1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
|
/* java.lang.Math -- common mathematical functions, native allowed
Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.lang;
import gnu.classpath.Configuration;
import java.util.Random;
/**
* Helper class containing useful mathematical functions and constants.
* <P>
*
* Note that angles are specified in radians. Conversion functions are
* provided for your convenience.
*
* @author Paul Fisher
* @author John Keiser
* @author Eric Blake (ebb9@email.byu.edu)
* @since 1.0
*/
public final class Math
{
/**
* Math is non-instantiable
*/
private Math()
{
}
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
System.loadLibrary("javalang");
}
}
/**
* A random number generator, initialized on first use.
*/
private static Random rand;
/**
* The most accurate approximation to the mathematical constant <em>e</em>:
* <code>2.718281828459045</code>. Used in natural log and exp.
*
* @see #log(double)
* @see #exp(double)
*/
public static final double E = 2.718281828459045;
/**
* The most accurate approximation to the mathematical constant <em>pi</em>:
* <code>3.141592653589793</code>. This is the ratio of a circle's diameter
* to its circumference.
*/
public static final double PI = 3.141592653589793;
/**
* Take the absolute value of the argument.
* (Absolute value means make it positive.)
* <P>
*
* Note that the the largest negative value (Integer.MIN_VALUE) cannot
* be made positive. In this case, because of the rules of negation in
* a computer, MIN_VALUE is what will be returned.
* This is a <em>negative</em> value. You have been warned.
*
* @param i the number to take the absolute value of
* @return the absolute value
* @see Integer#MIN_VALUE
*/
public static int abs(int i)
{
return (i < 0) ? -i : i;
}
/**
* Take the absolute value of the argument.
* (Absolute value means make it positive.)
* <P>
*
* Note that the the largest negative value (Long.MIN_VALUE) cannot
* be made positive. In this case, because of the rules of negation in
* a computer, MIN_VALUE is what will be returned.
* This is a <em>negative</em> value. You have been warned.
*
* @param l the number to take the absolute value of
* @return the absolute value
* @see Long#MIN_VALUE
*/
public static long abs(long l)
{
return (l < 0) ? -l : l;
}
/**
* Take the absolute value of the argument.
* (Absolute value means make it positive.)
* <P>
*
* This is equivalent, but faster than, calling
* <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
*
* @param f the number to take the absolute value of
* @return the absolute value
*/
public static float abs(float f)
{
return (f <= 0) ? 0 - f : f;
}
/**
* Take the absolute value of the argument.
* (Absolute value means make it positive.)
*
* This is equivalent, but faster than, calling
* <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
* << 1) >>> 1);</code>.
*
* @param d the number to take the absolute value of
* @return the absolute value
*/
public static double abs(double d)
{
return (d <= 0) ? 0 - d : d;
}
/**
* Return whichever argument is smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static int min(int a, int b)
{
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static long min(long a, long b)
{
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static float min(float a, float b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; < will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return -(-a - b);
return (a < b) ? a : b;
}
/**
* Return whichever argument is smaller. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
*
* @param a the first number
* @param b a second number
* @return the smaller of the two numbers
*/
public static double min(double a, double b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; < will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return -(-a - b);
return (a < b) ? a : b;
}
/**
* Return whichever argument is larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static int max(int a, int b)
{
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static long max(long a, long b)
{
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, 0 is always larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static float max(float a, float b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; > will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return a - -b;
return (a > b) ? a : b;
}
/**
* Return whichever argument is larger. If either argument is NaN, the
* result is NaN, and when comparing 0 and -0, 0 is always larger.
*
* @param a the first number
* @param b a second number
* @return the larger of the two numbers
*/
public static double max(double a, double b)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return a;
// no need to check if b is NaN; > will work correctly
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
if (a == 0 && b == 0)
return a - -b;
return (a > b) ? a : b;
}
/**
* The trigonometric function <em>sin</em>. The sine of NaN or infinity is
* NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
* and is semi-monotonic.
*
* @param a the angle (in radians)
* @return sin(a)
*/
public static native double sin(double a);
/**
* The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
* NaN. This is accurate within 1 ulp, and is semi-monotonic.
*
* @param a the angle (in radians)
* @return cos(a)
*/
public static native double cos(double a);
/**
* The trigonometric function <em>tan</em>. The tangent of NaN or infinity
* is NaN, and the tangent of 0 retains its sign. This is accurate within 1
* ulp, and is semi-monotonic.
*
* @param a the angle (in radians)
* @return tan(a)
*/
public static native double tan(double a);
/**
* The trigonometric function <em>arcsin</em>. The range of angles returned
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
* its absolute value is beyond 1, the result is NaN; and the arcsine of
* 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
*
* @param a the sin to turn back into an angle
* @return arcsin(a)
*/
public static native double asin(double a);
/**
* The trigonometric function <em>arccos</em>. The range of angles returned
* is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
* its absolute value is beyond 1, the result is NaN. This is accurate
* within 1 ulp, and is semi-monotonic.
