summaryrefslogtreecommitdiff
path: root/libjava/doc/cni.sgml
blob: 495e3e9c5a5f4d813e26569ace9d41e7093a9507 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
<!DOCTYPE article PUBLIC "-//Davenport//DTD DocBook V3.0//EN">
<article>
<artheader>
<title>The Cygnus Native Interface for C++/Java Integration</title>
<subtitle>Writing native Java methods in natural C++</subtitle>
<authorgroup>
<corpauthor>Cygnus Solutions</corpauthor>
</authorgroup>
<date>March, 2000</date>
</artheader>

<abstract><para>
This documents CNI, the Cygnus Native Interface,
which is is a convenient way to write Java native methods using C++.
This is a more efficient, more convenient, but less portable
alternative to the standard JNI (Java Native Interface).</para>
</abstract>

<sect1><title>Basic Concepts</title>
<para>
In terms of languages features, Java is mostly a subset
of C++.  Java has a few important extensions, plus a powerful standard
class library, but on the whole that does not change the basic similarity.
Java is a hybrid object-oriented language, with a few native types,
in addition to class types.  It is class-based, where a class may have
static as well as per-object fields, and static as well as instance methods.
Non-static methods may be virtual, and may be overloaded.  Overloading is
resolved at compile time by matching the actual argument types against
the parameter types.  Virtual methods are implemented using indirect calls
through a dispatch table (virtual function table).  Objects are
allocated on the heap, and initialized using a constructor method.
Classes are organized in a package hierarchy.
</para>
<para>
All of the listed attributes are also true of C++, though C++ has
extra features (for example in C++ objects may be allocated not just
on the heap, but also statically or in a local stack frame).  Because
<acronym>gcj</acronym> uses the same compiler technology as
<acronym>g++</acronym> (the GNU C++ compiler), it is possible
to make the intersection of the two languages use the same
<acronym>ABI</acronym> (object representation and calling conventions).
The key idea in <acronym>CNI</acronym> is that Java objects are C++ objects,
and all Java classes are C++ classes (but not the other way around).
So the most important task in integrating Java and C++ is to
remove gratuitous incompatibilities.
</para>
<para>
You write CNI code as a regular C++ source file.  (You do have to use
a Java/CNI-aware C++ compiler, specifically a recent version of G++.)</para>
<para>
You start with:
<programlisting>
#include &lt;gcj/cni.h&gt;
</programlisting></para>

<para>
You then include header files for the various Java classes you need
to use:
<programlisting>
#include &lt;java/lang/Character.h&gt;
#include &lt;java/util/Date.h&gt;
#include &lt;java/lang/IndexOutOfBoundsException.h&gt;
</programlisting></para>

<para>
In general, <acronym>CNI</acronym> functions and macros start with the
`<literal>Jv</literal>' prefix, for example the function
`<literal>JvNewObjectArray</literal>'.  This convention is used to
avoid conflicts with other libraries.
Internal functions in <acronym>CNI</acronym> start with the prefix
`<literal>_Jv_</literal>'.  You should not call these;
if you find a need to, let us know and we will try to come up with an
alternate solution.  (This manual lists <literal>_Jv_AllocBytes</literal>
as an example;  <acronym>CNI</acronym> should instead provide
a <literal>JvAllocBytes</literal> function.)</para>
<para>
These header files are automatically generated by <command>gcjh</command>.
</para>
</sect1>

<sect1><title>Packages</title>
<para>
The only global names in Java are class names, and packages.
A <firstterm>package</firstterm> can contain zero or more classes, and
also zero or more sub-packages.
Every class belongs to either an unnamed package or a package that
has a hierarchical and globally unique name.
</para>
<para>
A Java package is mapped to a C++ <firstterm>namespace</firstterm>.
The Java class <literal>java.lang.String</literal>
is in the package <literal>java.lang</literal>, which is a sub-package
of <literal>java</literal>.  The C++ equivalent is the
class <literal>java::lang::String</literal>,
which is in the namespace <literal>java::lang</literal>,
which is in the namespace <literal>java</literal>.
</para>
<para>
Here is how you could express this:
<programlisting>
// Declare the class(es), possibly in a header file:
namespace java {
  namespace lang {
    class Object;
    class String;
    ...
  }
}

class java::lang::String : public java::lang::Object
{
  ...
};
</programlisting>
</para>
<para>
The <literal>gcjh</literal> tool automatically generates the
nessary namespace declarations.</para>

