summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/parallel/find.h
blob: 42f179fa6c7ca60585b7b2b76f79a9fcd70381d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/// -*- C++ -*-

// Copyright (C) 2007 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 2, or (at your option) any later
// version.

// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING.  If not, write to
// the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA.

// As a special exception, you may use this file as part of a free
// software library without restriction.  Specifically, if other files
// instantiate templates or use macros or inline functions from this
// file, or you compile this file and link it with other files to
// produce an executable, this file does not by itself cause the
// resulting executable to be covered by the GNU General Public
// License.  This exception does not however invalidate any other
// reasons why the executable file might be covered by the GNU General
// Public License.

/** @file parallel/find.h
 *  @brief Parallel implementation base for std::find(), std::equal()
 *  and related functions.
 *  This file is a GNU parallel extension to the Standard C++ Library.
 */

// Written by Felix Putze and Johannes Singler.

#ifndef _GLIBCXX_PARALLEL_FIND_H
#define _GLIBCXX_PARALLEL_FIND_H 1

#include <bits/stl_algobase.h>

#include <parallel/features.h>
#include <parallel/parallel.h>
#include <parallel/compatibility.h>
#include <parallel/equally_split.h>

namespace __gnu_parallel
{
  /** 
   *  @brief Parallel std::find, switch for different algorithms.
   *  @param begin1 Begin iterator of first sequence.
   *  @param end1 End iterator of first sequence.
   *  @param begin2 Begin iterator of second sequence. Must have same
   *  length as first sequence.
   *  @param pred Find predicate.
   *  @param selector Functionality (e. g. std::find_if (), std::equal(),...)
   *  @return Place of finding in both sequences. 
   */
  template<typename RandomAccessIterator1, typename RandomAccessIterator2, typename Pred, typename Selector>
  std::pair<RandomAccessIterator1, RandomAccessIterator2>
  find_template(RandomAccessIterator1 begin1, RandomAccessIterator1 end1,
		RandomAccessIterator2 begin2, Pred pred, Selector selector)
  {
    switch (Settings::find_distribution)
      {
      case Settings::GROWING_BLOCKS:
	return find_template(begin1, end1, begin2, pred, selector, growing_blocks_tag());
      case Settings::CONSTANT_SIZE_BLOCKS:
	return find_template(begin1, end1, begin2, pred, selector, constant_size_blocks_tag());
      case Settings::EQUAL_SPLIT:
	return find_template(begin1, end1, begin2, pred, selector, equal_split_tag());
      default:
	_GLIBCXX_PARALLEL_ASSERT(false);
	return std::make_pair(begin1, begin2);
      }
  }

#if _GLIBCXX_FIND_EQUAL_SPLIT

  /** 
   *  @brief Parallel std::find, equal splitting variant.
   *  @param begin1 Begin iterator of first sequence.
   *  @param end1 End iterator of first sequence.
   *  @param begin2 Begin iterator of second sequence. Second sequence
   *  must have same length as first sequence.
   *  @param pred Find predicate.
   *  @param selector Functionality (e. g. std::find_if (), std::equal(),...)
   *  @return Place of finding in both sequences. 
   */
  template<typename RandomAccessIterator1, typename RandomAccessIterator2, typename Pred, typename Selector>
  std::pair<RandomAccessIterator1, RandomAccessIterator2>
  find_template(RandomAccessIterator1 begin1, RandomAccessIterator1 end1, RandomAccessIterator2 begin2, Pred pred, Selector selector, equal_split_tag)
  {
    _GLIBCXX_CALL(end1 - begin1)

    typedef std::iterator_traits<RandomAccessIterator1> traits_type;
    typedef typename traits_type::difference_type difference_type;
    typedef typename traits_type::value_type value_type;

    difference_type length = end1 - begin1;

    difference_type result = length;

    const thread_index_t num_threads = get_max_threads();

    // XXX VLA error.
    difference_type borders[num_threads + 1];
    equally_split(length, num_threads, borders);

#pragma omp parallel shared(result) num_threads(num_threads)
    {
      int iam = omp_get_thread_num();
      difference_type pos = borders[iam], limit = borders[iam + 1];

