summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/std/future
blob: 00f5c48bcfd87b4234936e42f2a4dd4a7679696c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
// <future> -*- C++ -*-

// Copyright (C) 2009 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file future
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_FUTURE
#define _GLIBCXX_FUTURE 1

#pragma GCC system_header

#ifndef __GXX_EXPERIMENTAL_CXX0X__
# include <c++0x_warning.h>
#else

#include <functional>
#include <memory>
#include <mutex>
#include <condition_variable>
#include <system_error>
#include <exception>
#include <cstdatomic>

namespace std
{
  /**
   * @defgroup futures Futures
   * @ingroup concurrency
   *
   * Classes for futures support.
   * @{
   */

  /// Error code for futures
  enum class future_errc
  { broken_promise, future_already_retrieved, promise_already_satisfied };

  // TODO: requires concepts
  // concept_map ErrorCodeEnum<future_errc> { }
  template<>
    struct is_error_code_enum<future_errc> : public true_type { };

  /// Points to a statically-allocated object derived from error_category.
  extern const error_category* const future_category;

  // TODO: requires constexpr
  inline error_code make_error_code(future_errc __errc)
  { return error_code(static_cast<int>(__errc), *future_category); }

  // TODO: requires constexpr
  inline error_condition make_error_condition(future_errc __errc)
  { return error_condition(static_cast<int>(__errc), *future_category); }

  /**
   *  @brief Exception type thrown by futures.
   *  @ingroup exceptions
   */
  class future_error : public logic_error
  {
    error_code _M_code;

  public:
    explicit future_error(future_errc __ec)
    : logic_error("std::future_error"), _M_code(make_error_code(__ec))
    { }

    virtual ~future_error() throw();

    virtual const char* 
    what() const throw();

    const error_code& 
    code() const throw() { return _M_code; }
  };

  // Forward declarations.
  template<typename _Result>
    class unique_future;

  template<typename _Result>
    class shared_future;

  template<typename> 
    class packaged_task;

  template<typename _Result>
    class promise;

#if defined(_GLIBCXX_HAS_GTHREADS) && defined(_GLIBCXX_USE_C99_STDINT_TR1) \
  && defined(_GLIBCXX_ATOMIC_BUILTINS_4)

  // Holds the result of a future
  struct _Future_result_base
  {
    _Future_result_base() = default;
    _Future_result_base(const _Future_result_base&) = delete;
    _Future_result_base& operator=(const _Future_result_base&) = delete;

    exception_ptr _M_error;

    // _M_destroy() allows derived classes to control deallocation,
    // which will be needed when allocator support is added to promise.
    // See http://gcc.gnu.org/ml/libstdc++/2009-06/msg00032.html
    virtual void _M_destroy() = 0;
    struct _Deleter
    {
      void operator()(_Future_result_base* __fr) const { __fr->_M_destroy(); }
    };

  protected:
    ~_Future_result_base();
  };

  inline _Future_result_base::~_Future_result_base() = default;

  // TODO: use template alias when available
  /*
   template<typename _Res>
     using _Future_ptr = unique_ptr<_Res, _Future_result_base::_Deleter>;
   */
  template<typename _Res>
    struct _Future_ptr
    {
      typedef unique_ptr<_Res, _Future_result_base::_Deleter> type;
    };

  // State shared between a promise and one or more associated futures.
  class _Future_state
  {
    typedef _Future_ptr<_Future_result_base>::type _Future_ptr_type;

  public:
    _Future_state() : _M_result(), _M_retrieved(ATOMIC_FLAG_INIT) { }

    _Future_state(const _Future_state&) = delete;
    _Future_state& operator=(const _Future_state&) = delete;

    bool
    is_ready()
    { return _M_get() != 0; }

    bool
    has_exception()
    {
      _Future_result_base* const __res = _M_get();
      return __res && !(__res->_M_error == 0);
    }

    bool
    has_value()
    {
      _Future_result_base* const __res = _M_get();
      return __res && (__res->_M_error == 0);
    }