<sect2><title>Nested classes as a substitute for namespaces</title>
<para>
<!-- FIXME the next line reads poorly jsm -->
It is not that long since g++ got complete namespace support,
and it was very recent (end of February 1999) that <literal>libgcj</literal>
was changed to uses namespaces.  Releases before then used
nested classes, which are the C++ equivalent of Java inner classes.
They provide similar (though less convenient) functionality.
The old syntax is:
<programlisting>
class java {
  class lang {
    class Object;
    class String;
  };
};
</programlisting>
The obvious difference is the use of <literal>class</literal> instead
of <literal>namespace</literal>.  The more important difference is
that all the members of a nested class have to be declared inside
the parent class definition, while namespaces can be defined in
multiple places in the source.  This is more convenient, since it
corresponds more closely to how Java packages are defined.
The main difference is in the declarations; the syntax for
using a nested class is the same as with namespaces:
<programlisting>
class java::lang::String : public java::lang::Object
{ ... }
</programlisting>
Note that the generated code (including name mangling)
using nested classes is the same as that using namespaces.</para>
</sect2>

<sect2><title>Leaving out package names</title>
<para>
<!-- FIXME next line reads poorly jsm -->
Having to always type the fully-qualified class name is verbose.
It also makes it more difficult to change the package containing a class.
The Java <literal>package</literal> declaration specifies that the
following class declarations are in the named package, without having
to explicitly name the full package qualifiers.
The <literal>package</literal> declaration can be followed by zero or
more <literal>import</literal> declarations, which allows either
a single class or all the classes in a package to be named by a simple
identifier.  C++ provides something similar
with the <literal>using</literal> declaration and directive.
</para>
<para>
A Java simple-type-import declaration:
<programlisting>
import <replaceable>PackageName</replaceable>.<replaceable>TypeName</replaceable>;
</programlisting>
allows using <replaceable>TypeName</replaceable> as a shorthand for
<literal><replaceable>PackageName</replaceable>.<replaceable>TypeName</replaceable></literal>.
The C++ (more-or-less) equivalent is a <literal>using</literal>-declaration:
<programlisting>
using <replaceable>PackageName</replaceable>::<replaceable>TypeName</replaceable>;
</programlisting>
</para>
<para>
A Java import-on-demand declaration:
<programlisting>
import <replaceable>PackageName</replaceable>.*;
</programlisting>
allows using <replaceable>TypeName</replaceable> as a shorthand for
<literal><replaceable>PackageName</replaceable>.<replaceable>TypeName</replaceable></literal>
The C++ (more-or-less) equivalent is a <literal>using</literal>-directive:
<programlisting>
using namespace <replaceable>PackageName</replaceable>;
</programlisting>
</para>
</sect2>
</sect1>

<sect1><title>Primitive types</title>
<para>
Java provides 8 <quote>primitives</quote> types:
<literal>byte</literal>, <literal>short</literal>, <literal>int</literal>,
<literal>long</literal>, <literal>float</literal>, <literal>double</literal>,
<literal>char</literal>, and <literal>boolean</literal>.
These are the same as the following C++ <literal>typedef</literal>s
(which are defined by <literal>gcj/cni.h</literal>):
<literal>jbyte</literal>, <literal>jshort</literal>, <literal>jint</literal>,
<literal>jlong</literal>, <literal>jfloat</literal>,
<literal>jdouble</literal>,
<literal>jchar</literal>, and <literal>jboolean</literal>.
You should use the C++ typenames
(<ForeignPhrase><Abbrev>e.g.</Abbrev></ForeignPhrase> <literal>jint</literal>),
and not the Java types names
(<ForeignPhrase><Abbrev>e.g.</Abbrev></ForeignPhrase> <literal>int</literal>),
even if they are <quote>the same</quote>.
This is because there is no guarantee that the C++ type
<literal>int</literal> is a 32-bit type, but <literal>jint</literal>
<emphasis>is</emphasis> guaranteed to be a 32-bit type.

