip = p; ip > 0; ip--)
+ if (X[ip] != ZERO)
+ break;
+
+ k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
+
+ while (k > 2 * ip + 1)
+ Y[k--] = ZERO;
+
+ yk = ZERO;
+
+ while (k > p)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ for (i = k - p, j = p; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+
+ while (k > 1)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ for (i = 1, j = k - 1; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+ Y[k] = yk;
+
+ /* Squares are always positive. */
+ Y[0] = 1.0;
+
+ EY = 2 * EX;
+ /* Is there a carry beyond the most significant digit? */
+ if (__glibc_unlikely (Y[1] == ZERO))
+ {
+ for (i = 1; i <= p; i++)
+ Y[i] = Y[i + 1];
+ EY--;
+ }
+}
+
/* Invert *X and store in *Y. Relative error bound:
- For P = 2: 1.001 * R ^ (1 - P)
- For P = 3: 1.063 * R ^ (1 - P)
diff --git a/sysdeps/ieee754/dbl-64/mpa.h b/sysdeps/ieee754/dbl-64/mpa.h
index 06343d46d1..168b334ed0 100644
--- a/sysdeps/ieee754/dbl-64/mpa.h
+++ b/sysdeps/ieee754/dbl-64/mpa.h
@@ -115,6 +115,7 @@ void __dbl_mp (double, mp_no *, int);
void __add (const mp_no *, const mp_no *, mp_no *, int);
void __sub (const mp_no *, const mp_no *, mp_no *, int);
void __mul (const mp_no *, const mp_no *, mp_no *, int);
+void __sqr (const mp_no *, mp_no *, int);
void __dvd (const mp_no *, const mp_no *, mp_no *, int);
extern void __mpatan (mp_no *, mp_no *, int);
diff --git a/sysdeps/ieee754/dbl-64/mpexp.c b/sysdeps/ieee754/dbl-64/mpexp.c
index 5b3ff04222..565c6c8531 100644
--- a/sysdeps/ieee754/dbl-64/mpexp.c
+++ b/sysdeps/ieee754/dbl-64/mpexp.c
@@ -145,14 +145,14 @@ __mpexp (mp_no *x, mp_no *y, int p)
/* Raise polynomial value to the power of 2**m. Put result in y. */
for (k = 0, j = 0; k < m;)
{
- __mul (&mpt2, &mpt2, &mpt1, p);
+ __sqr (&mpt2, &mpt1, p);
k++;
if (k == m)
{
j = 1;
break;
}
- __mul (&mpt1, &mpt1, &mpt2, p);
+ __sqr (&mpt1, &mpt2, p);
k++;
}
if (j)
diff --git a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
index b1784f27c3..7ebf50b95d 100644
--- a/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
+++ b/sysdeps/powerpc/powerpc32/power4/fpu/mpa.c
@@ -687,6 +687,106 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
return;
}
+/* Square *X and store result in *Y. X and Y may not overlap. For P in
+ [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
+ error is bounded by 1.001 ULP. This is a faster special case of
+ multiplication. */
+void
+__sqr (const mp_no *x, mp_no *y, int p)
+{
+ long i, j, k, ip;
+ double u, yk;
+
+ /* Is z=0? */
+ if (__glibc_unlikely (X[0] == ZERO))
+ {
+ Y[0] = ZERO;
+ return;
+ }
+
+ /* We need not iterate through all X's since it's pointless to
+ multiply zeroes. */
+ for (ip = p; ip > 0; ip--)
+ if (X[ip] != ZERO)
+ break;
+
+ k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
+
+ while (k > 2 * ip + 1)
+ Y[k--] = ZERO;
+
+ yk = ZERO;
+
+ while (k > p)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* In __mul, this loop (and the one within the next while loop) run
+ between a range to calculate the mantissa as follows:
+
+ Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
+ + X[n] * Y[k]
+
+ For X == Y, we can get away with summing halfway and doubling the
+ result. For cases where the range size is even, the mid-point needs
+ to be added separately (above). */
+ for (i = k - p, j = p; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+
+ while (k > 1)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* Likewise for this loop. */
