summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/util/Hashtable.java
blob: 07bd94693184031eb0f3cc56ed88472e5a102091 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
/* Hashtable.java -- a class providing a basic hashtable data structure,
   mapping Object --> Object
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005, 2006
   Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.util;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

// NOTE: This implementation is very similar to that of HashMap. If you fix
// a bug in here, chances are you should make a similar change to the HashMap
// code.

/**
 * A class which implements a hashtable data structure.
 * <p>
 *
 * This implementation of Hashtable uses a hash-bucket approach. That is:
 * linear probing and rehashing is avoided; instead, each hashed value maps
 * to a simple linked-list which, in the best case, only has one node.
 * Assuming a large enough table, low enough load factor, and / or well
 * implemented hashCode() methods, Hashtable should provide O(1)
 * insertion, deletion, and searching of keys.  Hashtable is O(n) in
 * the worst case for all of these (if all keys hash to the same bucket).
 * <p>
 *
 * This is a JDK-1.2 compliant implementation of Hashtable.  As such, it
 * belongs, partially, to the Collections framework (in that it implements
 * Map).  For backwards compatibility, it inherits from the obsolete and
 * utterly useless Dictionary class.
 * <p>
 *
 * Being a hybrid of old and new, Hashtable has methods which provide redundant
 * capability, but with subtle and even crucial differences.
 * For example, one can iterate over various aspects of a Hashtable with
 * either an Iterator (which is the JDK-1.2 way of doing things) or with an
 * Enumeration.  The latter can end up in an undefined state if the Hashtable
 * changes while the Enumeration is open.
 * <p>
 *
 * Unlike HashMap, Hashtable does not accept `null' as a key value. Also,
 * all accesses are synchronized: in a single thread environment, this is
 * expensive, but in a multi-thread environment, this saves you the effort
 * of extra synchronization. However, the old-style enumerators are not
 * synchronized, because they can lead to unspecified behavior even if
 * they were synchronized. You have been warned.
 * <p>
 *
 * The iterators are <i>fail-fast</i>, meaning that any structural
 * modification, except for <code>remove()</code> called on the iterator
 * itself, cause the iterator to throw a
 * <code>ConcurrentModificationException</code> rather than exhibit
 * non-deterministic behavior.
 *
 * @author Jon Zeppieri
 * @author Warren Levy
 * @author Bryce McKinlay
 * @author Eric Blake (ebb9@email.byu.edu)
 * @see HashMap
 * @see TreeMap
 * @see IdentityHashMap
 * @see LinkedHashMap
 * @since 1.0
 * @status updated to 1.4
 */
public class Hashtable<K, V> extends Dictionary<K, V>
  implements Map<K, V>, Cloneable, Serializable
{
  // WARNING: Hashtable is a CORE class in the bootstrap cycle. See the
  // comments in vm/reference/java/lang/Runtime for implications of this fact.

  /** Default number of buckets. This is the value the JDK 1.3 uses. Some
   * early documentation specified this value as 101. That is incorrect.
   */
  private static final int DEFAULT_CAPACITY = 11;

  /**
   * The default load factor; this is explicitly specified by the spec.
   */
  private static final float DEFAULT_LOAD_FACTOR = 0.75f;

  /**
   * Compatible with JDK 1.0+.
   */
  private static final long serialVersionUID = 1421746759512286392L;

  /**
   * The rounded product of the capacity and the load factor; when the number
   * of elements exceeds the threshold, the Hashtable calls
   * <code>rehash()</code>.
   * @serial
   */
  private int threshold;

  /**
   * Load factor of this Hashtable:  used in computing the threshold.
   * @serial
   */
  private final float loadFactor;

  /**
   * Array containing the actual key-value mappings.
   */
  // Package visible for use by nested classes.
  transient HashEntry<K, V>[] buckets;

  /**
   * Counts the number of modifications this Hashtable has undergone, used
   * by Iterators to know when to throw ConcurrentModificationExceptions.
   */
  // Package visible for use by nested classes.
  transient int modCount;

  /**
   * The size of this Hashtable:  denotes the number of key-value pairs.
   */
  // Package visible for use by nested classes.
  transient int size;

  /**
   * The cache for {@link #keySet()}.
   */
  private transient Set<K> keys;

  /**
   * The cache for {@link #values()}.
   */
  private transient Collection<V> values;

  /**
   * The cache for {@link #entrySet()}.
   */
  private transient Set<Map.Entry<K, V>> entries;

  /**
   * Class to represent an entry in the hash table. Holds a single key-value
   * pair. A Hashtable Entry is identical to a HashMap Entry, except that
   * `null' is not allowed for keys and values.
   */
  private static final class HashEntry<K, V>
    extends AbstractMap.SimpleEntry<K, V>
  {
    /** The next entry in the linked list. */
    HashEntry<K, V> next;