<informaltable frame="all" colsep="1" rowsep="0">
<tgroup cols="3">
<thead>
<row>
<entry>Java type</entry>
<entry>C/C++ typename</entry>
<entry>Description</entry>
</thead>
<tbody>
<row>
<entry>byte</entry>
<entry>jbyte</entry>
<entry>8-bit signed integer</entry>
</row>
<row>
<entry>short</entry>
<entry>jshort</entry>
<entry>16-bit signed integer</entry>
</row>
<row>
<entry>int</entry>
<entry>jint</entry>
<entry>32-bit signed integer</entry>
</row>
<row>
<entry>long</entry>
<entry>jlong</entry>
<entry>64-bit signed integer</entry>
</row>
<row>
<entry>float</entry>
<entry>jfloat</entry>
<entry>32-bit IEEE floating-point number</entry>
</row>
<row>
<entry>double</entry>
<entry>jdouble</entry>
<entry>64-bit IEEE floating-point number</entry>
</row>
<row>
<entry>char</entry>
<entry>jchar</entry>
<entry>16-bit Unicode character</entry>
</row>
<row>
<entry>boolean</entry>
<entry>jboolean</entry>
<entry>logical (Boolean) values</entry>
</row>
<row>
<entry>void</entry>
<entry>void</entry>
<entry>no value</entry>
</row>
</tbody></tgroup>
</informaltable>
</para>

<para>
<funcsynopsis>
<funcdef><function>JvPrimClass</function></funcdef>
<paramdef><parameter>primtype</parameter></paramdef>
</funcsynopsis>
This is a macro whose argument should be the name of a primitive
type, <ForeignPhrase><Abbrev>e.g.</Abbrev></ForeignPhrase>
<literal>byte</literal>.
The macro expands to a pointer to the <literal>Class</literal> object
corresponding to the primitive type.
<ForeignPhrase><Abbrev>E.g.</Abbrev></ForeignPhrase>,
<literal>JvPrimClass(void)</literal>
has the same value as the Java expression
<literal>Void.TYPE</literal> (or <literal>void.class</literal>).
</para>

</sect1>

<sect1><title>Objects and Classes</title>
<sect2><title>Classes</title>
<para>
All Java classes are derived from <literal>java.lang.Object</literal>.
C++ does not have a unique <quote>root</quote>class, but we use
a C++ <literal>java::lang::Object</literal> as the C++ version
of the <literal>java.lang.Object</literal> Java class.  All
other Java classes are mapped into corresponding C++ classes
derived from <literal>java::lang::Object</literal>.</para>
<para>
Interface inheritance (the <quote><literal>implements</literal></quote>
keyword) is currently not reflected in the C++ mapping.</para>
</sect2>
<sect2><title>Object references</title>
<para>
We implement a Java object reference as a pointer to the start
of the referenced object.  It maps to a C++ pointer.
(We cannot use C++ references for Java references, since
once a C++ reference has been initialized, you cannot change it to
point to another object.)
The <literal>null</literal> Java reference maps to the <literal>NULL</literal>
C++ pointer.
</para>
<para>
Note that in some Java implementations an object reference is implemented as
a pointer to a two-word <quote>handle</quote>.  One word of the handle
points to the fields of the object, while the other points
to a method table.  Gcj does not use this extra indirection.
</para>
</sect2>
<sect2><title>Object fields</title>
<para>
Each object contains an object header, followed by the instance
fields of the class, in order.  The object header consists of
a single pointer to a dispatch or virtual function table.
(There may be extra fields <quote>in front of</quote> the object,
for example for
memory management, but this is invisible to the application, and
the reference to the object points to the dispatch table pointer.)
</para>
<para>
The fields are laid out in the same order, alignment, and size
as in C++.  Specifically, 8-bite and 16-bit native types
(<literal>byte</literal>, <literal>short</literal>, <literal>char</literal>,
and <literal>boolean</literal>) are <emphasis>not</emphasis>
widened to 32 bits.
Note that the Java VM does extend 8-bit and 16-bit types to 32 bits
when on the VM stack or temporary registers.</para>
<para>
If you include the <literal>gcjh</literal>-generated header for a
class, you can access fields of Java classes in the <quote>natural</quote>
way.  Given the following Java class:
<programlisting>
public class Int
{
  public int i;
  public Integer (int i) { this.i = i; }
  public static zero = new Integer(0);
}
</programlisting>
you can write:
<programlisting>
#include &lt;gcj/cni.h&gt;
#include &lt;Int.h&gt;
Int*
mult (Int *p, jint k)
{
  if (k == 0)
    return Int::zero;  // static member access.
  return new Int(p->i * k);
}
</programlisting>
</para>
<para>
<acronym>CNI</acronym> does not strictly enforce the Java access
specifiers, because Java permissions cannot be directly mapped
into C++ permission.  Private Java fields and methods are mapped
to private C++ fields and methods, but other fields and methods
are mapped to public fields and methods.
</para>
</sect2>
</sect1>