      RandomAccessIterator1 i1 = begin1 + pos;
      RandomAccessIterator2 i2 = begin2 + pos;
      for (; pos < limit; pos++)
	{
#pragma omp flush(result)
	  // Result has been set to something lower.
	  if (result < pos)
	    break;

	  if (selector(i1, i2, pred))
	    {
#pragma omp critical (result)
	      if (result > pos)
		result = pos;
	      break;
	    }
	  i1++;
	  i2++;
	}
    }
    return std::pair<RandomAccessIterator1, RandomAccessIterator2>(begin1 + result, begin2 + result);
  }

#endif

#if _GLIBCXX_FIND_GROWING_BLOCKS

  /** 
   *  @brief Parallel std::find, growing block size variant.
   *  @param begin1 Begin iterator of first sequence.
   *  @param end1 End iterator of first sequence.
   *  @param begin2 Begin iterator of second sequence. Second sequence
   *  must have same length as first sequence.
   *  @param pred Find predicate.
   *  @param selector Functionality (e. g. std::find_if (), std::equal(),...)
   *  @return Place of finding in both sequences.
   *  @see __gnu_parallel::Settings::find_sequential_search_size
   *  @see __gnu_parallel::Settings::find_initial_block_size
   *  @see __gnu_parallel::Settings::find_maximum_block_size
   *  @see __gnu_parallel::Settings::find_increasing_factor
   *
   *  There are two main differences between the growing blocks and
   *  the constant-size blocks variants.
   *  1. For GB, the block size grows; for CSB, the block size is fixed.

   *  2. For GB, the blocks are allocated dynamically;
   *     for CSB, the blocks are allocated in a predetermined manner,
   *     namely spacial round-robin.
   */
  template<typename RandomAccessIterator1, typename RandomAccessIterator2, typename Pred, typename Selector>
  std::pair<RandomAccessIterator1, RandomAccessIterator2>
  find_template(RandomAccessIterator1 begin1, RandomAccessIterator1 end1,
		RandomAccessIterator2 begin2, Pred pred, Selector selector,
		growing_blocks_tag)
  {
    _GLIBCXX_CALL(end1 - begin1)

    typedef std::iterator_traits<RandomAccessIterator1> traits_type;
    typedef typename traits_type::difference_type difference_type;
    typedef typename traits_type::value_type value_type;

    difference_type length = end1 - begin1;

    difference_type sequential_search_size = std::min<difference_type>(length, Settings::find_sequential_search_size);

    // Try it sequentially first.
    std::pair<RandomAccessIterator1, RandomAccessIterator2> find_seq_result =
      selector.sequential_algorithm(begin1, begin1 + sequential_search_size, begin2, pred);

    if (find_seq_result.first != (begin1 + sequential_search_size))
      return find_seq_result;

    // Index of beginning of next free block (after sequential find).
    difference_type next_block_pos = sequential_search_size;
    difference_type result = length;
    const thread_index_t num_threads = get_max_threads();

#pragma omp parallel shared(result) num_threads(num_threads)
    {
      // Not within first k elements -> start parallel.
      thread_index_t iam = omp_get_thread_num();

      difference_type block_size = Settings::find_initial_block_size;
      difference_type start = fetch_and_add<difference_type>(&next_block_pos, block_size);

      // Get new block, update pointer to next block.
      difference_type stop = std::min<difference_type>(length, start + block_size);

      std::pair<RandomAccessIterator1, RandomAccessIterator2> local_result;

      while (start < length)
	{
#pragma omp flush(result)
	  // Get new value of result.
	  if (result < start)
	    {
	      // No chance to find first element.
	      break;
	    }

	  local_result = selector.sequential_algorithm(begin1 + start, begin1 + stop, begin2 + start, pred);
	  if (local_result.first != (begin1 + stop))
	    {
#pragma omp critical(result)
	      if ((local_result.first - begin1) < result)
		{
		  result = local_result.first - begin1;