+ for (i = 1, j = k - 1; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+ Y[k] = yk;
+
+ /* Squares are always positive. */
+ Y[0] = 1.0;
+
+ EY = 2 * EX;
+ /* Is there a carry beyond the most significant digit? */
+ if (__glibc_unlikely (Y[1] == ZERO))
+ {
+ for (i = 1; i <= p; i++)
+ Y[i] = Y[i + 1];
+ EY--;
+ }
+}
+
/* Invert *X and store in *Y. Relative error bound:
- For P = 2: 1.001 * R ^ (1 - P)
- For P = 3: 1.063 * R ^ (1 - P)
diff --git a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
index b1784f27c3..7ebf50b95d 100644
--- a/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
+++ b/sysdeps/powerpc/powerpc64/power4/fpu/mpa.c
@@ -687,6 +687,106 @@ __mul (const mp_no *x, const mp_no *y, mp_no *z, int p)
return;
}
+/* Square *X and store result in *Y. X and Y may not overlap. For P in
+ [1, 2, 3], the exact result is truncated to P digits. In case P > 3 the
+ error is bounded by 1.001 ULP. This is a faster special case of
+ multiplication. */
+void
+__sqr (const mp_no *x, mp_no *y, int p)
+{
+ long i, j, k, ip;
+ double u, yk;
+
+ /* Is z=0? */
+ if (__glibc_unlikely (X[0] == ZERO))
+ {
+ Y[0] = ZERO;
+ return;
+ }
+
+ /* We need not iterate through all X's since it's pointless to
+ multiply zeroes. */
+ for (ip = p; ip > 0; ip--)
+ if (X[ip] != ZERO)
+ break;
+
+ k = (__glibc_unlikely (p < 3)) ? p + p : p + 3;
+
+ while (k > 2 * ip + 1)
+ Y[k--] = ZERO;
+
+ yk = ZERO;
+
+ while (k > p)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* In __mul, this loop (and the one within the next while loop) run
+ between a range to calculate the mantissa as follows:
+
+ Z[k] = X[k] * Y[n] + X[k+1] * Y[n-1] ... + X[n-1] * Y[k+1]
+ + X[n] * Y[k]
+
+ For X == Y, we can get away with summing halfway and doubling the
+ result. For cases where the range size is even, the mid-point needs
+ to be added separately (above). */
+ for (i = k - p, j = p; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+
+ while (k > 1)
+ {
+ double yk2 = 0.0;
+ long lim = k / 2;
+
+ if (k % 2 == 0)
+ {
+ yk += X[lim] * X[lim];
+ lim--;
+ }
+
+ /* Likewise for this loop. */
+ for (i = 1, j = k - 1; i <= lim; i++, j--)
+ yk2 += X[i] * X[j];
+
+ yk += 2.0 * yk2;
+
+ u = (yk + CUTTER) - CUTTER;
+ if (u > yk)
+ u -= RADIX;
+ Y[k--] = yk - u;
+ yk = u * RADIXI;
+ }
+ Y[k] = yk;
+
+ /* Squares are always positive. */
+ Y[0] = 1.0;
+
+ EY = 2 * EX;
+ /* Is there a carry beyond the most significant digit? */
+ if (__glibc_unlikely (Y[1] == ZERO))
+ {
+ for (i = 1; i <= p; i++)
+ Y[i] = Y[i + 1];
+ EY--;
+ }
+}
+
/* Invert *X and store in *Y. Relative error bound:
- For P = 2: 1.001 * R ^ (1 - P)
- For P = 3: 1.063 * R ^ (1 - P)
diff --git a/sysdeps/x86_64/fpu/multiarch/mpa-avx.c b/sysdeps/x86_64/fpu/multiarch/mpa-avx.c
index d3f4d7ab2e..366b0b7134 100644
--- a/sysdeps/x86_64/fpu/multiarch/mpa-avx.c
+++ b/sysdeps/x86_64/fpu/multiarch/mpa-avx.c
@@ -1,5 +1,6 @@
#define __add __add_avx
#define __mul __mul_avx
+#define __sqr __sqr_avx
#define __sub __sub_avx
#define __dbl_mp __dbl_mp_avx
#define __dvd __dvd_avx
diff --git a/sysdeps/x86_64/fpu/multiarch/mpa-fma4.c b/sysdeps/x86_64/fpu/multiarch/mpa-fma4.c
index 6abb671b59..a4a759407e 100644
--- a/sysdeps/x86_64/fpu/multiarch/mpa-fma4.c
+++ b/sysdeps/x86_64/fpu/multiarch/mpa-fma4.c
@@ -1,5 +1,6 @@
#define __add __add_fma4
#define __mul __mul_fma4
+#define __sqr __sqr_fma4
#define __sub __sub_fma4
#define __dbl_mp __dbl_mp_fma4
#define __dvd __dvd_fma4