<sect1><title>Arrays</title>
<para>
While in many ways Java is similar to C and C++,
it is quite different in its treatment of arrays.
C arrays are based on the idea of pointer arithmetic,
which would be incompatible with Java's security requirements.
Java arrays are true objects (array types inherit from
<literal>java.lang.Object</literal>).  An array-valued variable
is one that contains a reference (pointer) to an array object.
</para>
<para>
Referencing a Java array in C++ code is done using the
<literal>JArray</literal> template, which as defined as follows:
<programlisting>
class __JArray : public java::lang::Object
{
public:
  int length;
};

template&lt;class T&gt;
class JArray : public __JArray
{
  T data[0];
public:
  T&amp; operator[](jint i) { return data[i]; }
};
</programlisting></para>
<para>
<funcsynopsis> 
   <funcdef>template&lt;class T&gt;  T *<function>elements</function></funcdef>
   <paramdef>JArray&lt;T&gt; &amp;<parameter>array</parameter></paramdef>
</funcsynopsis>
   This template function can be used to get a pointer to the
   elements of the <parameter>array</parameter>.
   For instance, you can fetch a pointer
   to the integers that make up an <literal>int[]</literal> like so:
<programlisting>
extern jintArray foo;
jint *intp = elements (foo);
</programlisting>
The name of this function may change in the future.</para>
<para>
There are a number of typedefs which correspond to typedefs from JNI.
Each is the type of an array holding objects of the appropriate type:
<programlisting>
typedef __JArray *jarray;
typedef JArray&lt;jobject&gt; *jobjectArray;
typedef JArray&lt;jboolean&gt; *jbooleanArray;
typedef JArray&lt;jbyte&gt; *jbyteArray;
typedef JArray&lt;jchar&gt; *jcharArray;
typedef JArray&lt;jshort&gt; *jshortArray;
typedef JArray&lt;jint&gt; *jintArray;
typedef JArray&lt;jlong&gt; *jlongArray;
typedef JArray&lt;jfloat&gt; *jfloatArray;
typedef JArray&lt;jdouble&gt; *jdoubleArray;
</programlisting>
</para>
<para>
 You can create an array of objects using this function:
<funcsynopsis> 
   <funcdef>jobjectArray <function>JvNewObjectArray</function></funcdef>
   <paramdef>jint <parameter>length</parameter></paramdef>
   <paramdef>jclass <parameter>klass</parameter></paramdef>
   <paramdef>jobject <parameter>init</parameter></paramdef>
   </funcsynopsis>
   Here <parameter>klass</parameter> is the type of elements of the array;
   <parameter>init</parameter> is the initial
   value to be put into every slot in the array.
</para>
<para>
For each primitive type there is a function which can be used
   to create a new array holding that type.  The name of the function
   is of the form
   `<literal>JvNew&lt;<replaceable>Type</replaceable>&gt;Array</literal>',
   where `&lt;<replaceable>Type</replaceable>&gt;' is the name of
   the primitive type, with its initial letter in upper-case.  For
   instance, `<literal>JvNewBooleanArray</literal>' can be used to create
   a new array of booleans.
   Each such function follows this example:
<funcsynopsis>  
   <funcdef>jbooleanArray <function>JvNewBooleanArray</function></funcdef> 
   <paramdef>jint <parameter>length</parameter></paramdef>
</funcsynopsis>
</para>
<para>
<funcsynopsis>
   <funcdef>jsize <function>JvGetArrayLength</function></funcdef>
   <paramdef>jarray <parameter>array</parameter></paramdef> 
   </funcsynopsis>
   Returns the length of <parameter>array</parameter>.</para>
</sect1>

<sect1><title>Methods</title>

<para>
Java methods are mapped directly into C++ methods.
The header files generated by <literal>gcjh</literal>
include the appropriate method definitions.
Basically, the generated methods have the same names and
<quote>corresponding</quote> types as the Java methods,
and are called in the natural manner.</para>

<sect2><title>Overloading</title>
<para>
Both Java and C++ provide method overloading, where multiple
methods in a class have the same name, and the correct one is chosen
(at compile time) depending on the argument types.
The rules for choosing the correct method are (as expected) more complicated
in C++ than in Java, but given a set of overloaded methods
generated by <literal>gcjh</literal> the C++ compiler will choose
the expected one.</para>
<para>
Common assemblers and linkers are not aware of C++ overloading,
so the standard implementation strategy is to encode the
parameter types of a method into its assembly-level name.
This encoding is called <firstterm>mangling</firstterm>,
and the encoded name is the <firstterm>mangled name</firstterm>.
The same mechanism is used to implement Java overloading.
For C++/Java interoperability, it is important that both the Java
and C++ compilers use the <emphasis>same</emphasis> encoding scheme.
</para>
</sect2>

