1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
// random number generation (out of line) -*- C++ -*-
// Copyright (C) 2006 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
#include <limits>
namespace std
{
_GLIBCXX_BEGIN_NAMESPACE(tr1)
/*
* Implementation-space details.
*/
namespace _Private
{
// General case for x = (ax + c) mod m -- use Schrage's algorithm to avoid
// integer overflow.
//
// Because a and c are compile-time integral constants the compiler kindly
// elides any unreachable paths.
//
// Preconditions: a > 0, m > 0.
//
template<typename _Tp, _Tp a, _Tp c, _Tp m, bool _m_is_zero>
struct Mod
{
static _Tp
calc(_Tp x)
{
if (a == 1)
x %= m;
else
{
static const _Tp q = m / a;
static const _Tp r = m % a;
_Tp t1 = a * (x % q);
_Tp t2 = r * (x / q);
if (t1 >= t2)
x = t1 - t2;
else
x = m - t2 + t1;
}
if (c != 0)
{
const _Tp d = m - x;
if (d > c)
x += c;
else
x = c - d;
}
return x;
}
};
// Special case for m==0 -- use unsigned integer overflow as modulo
// operator.
template<typename _Tp, _Tp a, _Tp c, _Tp m>
struct Mod<_Tp, a, c, m, true>
{
static _Tp
calc(_Tp x)
{ return a * x + c; }
};
// Dispatch based on modulus value to prevent divide-by-zero compile-time
// errors when m == 0.
template<typename _Tp, _Tp a, _Tp c, _Tp m>
inline _Tp
mod(_Tp x)
{ return Mod<_Tp, a, c, m, m == 0>::calc(x); }
// Like the above, for a==1, c==0, in terms of w.
template<typename _Tp, _Tp w, bool>
struct Mod_w
{
static _Tp
calc(_Tp x)
{ return x % (_Tp(1) << w); }
};
template<typename _Tp, _Tp w>
struct Mod_w<_Tp, w, true>
{
static _Tp
calc(_Tp x)
{ return x; }
};
// Selector to return the maximum value possible that will fit in
// @p w bits of @p _Tp.
template<typename _Tp, _Tp w, bool>
struct Max_w
{
static _Tp
value()
{ return (_Tp(1) << w) - 1; }
};
template<typename _Tp, _Tp w>
struct Max_w<_Tp, w, true>
{
static _Tp
value()
{ return std::numeric_limits<_Tp>::max(); }
};
} // namespace _Private
/**
* Constructs the LCR engine with integral seed @p x0.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
linear_congruential<UIntType, a, c, m>::
linear_congruential(unsigned long x0)
{ this->seed(x0); }
/**
* Constructs the LCR engine with seed generated from @p g.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
template<class Gen>
linear_congruential<UIntType, a, c, m>::
linear_congruential(Gen& g)
{ this->seed(g); }
/**
* Seeds the LCR with integral value @p x0, adjusted so that the
* ring identity is never a member of the convergence set.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
void
linear_congruential<UIntType, a, c, m>::
seed(unsigned long x0)
{
if ((_Private::mod<UIntType, 1, 0, m>(c) == 0)
&& (_Private::mod<UIntType, 1, 0, m>(x0) == 0))
m_x = _Private::mod<UIntType, 1, 0, m>(1);
else
m_x = _Private::mod<UIntType, 1, 0, m>(x0);
}
/**
* Seeds the LCR engine with a value generated by @p g.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
template<class Gen>
void
linear_congruential<UIntType, a, c, m>::
seed(Gen& g, false_type)
{
UIntType x0 = g();
if ((_Private::mod<UIntType, 1, 0, m>(c) == 0)
&& (_Private::mod<UIntType, 1, 0, m>(x0) == 0))
m_x = _Private::mod<UIntType, 1, 0, m>(1);
else
m_x = _Private::mod<UIntType, 1, 0, m>(x0);
}
/**
* Returns a value that is less than or equal to all values potentially
* returned by operator(). The return value of this function does not
* change during the lifetime of the object..
*
* The minumum depends on the @p c parameter: if it is zero, the
* minimum generated must be > 0, otherwise 0 is allowed.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
typename linear_congruential<UIntType, a, c, m>::result_type
linear_congruential<UIntType, a, c, m>::
min() const
{ return (_Private::mod<UIntType, 1, 0, m>(c) == 0) ? 1 : 0; }
/**
* Gets the maximum possible value of the generated range.
*
* For a linear congruential generator, the maximum is always @p m - 1.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
typename linear_congruential<UIntType, a, c, m>::result_type
linear_congruential<UIntType, a, c, m>::
max() const
{ return (m == 0) ? std::numeric_limits<UIntType>::max() : (m - 1); }
/**
* Gets the next generated value in sequence.
