summaryrefslogtreecommitdiff
path: root/config/initializers/metrics.rb
Commit message (Collapse)AuthorAgeFilesLines
* Instrument various Rugged constantsexpand-git-instrumentationYorick Peterse2016-02-011-0/+10
|
* Instrument all Gitlab::Git instance methodsYorick Peterse2016-02-011-2/+4
|
* Instrument Gitlab::Git::RepositoryYorick Peterse2016-01-211-0/+1
| | | | | This adds instrumentation for the instance methods of Gitlab::Git::Repository.
* Added metrics instrumentation for all findersinstrument-findersYorick Peterse2016-01-181-0/+6
|
* Track total query/view timings in transactionsYorick Peterse2016-01-041-0/+1
|
* Removed tracking of hostnames for metricsYorick Peterse2015-12-311-1/+0
| | | | | This isn't hugely useful and mostly wastes InfluxDB space. We can re-add this whenever needed (but only once we really need it).
* Removed tracking of raw SQL queriesYorick Peterse2015-12-311-1/+0
| | | | | | | | | | | | This particular setup had 3 problems: 1. Storing SQL queries as tags is very inefficient as InfluxDB ends up indexing every query (and they can get pretty large). Storing these as values instead means we can't always display the SQL as easily. 2. We already instrument ActiveRecord query methods, thus we already have timing information about database queries. 3. SQL obfuscation is difficult to get right and I'd rather not expose sensitive data by accident.
* Move InfluxDB settings to ApplicationSettingrelocate-influxdb-settingsYorick Peterse2015-12-281-3/+10
|
* Instrument all ActiveRecord model methodsYorick Peterse2015-12-171-0/+21
| | | | | | | | | | | This works by searching the raw source code for any references to commonly used ActiveRecord methods. While not bulletproof it saves us from having to list hundreds of methods by hand. It also ensures that (most) newly added methods are instrumented automatically. This _only_ instruments models defined in app/models, should a model reside somewhere else (e.g. somewhere in lib/) it _won't_ be instrumented.
* Instrument Gitlab::Shel and Gitlab::GitYorick Peterse2015-12-171-0/+12
|
* Use custom code for instrumenting method callsYorick Peterse2015-12-171-1/+0
| | | | | | | | | | | | | | | | | | | The use of ActiveSupport would slow down instrumented method calls by about 180x due to: 1. ActiveSupport itself not being the fastest thing on the planet 2. caller_locations() having quite some overhead The use of caller_locations() has been removed because it's not _that_ useful since we already know the full namespace of receivers and the names of the called methods. The use of ActiveSupport has been replaced with some custom code that's generated using eval() (which can be quite a bit faster than using define_method). This new setup results in instrumented methods only being about 35-40x slower (compared to non instrumented methods).
* Storing of application metrics in InfluxDBYorick Peterse2015-12-171-0/+25
This adds the ability to write application metrics (e.g. SQL timings) to InfluxDB. These metrics can in turn be visualized using Grafana, or really anything else that can read from InfluxDB. These metrics can be used to track application performance over time, between different Ruby versions, different GitLab versions, etc. == Transaction Metrics Currently the following is tracked on a per transaction basis (a transaction is a Rails request or a single Sidekiq job): * Timings per query along with the raw (obfuscated) SQL and information about what file the query originated from. * Timings per view along with the path of the view and information about what file triggered the rendering process. * The duration of a request itself along with the controller/worker class and method name. * The duration of any instrumented method calls (more below). == Sampled Metrics Certain metrics can't be directly associated with a transaction. For example, a process' total memory usage is unrelated to any running transactions. While a transaction can result in the memory usage going up there's no accurate way to determine what transaction is to blame, this becomes especially problematic in multi-threaded environments. To solve this problem there's a separate thread that takes samples at a fixed interval. This thread (using the class Gitlab::Metrics::Sampler) currently tracks the following: * The process' total memory usage. * The number of file descriptors opened by the process. * The amount of Ruby objects (using ObjectSpace.count_objects). * GC statistics such as timings, heap slots, etc. The default/current interval is 15 seconds, any smaller interval might put too much pressure on InfluxDB (especially when running dozens of processes). == Method Instrumentation While currently not yet used methods can be instrumented to track how long they take to run. Unlike the likes of New Relic this doesn't require modifying the source code (e.g. including modules), it all happens from the outside. For example, to track `User.by_login` we'd add the following code somewhere in an initializer: Gitlab::Metrics::Instrumentation. instrument_method(User, :by_login) to instead instrument an instance method: Gitlab::Metrics::Instrumentation. instrument_instance_method(User, :save) Instrumentation for either all public model methods or a few crucial ones will be added in the near future, I simply haven't gotten to doing so just yet. == Configuration By default metrics are disabled. This means users don't have to bother setting anything up if they don't want to. Metrics can be enabled by editing one's gitlab.yml configuration file (see config/gitlab.yml.example for example settings). == Writing Data To InfluxDB Because InfluxDB is still a fairly young product I expect the worse. Data loss, unexpected reboots, the database not responding, you name it. Because of this data is _not_ written to InfluxDB directly, instead it's queued and processed by Sidekiq. This ensures that users won't notice anything when InfluxDB is giving trouble. The metrics worker can be started in a standalone manner as following: bundle exec sidekiq -q metrics The corresponding class is called MetricsWorker.