		  // Result cannot be in future blocks, stop algorithm.
		  fetch_and_add<difference_type>(&next_block_pos, length);
		}
	    }

	  block_size = std::min<difference_type>(block_size * Settings::find_increasing_factor, Settings::find_maximum_block_size);

	  // Get new block, update pointer to next block.
	  start = fetch_and_add<difference_type>(&next_block_pos, block_size);
	  stop = (length < (start + block_size)) ? length : (start + block_size);
	}
    }

    // Return iterator on found element.
    return std::pair<RandomAccessIterator1, RandomAccessIterator2>(begin1 + result, begin2 + result);
  }

#endif

#if _GLIBCXX_FIND_CONSTANT_SIZE_BLOCKS

  /** 
   *   @brief Parallel std::find, constant block size variant.
   *  @param begin1 Begin iterator of first sequence.
   *  @param end1 End iterator of first sequence.
   *  @param begin2 Begin iterator of second sequence. Second sequence
   *  must have same length as first sequence.
   *  @param pred Find predicate.
   *  @param selector Functionality (e. g. std::find_if (), std::equal(),...)
   *  @return Place of finding in both sequences.
   *  @see __gnu_parallel::Settings::find_sequential_search_size
   *  @see __gnu_parallel::Settings::find_block_size
   *  There are two main differences between the growing blocks and the
   *  constant-size blocks variants.
   *  1. For GB, the block size grows; for CSB, the block size is fixed.
   *  2. For GB, the blocks are allocated dynamically; for CSB, the
   *  blocks are allocated in a predetermined manner, namely spacial
   *  round-robin.
   */
  template<typename RandomAccessIterator1, typename RandomAccessIterator2, typename Pred, typename Selector>
  std::pair<RandomAccessIterator1, RandomAccessIterator2>
  find_template(RandomAccessIterator1 begin1, RandomAccessIterator1 end1,
		RandomAccessIterator2 begin2, Pred pred, Selector selector,
		constant_size_blocks_tag)
  {
    _GLIBCXX_CALL(end1 - begin1)
    typedef std::iterator_traits<RandomAccessIterator1> traits_type;
    typedef typename traits_type::difference_type difference_type;
    typedef typename traits_type::value_type value_type;

    difference_type length = end1 - begin1;

    difference_type sequential_search_size = std::min<difference_type>(length, Settings::find_sequential_search_size);

    // Try it sequentially first.
    std::pair<RandomAccessIterator1, RandomAccessIterator2> find_seq_result =
      selector.sequential_algorithm(begin1, begin1 + sequential_search_size, begin2, pred);

    if (find_seq_result.first != (begin1 + sequential_search_size))
      return find_seq_result;

    difference_type result = length;
    const thread_index_t num_threads = get_max_threads();

    // Not within first sequential_search_size elements -> start parallel.
#pragma omp parallel shared(result) num_threads(num_threads)
    {
      thread_index_t iam = omp_get_thread_num();
      difference_type block_size = Settings::find_initial_block_size;

      difference_type start, stop;

      // First element of thread's current iteration.
      difference_type iteration_start = sequential_search_size;

      // Where to work (initialization).
      start = iteration_start + iam * block_size;
      stop = std::min<difference_type>(length, start + block_size);

      std::pair<RandomAccessIterator1, RandomAccessIterator2> local_result;

      while (start < length)
	{
	  // Get new value of result.
#pragma omp flush(result)
	  // No chance to find first element.
	  if (result < start)
	    break;

	  local_result = selector.sequential_algorithm(begin1 + start, begin1 + stop, begin2 + start, pred);
	  if (local_result.first != (begin1 + stop))
	    {
#pragma omp critical(result)
	      if ((local_result.first - begin1) < result)
		result = local_result.first - begin1;

	      // Will not find better value in its interval.
	      break;
	    }

	  iteration_start += num_threads * block_size;

	  // Where to work.
	  start = iteration_start + iam * block_size;
	  stop = std::min<difference_type>(length, start + block_size);
	}
    }

    // Return iterator on found element.
    return std::pair<RandomAccessIterator1, RandomAccessIterator2>(begin1 + result, begin2 + result);
  }
#endif
} // end namespace

#endif