1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
// -*- C++ -*-
// Copyright (C) 2007, 2008 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 2, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA.
// As a special exception, you may use this file as part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this
// file, or you compile this file and link it with other files to
// produce an executable, this file does not by itself cause the
// resulting executable to be covered by the GNU General Public
// License. This exception does not however invalidate any other
// reasons why the executable file might be covered by the GNU General
// Public License.
/** @file parallel/partition.h
* @brief Parallel implementation of std::partition(),
* std::nth_element(), and std::partial_sort().
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler and Felix Putze.
#ifndef _GLIBCXX_PARALLEL_PARTITION_H
#define _GLIBCXX_PARALLEL_PARTITION_H 1
#include <parallel/basic_iterator.h>
#include <parallel/sort.h>
#include <parallel/random_number.h>
#include <bits/stl_algo.h>
#include <parallel/parallel.h>
/** @brief Decide whether to declare certain variables volatile. */
#define _GLIBCXX_VOLATILE volatile
namespace __gnu_parallel
{
/** @brief Parallel implementation of std::partition.
* @param begin Begin iterator of input sequence to split.
* @param end End iterator of input sequence to split.
* @param pred Partition predicate, possibly including some kind of pivot.
* @param num_threads Maximum number of threads to use for this task.
* @return Number of elements not fulfilling the predicate. */
template<typename RandomAccessIterator, typename Predicate>
typename std::iterator_traits<RandomAccessIterator>::difference_type
parallel_partition(RandomAccessIterator begin, RandomAccessIterator end,
Predicate pred, thread_index_t num_threads)
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
difference_type n = end - begin;
_GLIBCXX_CALL(n)
const _Settings& __s = _Settings::get();
// Shared.
_GLIBCXX_VOLATILE difference_type left = 0, right = n - 1;
_GLIBCXX_VOLATILE difference_type leftover_left, leftover_right;
_GLIBCXX_VOLATILE difference_type leftnew, rightnew;
bool* reserved_left = NULL, * reserved_right = NULL;
difference_type chunk_size;
omp_lock_t result_lock;
omp_init_lock(&result_lock);
//at least two chunks per thread
if(right - left + 1 >= 2 * num_threads * chunk_size)
# pragma omp parallel num_threads(num_threads)
{
# pragma omp single
{
num_threads = omp_get_num_threads();
reserved_left = new bool[num_threads];
reserved_right = new bool[num_threads];
if (__s.partition_chunk_share > 0.0)
chunk_size = std::max<difference_type>(__s.partition_chunk_size,
(double)n * __s.partition_chunk_share
/ (double)num_threads);
else
chunk_size = __s.partition_chunk_size;
}
while (right - left + 1 >= 2 * num_threads * chunk_size)
{
# pragma omp single
{
difference_type num_chunks = (right - left + 1) / chunk_size;
for (int r = 0; r < num_threads; ++r)
{
reserved_left[r] = false;
reserved_right[r] = false;
}
leftover_left = 0;
leftover_right = 0;
} //implicit barrier
// Private.
difference_type thread_left, thread_left_border,
thread_right, thread_right_border;
thread_left = left + 1;
// Just to satisfy the condition below.
thread_left_border = thread_left - 1;
thread_right = n - 1;
thread_right_border = thread_right + 1;
bool iam_finished = false;
while (!iam_finished)
{
if (thread_left > thread_left_border)
{
omp_set_lock(&result_lock);
if (left + (chunk_size - 1) > right)
iam_finished = true;
else
{
thread_left = left;
thread_left_border = left + (chunk_size - 1);
left += chunk_size;
}
omp_unset_lock(&result_lock);
}
if (thread_right < thread_right_border)
{
omp_set_lock(&result_lock);
if (left > right - (chunk_size - 1))
iam_finished = true;
else
{
thread_right = right;
thread_right_border = right - (chunk_size - 1);
right -= chunk_size;
}
omp_unset_lock(&result_lock);
}
if (iam_finished)
break;
// Swap as usual.
while (thread_left < thread_right)
{
while (pred(begin[thread_left])
&& thread_left <= thread_left_border)
++thread_left;
while (!pred(begin[thread_right])
&& thread_right >= thread_right_border)
--thread_right;
if (thread_left > thread_left_border
|| thread_right < thread_right_border)
// Fetch new chunk(s).
break;
std::swap(begin[thread_left], begin[thread_right]);
++thread_left;
--thread_right;
}
}
// Now swap the leftover chunks to the right places.
if (thread_left <= thread_left_border)
# pragma omp atomic
++leftover_left;
if (thread_right >= thread_right_border)
# pragma omp atomic
++leftover_right;
# pragma omp barrier
# pragma omp single
{
leftnew = left - leftover_left * chunk_size;
rightnew = right + leftover_right * chunk_size;
}
# pragma omp barrier
// <=> thread_left_border + (chunk_size - 1) >= leftnew
if (thread_left <= thread_left_border
&& thread_left_border >= leftnew)
{
// Chunk already in place, reserve spot.
reserved_left[(left - (thread_left_border + 1)) / chunk_size]
= true;
}
// <=> thread_right_border - (chunk_size - 1) <= rightnew
if (thread_right >= thread_right_border
&& thread_right_border <= rightnew)
{
// Chunk already in place, reserve spot.
reserved_right[((thread_right_border - 1) - right)
/ chunk_size] = true;
}
# pragma omp barrier
if (thread_left <= thread_left_border
&& thread_left_border < leftnew)
{
// Find spot and swap.