<sect2><title>Static methods</title>
<para>
Static Java methods are invoked in <acronym>CNI</acronym> using the standard
C++ syntax, using the `<literal>::</literal>' operator rather
than the `<literal>.</literal>' operator.  For example:
</para>
<programlisting>
jint i = java::lang::Math::round((jfloat) 2.3);
</programlisting>
<para>
<!-- FIXME this next sentence seems ungammatical jsm -->
Defining a static native method uses standard C++ method
definition syntax.  For example:
<programlisting>
#include &lt;java/lang/Integer.h&gt;
java::lang::Integer*
java::lang::Integer::getInteger(jstring str)
{
  ...
}
</programlisting>
</sect2>

<sect2><title>Object Constructors</title>
<para>
Constructors are called implicitly as part of object allocation
using the <literal>new</literal> operator.  For example:
<programlisting> 
java::lang::Int x = new java::lang::Int(234);
</programlisting> 
</para>
<para>
<!-- FIXME rewrite needed here, mine may not be good jsm -->
Java does not allow a constructor to be a native method.
Instead, you could define a private method which
you can have the constructor call.
</para>
</sect2>

<sect2><title>Instance methods</title>
<para>
<!-- FIXME next para week, I would remove a few words from some sentences jsm -->
Virtual method dispatch is handled essentially the same way
in C++ and Java -- <abbrev>i.e.</abbrev> by doing an
indirect call through a function pointer stored in a per-class virtual
function table.  C++ is more complicated because it has to support
multiple inheritance, but this does not effect Java classes.
However, G++ has historically used a different calling convention
that is not compatible with the one used by <acronym>gcj</acronym>.
During 1999, G++ will switch to a new ABI that is compatible with
<acronym>gcj</acronym>.  Some platforms (including Linux) have already
changed.  On other platforms, you will have to pass
the <literal>-fvtable-thunks</literal> flag to g++ when
compiling <acronym>CNI</acronym> code.  Note that you must also compile
your C++ source code with <literal>-fno-rtti</literal>.
</para>
<para>
Calling a Java instance method in <acronym>CNI</acronym> is done
using the standard C++ syntax.  For example:
<programlisting>
  java::lang::Number *x;
  if (x-&gt;doubleValue() &gt; 0.0) ...
</programlisting>
</para>
<para>
Defining a Java native instance method is also done the natural way:
<programlisting>
#include &lt;java/lang/Integer.h&gt;
jdouble
java::lang:Integer::doubleValue()
{
  return (jdouble) value;
}
</programlisting>
</para>
</sect2>

<sect2><title>Interface method calls</title>
<para>
In Java you can call a method using an interface reference.
This is not yet supported in <acronym>CNI</acronym>.</para>
</sect2>
</sect1>

<sect1><title>Object allocation</title>

<para>
New Java objects are allocated using a
<firstterm>class-instance-creation-expression</firstterm>:
<programlisting>
new <replaceable>Type</replaceable> ( <replaceable>arguments</replaceable> )
</programlisting>
The same syntax is used in C++.  The main difference is that
C++ objects have to be explicitly deleted; in Java they are
automatically deleted by the garbage collector.
Using <acronym>CNI</acronym>, you can allocate a new object
using standard C++ syntax.  The C++ compiler is smart enough to
realize the class is a Java class, and hence it needs to allocate
memory from the garbage collector.  If you have overloaded
constructors, the compiler will choose the correct one
using standard C++ overload resolution rules.  For example:
<programlisting>
java::util::Hashtable *ht = new java::util::Hashtable(120);
</programlisting>
</para>
<para>
<funcsynopsis>
  <funcdef>void *<function>_Jv_AllocBytes</function></funcdef>
  <paramdef>jsize <parameter>size</parameter></paramdef>
</funcsynopsis>
   Allocate <parameter>size</parameter> bytes.  This memory is not
   scanned by the garbage collector.  However, it will be freed by
the GC if no references to it are discovered.
</para>
</sect1>

<sect1><title>Interfaces</title>
<para>
A Java class can <firstterm>implement</firstterm> zero or more
<firstterm>interfaces</firstterm>, in addition to inheriting from
a single base class. 
An interface is a collection of constants and method specifications;
it is similar to the <firstterm>signatures</firstterm> available
as a G++ extension.  An interface provides a subset of the
functionality of C++ abstract virtual base classes, but they
are currently implemented differently.
CNI does not currently provide any support for interfaces,
or calling methods from an interface pointer.
This is partly because we are planning to re-do how
interfaces are implemented in <acronym>gcj</acronym>.
</para>
</sect1>