    _Future_result_base&
    wait()
    {
      unique_lock<mutex> __lock(_M_mutex);
      if (!_M_ready())
        _M_cond.wait(__lock, std::bind(&_Future_state::_M_ready, this));
      return *_M_result;
    }

    template<typename _Rep, typename _Period>
      bool
      wait_for(const chrono::duration<_Rep, _Period>& __rel)
      {
        unique_lock<mutex> __lock(_M_mutex);
        return _M_ready() || _M_cond.wait_for(__lock, __rel,
            std::bind(&_Future_state::_M_ready, this));
      }

    template<typename _Clock, typename _Duration>
      bool
      wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
      {
        unique_lock<mutex> __lock(_M_mutex);
        return _M_ready() || _M_cond.wait_until(__lock, __abs,
            std::bind(&_Future_state::_M_ready, this));
      }

    void
    _M_set_result(_Future_ptr_type __res)
    {
      {
        lock_guard<mutex> __lock(_M_mutex);
        if (_M_ready())
	  __throw_future_error(int(future_errc::promise_already_satisfied));
        _M_result.swap(__res);
      }
      _M_cond.notify_all();
    }

    void
    _M_break_promise(_Future_ptr_type __res)
    {
      if (static_cast<bool>(__res))
      {
        __res->_M_error
          = std::copy_exception(future_error(future_errc::broken_promise));
        {
          lock_guard<mutex> __lock(_M_mutex);
          _M_result.swap(__res);
        }
        _M_cond.notify_all();
      }
    }

    // called when this object is passed to a unique_future
    void
    _M_set_retrieved_flag()
    {
      if (_M_retrieved.test_and_set())
        __throw_future_error(int(future_errc::future_already_retrieved));
    }

  private:
    _Future_result_base*
    _M_get()
    {
      lock_guard<mutex> __lock(_M_mutex);
      return _M_result.get();
    }

    bool _M_ready() const { return static_cast<bool>(_M_result); }

    _Future_ptr_type    _M_result;
    mutex               _M_mutex;
    condition_variable  _M_cond;
    atomic_flag         _M_retrieved;
  };

  // workaround for CWG issue 664 and c++/34022
  template<typename _Result, bool = is_scalar<_Result>::value>
    struct _Move_future_result
    {
      typedef _Result&& __rval_type;
      static _Result&& _S_move(_Result& __res) { return std::move(__res); }
    };

  // specialization for scalar types returns rvalue not rvalue-reference
  template<typename _Result>
    struct _Move_future_result<_Result, true>
    {
      typedef _Result __rval_type;
      static _Result _S_move(_Result __res) { return __res; }
    };

  template<typename _Result>
    struct _Future_result : _Future_result_base
    {
      _Future_result() : _M_initialized() { }

      ~_Future_result()
      {
        if (_M_initialized)
          _M_value().~_Result();
      }

      // return lvalue, future will add const or rvalue-reference
      _Result& _M_value()
      { return *static_cast<_Result*>(_M_addr()); }

      void
      _M_set(const _Result& __res)
      {
        ::new (_M_addr()) _Result(__res);
        _M_initialized = true;
      }

      void
      _M_set(_Result&& __res)
      {
        typedef _Move_future_result<_Result> _Mover;
        ::new (_M_addr()) _Result(_Mover::_S_move(__res));
        _M_initialized = true;
      }

    private:
      void _M_destroy() { delete this; }

      void* _M_addr() { return static_cast<void*>(&_M_storage); }

      typename aligned_storage<sizeof(_Result),
               alignment_of<_Result>::value>::type _M_storage;
      bool _M_initialized;
    };

  template<typename _Result>
    struct _Future_result<_Result&> : _Future_result_base
    {
      _Future_result() : _M_value_ptr() { }

      _Result* _M_value_ptr;

      void _M_destroy() { delete this; }
    };

  template<>
    struct _Future_result<void> : _Future_result_base
    {
      void _M_destroy() { delete this; }
    };

  // common implementation for unique_future and shared_future
  template<typename _Result>
    class _Future_impl
    {
    public:
      // disable copying
      _Future_impl(const _Future_impl&) = delete;
      _Future_impl& operator=(const _Future_impl&) = delete;

      // functions to check state and wait for ready
      bool is_ready() const { return this->_M_state->is_ready(); }

      bool has_exception() const { return this->_M_state->has_exception(); }

      bool has_value() const { return this->_M_state->has_value(); }

      void wait() const { this->_M_state->wait(); }

      template<typename _Rep, typename _Period>
        bool
        wait_for(const chrono::duration<_Rep, _Period>& __rel) const
        { return this->_M_state->wait_for(__rel); }

      template<typename _Clock, typename _Duration>
        bool
        wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
        { return this->_M_state->wait_until(__abs); }

    protected:
      // wait for the state to be ready and rethrow any stored exception
      _Future_result<_Result>&
      _M_get_result()
      {
        _Future_result_base& __res = this->_M_state->wait();
        if (!(__res._M_error == 0))
          rethrow_exception(__res._M_error);
        return static_cast<_Future_result<_Result>&>(__res);
      }

      typedef shared_ptr<_Future_state> _State_ptr;