*
* @param a the cos to turn back into an angle
* @return arccos(a)
*/
public static native double acos(double a);
/**
* The trigonometric function <em>arcsin</em>. The range of angles returned
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
* result is NaN; and the arctangent of 0 retains its sign. This is accurate
* within 1 ulp, and is semi-monotonic.
*
* @param a the tan to turn back into an angle
* @return arcsin(a)
* @see #atan2(double, double)
*/
public static native double atan(double a);
/**
* A special version of the trigonometric function <em>arctan</em>, for
* converting rectangular coordinates <em>(x, y)</em> to polar
* <em>(r, theta)</em>. This computes the arctangent of x/y in the range
* of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
* <li>If either argument is NaN, the result is NaN.</li>
* <li>If the first argument is positive zero and the second argument is
* positive, or the first argument is positive and finite and the second
* argument is positive infinity, then the result is positive zero.</li>
* <li>If the first argument is negative zero and the second argument is
* positive, or the first argument is negative and finite and the second
* argument is positive infinity, then the result is negative zero.</li>
* <li>If the first argument is positive zero and the second argument is
* negative, or the first argument is positive and finite and the second
* argument is negative infinity, then the result is the double value
* closest to pi.</li>
* <li>If the first argument is negative zero and the second argument is
* negative, or the first argument is negative and finite and the second
* argument is negative infinity, then the result is the double value
* closest to -pi.</li>
* <li>If the first argument is positive and the second argument is
* positive zero or negative zero, or the first argument is positive
* infinity and the second argument is finite, then the result is the
* double value closest to pi/2.</li>
* <li>If the first argument is negative and the second argument is
* positive zero or negative zero, or the first argument is negative
* infinity and the second argument is finite, then the result is the
* double value closest to -pi/2.</li>
* <li>If both arguments are positive infinity, then the result is the
* double value closest to pi/4.</li>
* <li>If the first argument is positive infinity and the second argument
* is negative infinity, then the result is the double value closest to
* 3*pi/4.</li>
* <li>If the first argument is negative infinity and the second argument
* is positive infinity, then the result is the double value closest to
* -pi/4.</li>
* <li>If both arguments are negative infinity, then the result is the
* double value closest to -3*pi/4.</li>
*
* </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
* use sqrt(x*x+y*y).
*
* @param y the y position
* @param x the x position
* @return <em>theta</em> in the conversion of (x, y) to (r, theta)
* @see #atan(double)
*/
public static native double atan2(double y, double x);
/**
* Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
* argument is NaN, the result is NaN; if the argument is positive infinity,
* the result is positive infinity; and if the argument is negative
* infinity, the result is positive zero. This is accurate within 1 ulp,
* and is semi-monotonic.
*
* @param a the number to raise to the power
* @return the number raised to the power of <em>e</em>
* @see #log(double)
* @see #pow(double, double)
*/
public static native double exp(double a);
/**
* Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
* argument is NaN or negative, the result is NaN; if the argument is
* positive infinity, the result is positive infinity; and if the argument
* is either zero, the result is negative infinity. This is accurate within
* 1 ulp, and is semi-monotonic.
*
* <p>Note that the way to get log<sub>b</sub>(a) is to do this:
* <code>ln(a) / ln(b)</code>.
*
* @param a the number to take the natural log of
* @return the natural log of <code>a</code>
* @see #exp(double)
*/
public static native double log(double a);
/**
* Take a square root. If the argument is NaN or negative, the result is
* NaN; if the argument is positive infinity, the result is positive
* infinity; and if the result is either zero, the result is the same.
* This is accurate within the limits of doubles.
*
* <p>For other roots, use pow(a, 1 / rootNumber).
*
* @param a the numeric argument
* @return the square root of the argument
* @see #pow(double, double)
*/
public static native double sqrt(double a);
/**
* Raise a number to a power. Special cases:<ul>
* <li>If the second argument is positive or negative zero, then the result
* is 1.0.</li>
* <li>If the second argument is 1.0, then the result is the same as the
* first argument.</li>
* <li>If the second argument is NaN, then the result is NaN.</li>
* <li>If the first argument is NaN and the second argument is nonzero,
* then the result is NaN.</li>
* <li>If the absolute value of the first argument is greater than 1 and
* the second argument is positive infinity, or the absolute value of the
* first argument is less than 1 and the second argument is negative
* infinity, then the result is positive infinity.</li>
* <li>If the absolute value of the first argument is greater than 1 and
* the second argument is negative infinity, or the absolute value of the
* first argument is less than 1 and the second argument is positive
* infinity, then the result is positive zero.</li>
* <li>If the absolute value of the first argument equals 1 and the second
* argument is infinite, then the result is NaN.</li>
* <li>If the first argument is positive zero and the second argument is
* greater than zero, or the first argument is positive infinity and the
* second argument is less than zero, then the result is positive zero.</li>
* <li>If the first argument is positive zero and the second argument is
* less than zero, or the first argument is positive infinity and the
* second argument is greater than zero, then the result is positive
* infinity.</li>
* <li>If the first argument is negative zero and the second argument is
* greater than zero but not a finite odd integer, or the first argument is
* negative infinity and the second argument is less than zero but not a
* finite odd integer, then the result is positive zero.</li>