<sect1><title>Strings</title>
<para>
<acronym>CNI</acronym> provides a number of utility functions for
working with Java <literal>String</literal> objects.
The names and interfaces are analogous to those of <acronym>JNI</acronym>.
</para>

<para>
<funcsynopsis>
  <funcdef>jstring <function>JvNewString</function></funcdef>
  <paramdef>const jchar *<parameter>chars</parameter></paramdef>
  <paramdef>jsize <parameter>len</parameter></paramdef>
  </funcsynopsis>
  Creates a new Java String object, where
  <parameter>chars</parameter> are the contents, and
  <parameter>len</parameter> is the number of characters.
</para>

<para>
<funcsynopsis>
  <funcdef>jstring <function>JvNewStringLatin1</function></funcdef>
  <paramdef>const char *<parameter>bytes</parameter></paramdef>
  <paramdef>jsize <parameter>len</parameter></paramdef>
 </funcsynopsis>
  Creates a new Java String object, where <parameter>bytes</parameter>
  are the Latin-1 encoded
  characters, and <parameter>len</parameter> is the length of
  <parameter>bytes</parameter>, in bytes.
</para>

<para>
<funcsynopsis>
  <funcdef>jstring <function>JvNewStringLatin1</function></funcdef>
  <paramdef>const char *<parameter>bytes</parameter></paramdef>
  </funcsynopsis>
  Like the first JvNewStringLatin1, but computes <parameter>len</parameter>
  using <literal>strlen</literal>.
</para>

<para>
<funcsynopsis>
  <funcdef>jstring <function>JvNewStringUTF</function></funcdef>
  <paramdef>const char *<parameter>bytes</parameter></paramdef>
  </funcsynopsis>
   Creates a new Java String object, where <parameter>bytes</parameter> are
   the UTF-8 encoded characters of the string, terminated by a null byte.
</para>

<para>
<funcsynopsis>
   <funcdef>jchar *<function>JvGetStringChars</function></funcdef>
  <paramdef>jstring <parameter>str</parameter></paramdef>
  </funcsynopsis>
   Returns a pointer to the array of characters which make up a string.
</para>

<para>
<funcsynopsis>
   <funcdef> int <function>JvGetStringUTFLength</function></funcdef>
  <paramdef>jstring <parameter>str</parameter></paramdef>
  </funcsynopsis>
   Returns number of bytes required to encode contents
   of <parameter>str</parameter> as UTF-8.
</para>

<para>
<funcsynopsis>
  <funcdef> jsize <function>JvGetStringUTFRegion</function></funcdef>
  <paramdef>jstring <parameter>str</parameter></paramdef>
  <paramdef>jsize <parameter>start</parameter></paramdef>
  <paramdef>jsize <parameter>len</parameter></paramdef>
  <paramdef>char *<parameter>buf</parameter></paramdef>
  </funcsynopsis>
  This puts the UTF-8 encoding of a region of the
  string <parameter>str</parameter> into
  the buffer <parameter>buf</parameter>.
  The region of the string to fetch is specifued by
  <parameter>start</parameter> and <parameter>len</parameter>.
   It is assumed that <parameter>buf</parameter> is big enough
   to hold the result.  Note
   that <parameter>buf</parameter> is <emphasis>not</emphasis> null-terminated.
</para>
</sect1>