difference_type swapstart = -1;
omp_set_lock(&result_lock);
for (int r = 0; r < leftover_left; ++r)
if (!reserved_left[r])
{
reserved_left[r] = true;
swapstart = left - (r + 1) * chunk_size;
break;
}
omp_unset_lock(&result_lock);
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(swapstart != -1);
#endif
std::swap_ranges(begin + thread_left_border
- (chunk_size - 1),
begin + thread_left_border + 1,
begin + swapstart);
}
if (thread_right >= thread_right_border
&& thread_right_border > rightnew)
{
// Find spot and swap
difference_type swapstart = -1;
omp_set_lock(&result_lock);
for (int r = 0; r < leftover_right; ++r)
if (!reserved_right[r])
{
reserved_right[r] = true;
swapstart = right + r * chunk_size + 1;
break;
}
omp_unset_lock(&result_lock);
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(swapstart != -1);
#endif
std::swap_ranges(begin + thread_right_border,
begin + thread_right_border + chunk_size,
begin + swapstart);
}
#if _GLIBCXX_ASSERTIONS
# pragma omp barrier
# pragma omp single
{
for (int r = 0; r < leftover_left; ++r)
_GLIBCXX_PARALLEL_ASSERT(reserved_left[r]);
for (int r = 0; r < leftover_right; ++r)
_GLIBCXX_PARALLEL_ASSERT(reserved_right[r]);
}
# pragma omp barrier
#endif
# pragma omp barrier
left = leftnew;
right = rightnew;
}
# pragma omp flush(left, right)
} // end "recursion" //parallel
difference_type final_left = left, final_right = right;
while (final_left < final_right)
{
// Go right until key is geq than pivot.
while (pred(begin[final_left]) && final_left < final_right)
++final_left;
// Go left until key is less than pivot.
while (!pred(begin[final_right]) && final_left < final_right)
--final_right;
if (final_left == final_right)
break;
std::swap(begin[final_left], begin[final_right]);
++final_left;
--final_right;
}
// All elements on the left side are < piv, all elements on the
// right are >= piv
delete[] reserved_left;
delete[] reserved_right;
omp_destroy_lock(&result_lock);
// Element "between" final_left and final_right might not have
// been regarded yet
if (final_left < n && !pred(begin[final_left]))
// Really swapped.
return final_left;
else
return final_left + 1;
}
/**
* @brief Parallel implementation of std::nth_element().
* @param begin Begin iterator of input sequence.
* @param nth Iterator of element that must be in position afterwards.
* @param end End iterator of input sequence.
* @param comp Comparator.
*/
template<typename RandomAccessIterator, typename Comparator>
void
parallel_nth_element(RandomAccessIterator begin, RandomAccessIterator nth,
RandomAccessIterator end, Comparator comp)
{
typedef std::iterator_traits<RandomAccessIterator> traits_type;
typedef typename traits_type::value_type value_type;
typedef typename traits_type::difference_type difference_type;
_GLIBCXX_CALL(end - begin)
RandomAccessIterator split;
random_number rng;
difference_type minimum_length =
std::max<difference_type>(2, _Settings::get().partition_minimal_n);
// Break if input range to small.
while (static_cast<sequence_index_t>(end - begin) >= minimum_length)
{
difference_type n = end - begin;
RandomAccessIterator pivot_pos = begin + rng(n);
// Swap pivot_pos value to end.
if (pivot_pos != (end - 1))
std::swap(*pivot_pos, *(end - 1));
pivot_pos = end - 1;
// XXX Comparator must have first_value_type, second_value_type,
// result_type
// Comparator == __gnu_parallel::lexicographic<S, int,
// __gnu_parallel::less<S, S> >
// pivot_pos == std::pair<S, int>*
// XXX binder2nd only for RandomAccessIterators??
__gnu_parallel::binder2nd<Comparator, value_type, value_type, bool>
pred(comp, *pivot_pos);
// Divide, leave pivot unchanged in last place.
RandomAccessIterator split_pos1, split_pos2;
split_pos1 = begin + parallel_partition(begin, end - 1, pred,
get_max_threads());
// Left side: < pivot_pos; right side: >= pivot_pos
// Swap pivot back to middle.
if (split_pos1 != pivot_pos)
std::swap(*split_pos1, *pivot_pos);
pivot_pos = split_pos1;
// In case all elements are equal, split_pos1 == 0
if ((split_pos1 + 1 - begin) < (n >> 7)
|| (end - split_pos1) < (n >> 7))
{
// Very unequal split, one part smaller than one 128th
// elements not strictly larger than the pivot.
__gnu_parallel::unary_negate<__gnu_parallel::
binder1st<Comparator, value_type, value_type, bool>, value_type>
pred(__gnu_parallel::binder1st<Comparator, value_type,
value_type, bool>(comp, *pivot_pos));
// Find other end of pivot-equal range.
split_pos2 = __gnu_sequential::partition(split_pos1 + 1,
end, pred);
}
else
// Only skip the pivot.
split_pos2 = split_pos1 + 1;
// Compare iterators.
if (split_pos2 <= nth)
begin = split_pos2;
else if (nth < split_pos1)
end = split_pos1;
else
break;
}
// Only at most _Settings::partition_minimal_n elements left.
__gnu_sequential::sort(begin, end, comp);
}
/** @brief Parallel implementation of std::partial_sort().
* @param begin Begin iterator of input sequence.
* @param middle Sort until this position.
* @param end End iterator of input sequence.
* @param comp Comparator. */
template<typename RandomAccessIterator, typename Comparator>
void
parallel_partial_sort(RandomAccessIterator begin,
RandomAccessIterator middle,
RandomAccessIterator end, Comparator comp)
{
parallel_nth_element(begin, middle, end, comp);
std::sort(begin, middle, comp);
}
} //namespace __gnu_parallel
#undef _GLIBCXX_VOLATILE
#endif /* _GLIBCXX_PARALLEL_PARTITION_H */
|