summaryrefslogtreecommitdiff
path: root/libquadmath/math/ccoshq.c
blob: 8d55ad3a99d005349a7a2944b5c2b3beacfa2237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/* Complex cosine hyperbole function for complex __float128.
   Copyright (C) 1997-2012 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include "quadmath-imp.h"

#ifdef HAVE_FENV_H
# include <fenv.h>
#endif


__complex128
ccoshq (__complex128 x)
{
  __complex128 retval;
  int rcls = fpclassifyq (__real__ x);
  int icls = fpclassifyq (__imag__ x);

  if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
    {
      /* Real part is finite.  */
      if (__builtin_expect (icls >= QUADFP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
	  __float128 sinix, cosix;

	  if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
	    {
	      sincosq (__imag__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __imag__ x;
	      cosix = 1.0Q;
	    }

	  if (fabsq (__real__ x) > t)
	    {
	      __float128 exp_t = expq (t);
	      __float128 rx = fabsq (__real__ x);
	      if (signbitq (__real__ x))
		sinix = -sinix;
	      rx -= t;
	      sinix *= exp_t / 2.0Q;
	      cosix *= exp_t / 2.0Q;
	      if (rx > t)
		{
		  rx -= t;
		  sinix *= exp_t;
		  cosix *= exp_t;
		}
	      if (rx > t)
		{
		  /* Overflow (original real part of x > 3t).  */
		  __real__ retval = FLT128_MAX * cosix;
		  __imag__ retval = FLT128_MAX * sinix;
		}
	      else
		{
		  __float128 exp_val = expq (rx);
		  __real__ retval = exp_val * cosix;
		  __imag__ retval = exp_val * sinix;
		}
	    }
	  else
	    {
	      __real__ retval = coshq (__real__ x) * cosix;
	      __imag__ retval = sinhq (__real__ x) * sinix;
	    }
	}
      else
	{
	  __imag__ retval = __real__ x == 0.0Q ? 0.0Q : nanq ("");
	  __real__ retval = nanq ("") + nanq ("");

#ifdef HAVE_FENV_H
	  if (icls == QUADFP_INFINITE)
	    feraiseexcept (FE_INVALID);
#endif
        }
    }
  else if (rcls == QUADFP_INFINITE)
    {
      /* Real part is infinite.  */
      if (__builtin_expect (icls > QUADFP_ZERO, 1))
	{
	  /* Imaginary part is finite.  */
	  __float128 sinix, cosix;

	  if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
	    {
	      sincosq (__imag__ x, &sinix, &cosix);
	    }
	  else
	    {
	      sinix = __imag__ x;
	      cosix = 1.0Q;
	    }

	  __real__ retval = copysignq (HUGE_VALQ, cosix);
	  __imag__ retval = (copysignq (HUGE_VALQ, sinix)
			     * copysignq (1.0Q, __real__ x));
	}
      else if (icls == QUADFP_ZERO)
	{
	  /* Imaginary part is 0.0.  */
	  __real__ retval = HUGE_VALQ;
	  __imag__ retval = __imag__ x * copysignq (1.0Q, __real__ x);
	}
      else
	{
	  /* The addition raises the invalid exception.  */
	  __real__ retval = HUGE_VALQ;
	  __imag__ retval = nanq ("") + nanq ("");

#ifdef HAVE_FENV_H
	  if (icls == QUADFP_INFINITE)
	    feraiseexcept (FE_INVALID);
#endif
	 }
    }
  else
    {
      __real__ retval = nanq ("");
      __imag__ retval = __imag__ x == 0.0 ? __imag__ x : nanq ("");
    }

  return retval;
}