      // construction of a unique_future by promise::get_future()
      explicit
      _Future_impl(const _State_ptr& __state)
      : _M_state(__state)
      {
        if (static_cast<bool>(this->_M_state))
          this->_M_state->_M_set_retrieved_flag();
        else
          __throw_future_error(int(future_errc::future_already_retrieved));
      }

      // copy construction from a shared_future
      explicit
      _Future_impl(const shared_future<_Result>&);

      // move construction from a unique_future
      explicit
      _Future_impl(unique_future<_Result>&&);

      _State_ptr _M_state;
    };

  /// primary template for unique_future
  template<typename _Result>
    class unique_future : public _Future_impl<_Result>
    {
      typedef _Move_future_result<_Result> _Mover;

    public:
      /// Move constructor
      unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }

      // disable copying
      unique_future(const unique_future&) = delete;
      unique_future& operator=(const unique_future&) = delete;

      // retrieving the value
      typename _Mover::__rval_type
      get()
      { return _Mover::_S_move(this->_M_get_result()._M_value()); }

    private:
      typedef _Future_impl<_Result> _Base_type;
      typedef typename _Base_type::_State_ptr _State_ptr;

      friend class promise<_Result>;

      explicit
      unique_future(const _State_ptr& __state) : _Base_type(__state) { }
    };
 
  // partial specialization for unique_future<R&>
  template<typename _Result>
    class unique_future<_Result&> : public _Future_impl<_Result&>
    {
    public:
      /// Move constructor
      unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }

      // disable copying
      unique_future(const unique_future&) = delete;
      unique_future& operator=(const unique_future&) = delete;

      // retrieving the value
      _Result& get() { return *this->_M_get_result()._M_value_ptr; }

    private:
      typedef _Future_impl<_Result&>           _Base_type;
      typedef typename _Base_type::_State_ptr _State_ptr;

      friend class promise<_Result&>;

      explicit
      unique_future(const _State_ptr& __state) : _Base_type(__state) { }
    };

  // specialization for unique_future<void>
  template<>
    class unique_future<void> : public _Future_impl<void>
    {
    public:
      /// Move constructor
      unique_future(unique_future&& __uf) : _Base_type(std::move(__uf)) { }

      // disable copying
      unique_future(const unique_future&) = delete;
      unique_future& operator=(const unique_future&) = delete;

      // retrieving the value
      void get() { this->_M_get_result(); }

    private:
      typedef _Future_impl<void> _Base_type;
      typedef _Base_type::_State_ptr _State_ptr;

      friend class promise<void>;

      explicit
      unique_future(const _State_ptr& __state) : _Base_type(__state) { }
    };

  /// primary template for shared_future
  template<typename _Result>
    class shared_future : public _Future_impl<_Result>
    {
    public:
      /// Copy constructor
      shared_future(const shared_future& __sf) : _Base_type(__sf) { }

      /// Construct from a unique_future rvalue
      shared_future(unique_future<_Result>&& __uf)
      : _Base_type(std::move(__uf))
      { }

      shared_future& operator=(const shared_future&) = delete;

      // retrieving the value
      const _Result&
      get()
      { return this->_M_get_result()._M_value(); }

    private:
      typedef _Future_impl<_Result> _Base_type;
    };
 
  // partial specialization for shared_future<R&>
  template<typename _Result>
    class shared_future<_Result&> : public _Future_impl<_Result&>
    {
    public:
      /// Copy constructor
      shared_future(const shared_future& __sf) : _Base_type(__sf) { }

      /// Construct from a unique_future rvalue
      shared_future(unique_future<_Result&>&& __uf)
      : _Base_type(std::move(__uf))
      { }

      shared_future& operator=(const shared_future&) = delete;

      // retrieving the value
      _Result& get() { return *this->_M_get_result()._M_value_ptr; }

    private:
      typedef _Future_impl<_Result&>           _Base_type;
    };

  // specialization for shared_future<void>
  template<>
    class shared_future<void> : public _Future_impl<void>
    {
    public:
      /// Copy constructor
      shared_future(const shared_future& __sf) : _Base_type(__sf) { }

      /// Construct from a unique_future rvalue
      shared_future(unique_future<void>&& __uf)
      : _Base_type(std::move(__uf))
      { }

      shared_future& operator=(const shared_future&) = delete;

      // retrieving the value
      void get() { this->_M_get_result(); }

    private:
      typedef _Future_impl<void> _Base_type;
    };