<sect1><title>Class Initialization</title>
<para>
Java requires that each class be automatically initialized at the time 
of the first active use.  Initializing a class involves 
initializing the static fields, running code in class initializer 
methods, and initializing base classes.  There may also be 
some implementation specific actions, such as allocating 
<classname>String</classname> objects corresponding to string literals in
the code.</para>
<para>
The Gcj compiler inserts calls to <literal>JvInitClass</literal> (actually
<literal>_Jv_InitClass</literal>) at appropriate places to ensure that a
class is initialized when required.  The C++ compiler does not
insert these calls automatically - it is the programmer's
responsibility to make sure classes are initialized.  However,
this is fairly painless because of the conventions assumed by the Java
system.</para>
<para>
First, <literal>libgcj</literal> will make sure a class is initialized
before an instance of that object is created.  This is one
of the responsibilities of the <literal>new</literal> operation.  This is
taken care of both in Java code, and in C++ code.  (When the G++
compiler sees a <literal>new</literal> of a Java class, it will call
a routine in <literal>libgcj</literal> to allocate the object, and that
routine will take care of initializing the class.)  It follows that you can
access an instance field, or call an instance (non-static)
method and be safe in the knowledge that the class and all
of its base classes have been initialized.</para>
<para>
Invoking a static method is also safe.  This is because the
Java compiler adds code to the start of a static method to make sure
the class is initialized.  However, the C++ compiler does not
add this extra code.  Hence, if you write a native static method
using CNI, you are responsible for calling <literal>JvInitClass</literal>
before doing anything else in the method (unless you are sure
it is safe to leave it out).</para>
<para>
Accessing a static field also requires the class of the
field to be initialized.  The Java compiler will generate code
to call <literal>_Jv_InitClass</literal> before getting or setting the field.
However, the C++ compiler will not generate this extra code,
so it is your responsibility to make sure the class is
initialized before you access a static field.</para>
</sect1>
<sect1><title>Exception Handling</title>
<para>
While C++ and Java share a common exception handling framework,
things are not yet perfectly integrated.  The main issue is that the
<quote>run-time type information</quote> facilities of the two
languages are not integrated.</para>
<para>
Still, things work fairly well.  You can throw a Java exception from
C++ using the ordinary <literal>throw</literal> construct, and this
exception can be caught by Java code.  Similarly, you can catch an
exception thrown from Java using the C++ <literal>catch</literal>
construct.
<para>
Note that currently you cannot mix C++ catches and Java catches in
a single C++ translation unit.  We do intend to fix this eventually.
</para>
<para>
Here is an example:
<programlisting>
if (i >= count)
   throw new java::lang::IndexOutOfBoundsException();
</programlisting>
</para>
<para>
Normally, GNU C++ will automatically detect when you are writing C++
code that uses Java exceptions, and handle them appropriately.
However, if C++ code only needs to execute destructors when Java
exceptions are thrown through it, GCC will guess incorrectly.  Sample
problematic code:
<programlisting>
  struct S { ~S(); };
  extern void bar();    // is implemented in Java and may throw exceptions
  void foo()
  {
    S s;
    bar();
  }
</programlisting>
The usual effect of an incorrect guess is a link failure, complaining of
a missing routine called <literal>__gxx_personality_v0</literal>.
</para>
<para>
You can inform the compiler that Java exceptions are to be used in a
translation unit, irrespective of what it might think, by writing
<literal>#pragma GCC java_exceptions</literal> at the head of the
file.  This <literal>#pragma</literal> must appear before any
functions that throw or catch exceptions, or run destructors when
exceptions are thrown through them.</para>
</sect1>

<sect1><title>Synchronization</title>
<para>
Each Java object has an implicit monitor.
The Java VM uses the instruction <literal>monitorenter</literal> to acquire
and lock a monitor, and <literal>monitorexit</literal> to release it.
The JNI has corresponding methods <literal>MonitorEnter</literal>
and <literal>MonitorExit</literal>.  The corresponding CNI macros
are <literal>JvMonitorEnter</literal> and <literal>JvMonitorExit</literal>.
</para>
<para>
The Java source language does not provide direct access to these primitives.
Instead, there is a <literal>synchronized</literal> statement that does an
implicit <literal>monitorenter</literal> before entry to the block,
and does a <literal>monitorexit</literal> on exit from the block.
Note that the lock has to be released even the block is abnormally
terminated by an exception, which means there is an implicit
<literal>try</literal>-<literal>finally</literal>.
</para>
<para>
From C++, it makes sense to use a destructor to release a lock.
CNI defines the following utility class.
<programlisting>
class JvSynchronize() {
  jobject obj;
  JvSynchronize(jobject o) { obj = o; JvMonitorEnter(o); }
  ~JvSynchronize() { JvMonitorExit(obj); }
};
</programlisting>
The equivalent of Java's:
<programlisting>
synchronized (OBJ) { CODE; }
</programlisting>
can be simply expressed:
<programlisting>
{ JvSynchronize dummy(OBJ); CODE; }
</programlisting>
</para>
<para>
Java also has methods with the <literal>synchronized</literal> attribute.
This is equivalent to wrapping the entire method body in a
<literal>synchronized</literal> statement.
(Alternatively, an implementation could require the caller to do
the synchronization.  This is not practical for a compiler, because
each virtual method call would have to test at run-time if
synchronization is needed.)  Since in <literal>gcj</literal>
the <literal>synchronized</literal> attribute is handled by the
method implementation, it is up to the programmer
of a synchronized native method to handle the synchronization
(in the C++ implementation of the method).
In otherwords, you need to manually add <literal>JvSynchronize</literal>
in a <literal>native synchornized</literal> method.</para>
</sect1>