* <li>If the first argument is negative zero and the second argument is a
* positive finite odd integer, or the first argument is negative infinity
* and the second argument is a negative finite odd integer, then the result
* is negative zero.</li>
* <li>If the first argument is negative zero and the second argument is
* less than zero but not a finite odd integer, or the first argument is
* negative infinity and the second argument is greater than zero but not a
* finite odd integer, then the result is positive infinity.</li>
* <li>If the first argument is negative zero and the second argument is a
* negative finite odd integer, or the first argument is negative infinity
* and the second argument is a positive finite odd integer, then the result
* is negative infinity.</li>
* <li>If the first argument is less than zero and the second argument is a
* finite even integer, then the result is equal to the result of raising
* the absolute value of the first argument to the power of the second
* argument.</li>
* <li>If the first argument is less than zero and the second argument is a
* finite odd integer, then the result is equal to the negative of the
* result of raising the absolute value of the first argument to the power
* of the second argument.</li>
* <li>If the first argument is finite and less than zero and the second
* argument is finite and not an integer, then the result is NaN.</li>
* <li>If both arguments are integers, then the result is exactly equal to
* the mathematical result of raising the first argument to the power of
* the second argument if that result can in fact be represented exactly as
* a double value.</li>
*
* </ul><p>(In the foregoing descriptions, a floating-point value is
* considered to be an integer if and only if it is a fixed point of the
* method {@link #ceil(double)} or, equivalently, a fixed point of the
* method {@link #floor(double)}. A value is a fixed point of a one-argument
* method if and only if the result of applying the method to the value is
* equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
*
* @param a the number to raise
* @param b the power to raise it to
* @return a<sup>b</sup>
*/
public static native double pow(double a, double b);
/**
* Get the IEEE 754 floating point remainder on two numbers. This is the
* value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
* double to <code>x / y</code> (ties go to the even n); for a zero
* remainder, the sign is that of <code>x</code>. If either argument is NaN,
* the first argument is infinite, or the second argument is zero, the result
* is NaN; if x is finite but y is infinite, the result is x. This is
* accurate within the limits of doubles.
*
* @param x the dividend (the top half)
* @param y the divisor (the bottom half)
* @return the IEEE 754-defined floating point remainder of x/y
* @see #rint(double)
*/
public static native double IEEEremainder(double x, double y);
/**
* Take the nearest integer that is that is greater than or equal to the
* argument. If the argument is NaN, infinite, or zero, the result is the
* same; if the argument is between -1 and 0, the result is negative zero.
* Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
*
* @param a the value to act upon
* @return the nearest integer >= <code>a</code>
*/
public static native double ceil(double a);
/**
* Take the nearest integer that is that is less than or equal to the
* argument. If the argument is NaN, infinite, or zero, the result is the
* same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
*
* @param a the value to act upon
* @return the nearest integer <= <code>a</code>
*/
public static native double floor(double a);
/**
* Take the nearest integer to the argument. If it is exactly between
* two integers, the even integer is taken. If the argument is NaN,
* infinite, or zero, the result is the same.
*
* @param a the value to act upon
* @return the nearest integer to <code>a</code>
*/
public static native double rint(double a);
/**
* Take the nearest integer to the argument. This is equivalent to
* <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
* is 0; otherwise if the argument is outside the range of int, the result
* will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
*
* @param a the argument to round
* @return the nearest integer to the argument
* @see Integer#MIN_VALUE
* @see Integer#MAX_VALUE
*/
public static int round(float a)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return 0;
return (int) floor(a + 0.5f);
}
/**
* Take the nearest long to the argument. This is equivalent to
* <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
* result is 0; otherwise if the argument is outside the range of long, the
* result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
*
* @param a the argument to round
* @return the nearest long to the argument
* @see Long#MIN_VALUE
* @see Long#MAX_VALUE
*/
public static long round(double a)
{
// this check for NaN, from JLS 15.21.1, saves a method call
if (a != a)
return 0;
return (long) floor(a + 0.5d);
}
/**
* Get a random number. This behaves like Random.nextDouble(), seeded by
* System.currentTimeMillis() when first called. In other words, the number
* is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
* This random sequence is only used by this method, and is threadsafe,
* although you may want your own random number generator if it is shared
* among threads.
*
* @return a random number
* @see Random#nextDouble()
* @see System#currentTimeMillis()
*/
public static synchronized double random()
{
if (rand == null)
rand = new Random();
return rand.nextDouble();
}
/**
* Convert from degrees to radians. The formula for this is
* radians = degrees * (pi/180); however it is not always exact given the
* limitations of floating point numbers.
*
* @param degrees an angle in degrees
* @return the angle in radians
* @since 1.2
*/
public static double toRadians(double degrees)
{
return (degrees * PI) / 180;
}
/**
* Convert from radians to degrees. The formula for this is
* degrees = radians * (180/pi); however it is not always exact given the
* limitations of floating point numbers.
*
* @param rads an angle in radians
* @return the angle in degrees
* @since 1.2
*/
public static double toDegrees(double rads)
{
return (rads * 180) / PI;
}
}
|