  // now we can define the protected _Future_impl constructors

  template<typename _Result>
    _Future_impl<_Result>::_Future_impl(const shared_future<_Result>& __sf)
    : _M_state(__sf._M_state)
    { }

  template<typename _Result>
    _Future_impl<_Result>::_Future_impl(unique_future<_Result>&& __uf)
    : _M_state(std::move(__uf._M_state))
    { }

  /// primary template for promise
  template<typename _Result>
    class promise
    {
    public:
      promise()
      : _M_future(std::make_shared<_Future_state>()),
      _M_storage(new _Future_result<_Result>())
      { }

      promise(promise&& __rhs)
      : _M_future(std::move(__rhs._M_future)),
      _M_storage(std::move(__rhs._M_storage))
      { }

      // TODO: requires allocator concepts
      /*
      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a);

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
       */

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // assignment
      promise&
      operator=(promise&& __rhs)
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs)
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // retrieving the result
      unique_future<_Result>
      get_future()
      { return unique_future<_Result>(_M_future); }

      // setting the result
      void
      set_value(const _Result& __r)
      {
        if (!_M_satisfied())
          _M_storage->_M_set(__r);
        _M_future->_M_set_result(std::move(_M_storage));
      }

      void
      set_value(_Result&& __r)
      {
        if (!_M_satisfied())
          _M_storage->_M_set(_Mover::_S_move(__r));
        _M_future->_M_set_result(std::move(_M_storage));
      }

      void
      set_exception(exception_ptr __p)
      {
        if (!_M_satisfied())
          _M_storage->_M_error = __p;
        _M_future->_M_set_result(std::move(_M_storage));
      }

    private:
      template<typename> friend class packaged_task;
      typedef _Move_future_result<_Result> _Mover;
      bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
      shared_ptr<_Future_state>                           _M_future;
      typename _Future_ptr<_Future_result<_Result>>::type _M_storage;
    };

  // partial specialization for promise<R&>
  template<typename _Result>
    class promise<_Result&>
    {
    public:
      promise()
      : _M_future(std::make_shared<_Future_state>()),
      _M_storage(new _Future_result<_Result&>())
      { }

      promise(promise&& __rhs)
      : _M_future(std::move(__rhs._M_future)),
      _M_storage(std::move(__rhs._M_storage))
      { }

      // TODO: requires allocator concepts
      /*
      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a);

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
       */

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // assignment
      promise&
      operator=(promise&& __rhs)
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs)
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // retrieving the result
      unique_future<_Result&>
      get_future()
      { return unique_future<_Result&>(_M_future); }

      // setting the result
      void
      set_value(_Result& __r)
      {
        if (!_M_satisfied())
          _M_storage->_M_value_ptr = &__r;
        _M_future->_M_set_result(std::move(_M_storage));
      }

      void
      set_exception(exception_ptr __p)
      {
        if (!_M_satisfied())
          _M_storage->_M_error = __p;
        _M_future->_M_set_result(std::move(_M_storage));
      }

    private:
      template<typename> friend class packaged_task;
      bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
      shared_ptr<_Future_state>                             _M_future;
      typename _Future_ptr<_Future_result<_Result&>>::type  _M_storage;
    };

  // specialization for promise<void>
  template<>
    class promise<void>
    {
    public:
      promise()
      : _M_future(std::make_shared<_Future_state>()),
      _M_storage(new _Future_result<void>())
      { }

      promise(promise&& __rhs)
      : _M_future(std::move(__rhs._M_future)),
      _M_storage(std::move(__rhs._M_storage))
      { }

      // TODO: requires allocator concepts
      /*
      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator& __a);

      template<typename _Allocator>
        promise(allocator_arg_t, const _Allocator&, promise&& __rhs);
       */

      promise(const promise&) = delete;

      ~promise()
      {
        if (static_cast<bool>(_M_future) && !_M_future.unique())
          _M_future->_M_break_promise(std::move(_M_storage));
      }

      // assignment
      promise&
      operator=(promise&& __rhs)
      {
        promise(std::move(__rhs)).swap(*this);
        return *this;
      }

      promise& operator=(const promise&) = delete;

      void
      swap(promise& __rhs)
      {
        _M_future.swap(__rhs._M_future);
        _M_storage.swap(__rhs._M_storage);
      }

      // retrieving the result
      unique_future<void>
      get_future()
      { return unique_future<void>(_M_future); }