<sect1><title>Reflection</title>
<para>The types <literal>jfieldID</literal> and <literal>jmethodID</literal>
are as in JNI.</para>
<para>
The function <literal>JvFromReflectedField</literal>,
<literal>JvFromReflectedMethod</literal>,
<literal>JvToReflectedField</literal>, and
<literal>JvToFromReflectedMethod</literal> (as in Java 2 JNI)
will be added shortly, as will other functions corresponding to JNI.</para>

<sect1><title>Using gcjh</title>
<para>
      The <command>gcjh</command> is used to generate C++ header files from
      Java class files.  By default, <command>gcjh</command> generates
      a relatively straightforward C++ header file.  However, there
      are a few caveats to its use, and a few options which can be
      used to change how it operates:
</para>
<variablelist>
<varlistentry>
<term><literal>--classpath</literal> <replaceable>path</replaceable></term>
<term><literal>--CLASSPATH</literal> <replaceable>path</replaceable></term>
<term><literal>-I</literal> <replaceable>dir</replaceable></term>
<listitem><para>
        These options can be used to set the class path for gcjh.
        Gcjh searches the class path the same way the compiler does;
	these options have their familiar meanings.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><literal>-d <replaceable>directory</replaceable></literal></term>
<listitem><para>
Puts the generated <literal>.h</literal> files
beneath <replaceable>directory</replaceable>.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><literal>-o <replaceable>file</replaceable></literal></term>
<listitem><para>
        Sets the name of the <literal>.h</literal> file to be generated.
        By default the <literal>.h</literal> file is named after the class.
        This option only really makes sense if just a single class file
        is specified.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><literal>--verbose</literal></term>
<listitem><para>
        gcjh will print information to stderr as it works.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><literal>-M</literal></term>
<term><literal>-MM</literal></term>
<term><literal>-MD</literal></term>
<term><literal>-MMD</literal></term>
<listitem><para>
        These options can be used to generate dependency information
        for the generated header file.  They work the same way as the
        corresponding compiler options.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><literal>-prepend <replaceable>text</replaceable></literal></term>
<listitem><para>
This causes the <replaceable>text</replaceable> to be put into the generated
        header just after class declarations (but before declaration
        of the current class).  This option should be used with caution.</para>
</listitem>
</varlistentry>

<varlistentry> 
<term><literal>-friend <replaceable>text</replaceable></literal></term>
<listitem><para>
This causes the <replaceable>text</replaceable> to be put into the class
declaration after a <literal>friend</literal> keyword.
This can be used to declare some
        other class or function to be a friend of this class.
        This option should be used with caution.</para>
</listitem>
</varlistentry>

<varlistentry>  
<term><literal>-add <replaceable>text</replaceable></literal></term>
<listitem><para>
The <replaceable>text</replaceable> is inserted into the class declaration.
This option should be used with caution.</para>
</listitem>
</varlistentry>

<varlistentry> 
<term><literal>-append <replaceable>text</replaceable></literal></term>
<listitem><para>
The <replaceable>text</replaceable> is inserted into the header file
after the class declaration.  One use for this is to generate
inline functions.  This option should be used with caution.
</listitem>
</varlistentry>
</variablelist>
<para>
All other options not beginning with a <literal>-</literal> are treated
as the names of classes for which headers should be generated.</para>
<para>
gcjh will generate all the required namespace declarations and
<literal>#include</literal>'s for the header file.
In some situations, gcjh will generate simple inline member
functions.  Note that, while gcjh puts <literal>#pragma
interface</literal> in the generated header file, you should
<emphasis>not</emphasis> put <literal>#pragma implementation</literal>
into your C++ source file.  If you do, duplicate definitions of
inline functions will sometimes be created, leading to link-time
errors.
</para>
<para>
There are a few cases where gcjh will fail to work properly:</para>
<para>
gcjh assumes that all the methods and fields of a class have ASCII
names.  The C++ compiler cannot correctly handle non-ASCII
identifiers.  gcjh does not currently diagnose this problem.</para>
<para>
gcjh also cannot fully handle classes where a field and a method have
the same name.  If the field is static, an error will result.
Otherwise, the field will be renamed in the generated header; `__'
will be appended to the field name.</para>
<para>
Eventually we hope to change the C++ compiler so that these
restrictions can be lifted.</para>
</sect1>

</article>