    /**
     * Simple constructor.
     * @param key the key, already guaranteed non-null
     * @param value the value, already guaranteed non-null
     */
    HashEntry(K key, V value)
    {
      super(key, value);
    }

    /**
     * Resets the value.
     * @param newVal the new value
     * @return the prior value
     * @throws NullPointerException if <code>newVal</code> is null
     */
    public V setValue(V newVal)
    {
      if (newVal == null)
        throw new NullPointerException();
      return super.setValue(newVal);
    }
  }

  /**
   * Construct a new Hashtable with the default capacity (11) and the default
   * load factor (0.75).
   */
  public Hashtable()
  {
    this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
  }

  /**
   * Construct a new Hashtable from the given Map, with initial capacity
   * the greater of the size of <code>m</code> or the default of 11.
   * <p>
   *
   * Every element in Map m will be put into this new Hashtable.
   *
   * @param m a Map whose key / value pairs will be put into
   *          the new Hashtable.  <b>NOTE: key / value pairs
   *          are not cloned in this constructor.</b>
   * @throws NullPointerException if m is null, or if m contains a mapping
   *         to or from `null'.
   * @since 1.2
   */
  public Hashtable(Map<? extends K, ? extends V> m)
  {
    this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
    putAll(m);
  }

  /**
   * Construct a new Hashtable with a specific inital capacity and
   * default load factor of 0.75.
   *
   * @param initialCapacity the initial capacity of this Hashtable (&gt;= 0)
   * @throws IllegalArgumentException if (initialCapacity &lt; 0)
   */
  public Hashtable(int initialCapacity)
  {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
  }

  /**
   * Construct a new Hashtable with a specific initial capacity and
   * load factor.
   *
   * @param initialCapacity the initial capacity (&gt;= 0)
   * @param loadFactor the load factor (&gt; 0, not NaN)
   * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
   *                                     ! (loadFactor &gt; 0.0)
   */
  public Hashtable(int initialCapacity, float loadFactor)
  {
    if (initialCapacity < 0)
      throw new IllegalArgumentException("Illegal Capacity: "
                                         + initialCapacity);
    if (! (loadFactor > 0)) // check for NaN too
      throw new IllegalArgumentException("Illegal Load: " + loadFactor);

    if (initialCapacity == 0)
      initialCapacity = 1;
    buckets = (HashEntry<K, V>[]) new HashEntry[initialCapacity];
    this.loadFactor = loadFactor;
    threshold = (int) (initialCapacity * loadFactor);
  }

  /**
   * Returns the number of key-value mappings currently in this hashtable.
   * @return the size
   */
  public synchronized int size()
  {
    return size;
  }

  /**
   * Returns true if there are no key-value mappings currently in this table.
   * @return <code>size() == 0</code>
   */
  public synchronized boolean isEmpty()
  {
    return size == 0;
  }

  /**
   * Return an enumeration of the keys of this table. There's no point
   * in synchronizing this, as you have already been warned that the
   * enumeration is not specified to be thread-safe.
   *
   * @return the keys
   * @see #elements()
   * @see #keySet()
   */
  public Enumeration<K> keys()
  {
    return new KeyEnumerator();
  }

  /**
   * Return an enumeration of the values of this table. There's no point
   * in synchronizing this, as you have already been warned that the
   * enumeration is not specified to be thread-safe.
   *
   * @return the values
   * @see #keys()
   * @see #values()
   */
  public Enumeration<V> elements()
  {
    return new ValueEnumerator();
  }

  /**
   * Returns true if this Hashtable contains a value <code>o</code>,
   * such that <code>o.equals(value)</code>.  This is the same as
   * <code>containsValue()</code>, and is O(n).
   * <p>
   *
   * @param value the value to search for in this Hashtable
   * @return true if at least one key maps to the value
   * @throws NullPointerException if <code>value</code> is null
   * @see #containsValue(Object)
   * @see #containsKey(Object)
   */
  public synchronized boolean contains(Object value)
  {
    if (value == null)
      throw new NullPointerException();

    for (int i = buckets.length - 1; i >= 0; i--)
      {
        HashEntry<K, V> e = buckets[i];
        while (e != null)
          {
            if (e.value.equals(value))
              return true;
            e = e.next;
          }
      }

    return false;  
  }

  /**
   * Returns true if this Hashtable contains a value <code>o</code>, such that
   * <code>o.equals(value)</code>. This is the new API for the old
   * <code>contains()</code>.
   *
   * @param value the value to search for in this Hashtable
   * @return true if at least one key maps to the value
   * @see #contains(Object)
   * @see #containsKey(Object)
   * @throws NullPointerException if <code>value</code> is null
   * @since 1.2
   */
  public boolean containsValue(Object value)
  {
    // Delegate to older method to make sure code overriding it continues 
    // to work.
    return contains(value);
  }