      // setting the result
      void
      set_value()
      {
        _M_future->_M_set_result(std::move(_M_storage));
      }

      void
      set_exception(exception_ptr __p)
      {
        if (!_M_satisfied())
          _M_storage->_M_error = __p;
        _M_future->_M_set_result(std::move(_M_storage));
      }

    private:
      template<typename> friend class packaged_task;
      bool _M_satisfied() { return !static_cast<bool>(_M_storage); }
      shared_ptr<_Future_state>                 _M_future;
      _Future_ptr<_Future_result<void>>::type   _M_storage;
    };

  // TODO: requires allocator concepts
  /*
  template<typename _Result, class Alloc>
    concept_map UsesAllocator<promise<_Result>, Alloc>
    {
      typedef Alloc allocator_type;
    }
   */

  template<typename _Result, typename... _ArgTypes>
    struct _Run_task
    {
      static void
      _S_run(promise<_Result>& __p, function<_Result(_ArgTypes...)>& __f,
          _ArgTypes... __args)
      {
        __p.set_value(__f(std::forward<_ArgTypes>(__args)...));
      }
    };

  // specialization used by packaged_task<void(...)>
  template<typename... _ArgTypes>
    struct _Run_task<void, _ArgTypes...>
    {
      static void
      _S_run(promise<void>& __p, function<void(_ArgTypes...)>& __f,
          _ArgTypes... __args)
      {
        __f(std::forward<_ArgTypes>(__args)...);
        __p.set_value();
      }
    };

  /// packaged_task
  template<typename _Result, typename... _ArgTypes>
    class packaged_task<_Result(_ArgTypes...)>
    {
    public:
      typedef _Result result_type;

      // construction and destruction
      packaged_task() { }

      template<typename _Fn>
        explicit
        packaged_task(const _Fn& __fn) : _M_task(__fn) { }

      template<typename _Fn>
        explicit
        packaged_task(_Fn&& __fn) : _M_task(std::move(__fn)) { }

      explicit
      packaged_task(_Result(*__fn)(_ArgTypes...)) : _M_task(__fn) { }

      // TODO: requires allocator concepts
      /*
      template<typename _Fn, typename _Allocator>
        explicit
        packaged_task(allocator_arg_t __tag, const _Allocator& __a, _Fn __fn)
        : _M_task(__tag, __a, __fn), _M_promise(__tag, __a)
        { }

      template<typename _Fn, typename _Allocator>
        explicit
        packaged_task(allocator_arg_t __tag, const _Allocator& __a, _Fn&& __fn)
        : _M_task(__tag, __a, std::move(__fn)), _M_promise(__tag, __a)
        { }
       */

      ~packaged_task() = default;

      // no copy
      packaged_task(packaged_task&) = delete;
      packaged_task& operator=(packaged_task&) = delete;

      // move support
      packaged_task(packaged_task&& __other)
      { this->swap(__other); }

      packaged_task& operator=(packaged_task&& __other)
      {
        packaged_task(std::move(__other)).swap(*this);
        return *this;
      }

      void
      swap(packaged_task& __other)
      {
        _M_task.swap(__other._M_task);
        _M_promise.swap(__other._M_promise);
      }

      explicit operator bool() const { return static_cast<bool>(_M_task); }

      // result retrieval
      unique_future<_Result>
      get_future()
      {
        __try
        {
          return _M_promise.get_future();
        }
        __catch (const future_error& __e)
        {
#ifdef __EXCEPTIONS
          if (__e.code() == future_errc::future_already_retrieved)
	    throw std::bad_function_call();
	  throw;
#endif
        }
      }

      // execution
      void
      operator()(_ArgTypes... __args)
      {
        if (!static_cast<bool>(_M_task) || _M_promise._M_satisfied())
	  {
#ifdef __EXCEPTIONS
	    throw std::bad_function_call();
#else
	    __builtin_abort();
#endif
	  }

        __try
        {
          _Run_task<_Result, _ArgTypes...>::_S_run(_M_promise, _M_task,
              std::forward<_ArgTypes>(__args)...);
        }
        __catch (...)
        {
          _M_promise.set_exception(current_exception());
        }
      }

      void reset() { promise<_Result>().swap(_M_promise); }

    private:
      function<_Result(_ArgTypes...)>   _M_task;
      promise<_Result>                  _M_promise;
    };

#endif // _GLIBCXX_HAS_GTHREADS && _GLIBCXX_USE_C99_STDINT_TR1
       // && _GLIBCXX_ATOMIC_BUILTINS_4

  // @} group futures
}

#endif // __GXX_EXPERIMENTAL_CXX0X__

#endif // _GLIBCXX_FUTURE