*/
template<class UIntType, UIntType a, UIntType c, UIntType m>
typename linear_congruential<UIntType, a, c, m>::result_type
linear_congruential<UIntType, a, c, m>::
operator()()
{
m_x = _Private::mod<UIntType, a, c, m>(m_x);
return m_x;
}
template<class _UInt, int w, int n, int m, int r,
_UInt a, int u, int s,
_UInt b, int t, _UInt c, int l>
void
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::
seed(unsigned long value)
{
if (value == 0)
value = 4357;
#if 0
// @todo handle case numeric_limits<_UInt>::digits > 32
if (std::numeric_limits<_UInt>::digits > 32)
{
std::tr1::linear_congruential<unsigned long, 69069, 0, 2**32> lcg(value);
seed(lcg);
}
else
{
std::tr1::linear_congruential<unsigned long, 69069, 0, 0> lcg(value);
seed(lcg);
}
#else
std::tr1::linear_congruential<unsigned long, 69069, 0, 0> lcg(value);
seed(lcg);
#endif
}
template<class _UInt, int w, int n, int m, int r,
_UInt a, int u, int s,
_UInt b, int t, _UInt c, int l>
template<class Gen>
void
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::
seed(Gen& gen, false_type)
{
using _Private::Mod_w;
using std::numeric_limits;
for (int i = 0; i < state_size; ++i)
_M_x[i] = Mod_w<_UInt, w,
w == numeric_limits<_UInt>::digits>::calc(gen());
_M_p = state_size + 1;
}
template<class _UInt, int w, int n, int m, int r,
_UInt a, int u, int s,
_UInt b, int t, _UInt c, int l>
typename
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::result_type
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::
max() const
{
using _Private::Max_w;
using std::numeric_limits;
return Max_w<_UInt, w, w == numeric_limits<_UInt>::digits>::value();
}
template<class _UInt, int w, int n, int m, int r,
_UInt a, int u, int s,
_UInt b, int t, _UInt c, int l>
typename
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::result_type
mersenne_twister<_UInt, w, n, m, r, a, u, s, b, t, c, l>::
operator()()
{
// reload the vector - cost is O(n) amortized over n calls.
if (_M_p >= state_size)
{
const _UInt upper_mask = (~_UInt()) << r;
const _UInt lower_mask = ~upper_mask;
for (int k = 0; k < (n - m); ++k)
{
_UInt y = (_M_x[k] & upper_mask) | (_M_x[k + 1] & lower_mask);
_M_x[k] = _M_x[k + m] ^ (y >> 1) ^ ((y & 0x01) ? a : 0);
}
for (int k = (n - m); k < (n - 1); ++k)
{
_UInt y = (_M_x[k] & upper_mask) | (_M_x[k + 1] & lower_mask);
_M_x[k] = _M_x[k + (m - n)] ^ (y >> 1) ^ ((y & 0x01) ? a : 0);
}
_M_p = 0;
}
// Calculate x(i)
result_type y = _M_x[_M_p++];
y ^= (y >> u);
y ^= (y << s) & b;
y ^= (y << t) & c;
y ^= (y >> l);
return y;
}
template<typename _IntType, _IntType m, int s, int r>
void
subtract_with_carry<_IntType, m, s, r>::
seed(_IntType __value)
{
std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563>
lcg(__value);
for (int i = 0; i < long_lag; ++i)
_M_x[i] = _Private::mod<_IntType, 1, 0, modulus>(lcg());
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
_M_p = 0;
}
//
// This implementation differs from the tr1 spec because the tr1 spec refused
// to make any sense to me: the exponent of the factor in the spec goes from
// 1 to (n-1), but it would only make sense to me if it went from 0 to (n-1).
//
// This algorithm is still problematic because it can overflow left right and
// center.
//
template<typename _IntType, _IntType __m, int __s, int __r>
template<class Gen>
void
subtract_with_carry<_IntType, __m, __s, __r>::
seed(Gen& gen, false_type)
{
const int n = (std::numeric_limits<_IntType>::digits + 31) / 32;
for (int i = 0; i < long_lag; ++i)
{
_M_x[i] = 0;
unsigned long factor = 1;
for (int j = 0; j < n; ++j)
{
_M_x[i] += gen() * factor;
factor *= 0x80000000;
}
_M_x[i] = _Private::mod<_IntType, 1, 0, modulus>(_M_x[i]);
}
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
_M_p = 0;
}
template<typename _IntType, _IntType __m, int __s, int __r>
typename subtract_with_carry<_IntType, __m, __s, __r>::result_type
subtract_with_carry<_IntType, __m, __s, __r>::
operator()()
{
// derive short lag index from current index
int ps = _M_p - short_lag;
if (ps < 0) ps += long_lag;
// calculate new x(i) without overflow or division
_IntType xi;
if (_M_x[ps] >= _M_x[_M_p] + _M_carry)
{
xi = _M_x[ps] - _M_x[_M_p] - _M_carry;
_M_carry = 0;
}
else
{
xi = modulus - _M_x[_M_p] - _M_carry + _M_x[ps];
_M_carry = 1;
}
_M_x[_M_p++] = xi;
// adjust current index to loop around in ring buffer
if (_M_p >= long_lag)
_M_p = 0;
return xi;
}
template<class _E, int __p, int __r>
typename discard_block<_E, __p, __r>::result_type
discard_block<_E, __p, __r>::
operator()()
{
if (_M_n >= used_block)
{
while (_M_n < block_size)
{
_M_b();
++_M_n;
}
_M_n = 0;
}
++_M_n;
return _M_b();
}
_GLIBCXX_END_NAMESPACE
}
|