  /**
   * Returns true if the supplied object <code>equals()</code> a key
   * in this Hashtable.
   *
   * @param key the key to search for in this Hashtable
   * @return true if the key is in the table
   * @throws NullPointerException if key is null
   * @see #containsValue(Object)
   */
  public synchronized boolean containsKey(Object key)
  {
    int idx = hash(key);
    HashEntry<K, V> e = buckets[idx];
    while (e != null)
      {
        if (e.key.equals(key))
          return true;
        e = e.next;
      }
    return false;
  }

  /**
   * Return the value in this Hashtable associated with the supplied key,
   * or <code>null</code> if the key maps to nothing.
   *
   * @param key the key for which to fetch an associated value
   * @return what the key maps to, if present
   * @throws NullPointerException if key is null
   * @see #put(Object, Object)
   * @see #containsKey(Object)
   */
  public synchronized V get(Object key)
  {
    int idx = hash(key);
    HashEntry<K, V> e = buckets[idx];
    while (e != null)
      {
        if (e.key.equals(key))
          return e.value;
        e = e.next;
      }
    return null;
  }

  /**
   * Puts the supplied value into the Map, mapped by the supplied key.
   * Neither parameter may be null.  The value may be retrieved by any
   * object which <code>equals()</code> this key.
   *
   * @param key the key used to locate the value
   * @param value the value to be stored in the table
   * @return the prior mapping of the key, or null if there was none
   * @throws NullPointerException if key or value is null
   * @see #get(Object)
   * @see Object#equals(Object)
   */
  public synchronized V put(K key, V value)
  {
    int idx = hash(key);
    HashEntry<K, V> e = buckets[idx];

    // Check if value is null since it is not permitted.
    if (value == null)
      throw new NullPointerException();

    while (e != null)
      {
        if (e.key.equals(key))
          {
            // Bypass e.setValue, since we already know value is non-null.
            V r = e.value;
            e.value = value;
            return r;
          }
        else
          {
            e = e.next;
          }
      }

    // At this point, we know we need to add a new entry.
    modCount++;
    if (++size > threshold)
      {
        rehash();
        // Need a new hash value to suit the bigger table.
        idx = hash(key);
      }

    e = new HashEntry<K, V>(key, value);

    e.next = buckets[idx];
    buckets[idx] = e;

    return null;
  }

  /**
   * Removes from the table and returns the value which is mapped by the
   * supplied key. If the key maps to nothing, then the table remains
   * unchanged, and <code>null</code> is returned.
   *
   * @param key the key used to locate the value to remove
   * @return whatever the key mapped to, if present
   */
  public synchronized V remove(Object key)
  {
    int idx = hash(key);
    HashEntry<K, V> e = buckets[idx];
    HashEntry<K, V> last = null;

    while (e != null)
      {
        if (e.key.equals(key))
          {
            modCount++;
            if (last == null)
              buckets[idx] = e.next;
            else
              last.next = e.next;
            size--;
            return e.value;
          }
        last = e;
        e = e.next;
      }
    return null;
  }

  /**
   * Copies all elements of the given map into this hashtable.  However, no
   * mapping can contain null as key or value.  If this table already has
   * a mapping for a key, the new mapping replaces the current one.
   *
   * @param m the map to be hashed into this
   * @throws NullPointerException if m is null, or contains null keys or values
   */
  public synchronized void putAll(Map<? extends K, ? extends V> m)
  {
    final Map<K,V> addMap = (Map<K,V>) m;
    final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
    while (it.hasNext())
      {
	final Map.Entry<K,V> e = it.next();
        // Optimize in case the Entry is one of our own.
        if (e instanceof AbstractMap.SimpleEntry)
          {
            AbstractMap.SimpleEntry<? extends K, ? extends V> entry
	      = (AbstractMap.SimpleEntry<? extends K, ? extends V>) e;
            put(entry.key, entry.value);
          }
        else
          {
            put(e.getKey(), e.getValue());
          }
      }
  }

  /**
   * Clears the hashtable so it has no keys.  This is O(1).
   */
  public synchronized void clear()
  {
    if (size > 0)
      {
        modCount++;
        Arrays.fill(buckets, null);
        size = 0;
      }
  }

  /**
   * Returns a shallow clone of this Hashtable. The Map itself is cloned,
   * but its contents are not.  This is O(n).
   *
   * @return the clone
   */
  public synchronized Object clone()
  {
    Hashtable<K, V> copy = null;
    try
      {
        copy = (Hashtable<K, V>) super.clone();
      }
    catch (CloneNotSupportedException x)
      {
        // This is impossible.
      }
    copy.buckets = (HashEntry<K, V>[]) new HashEntry[buckets.length];
    copy.putAllInternal(this);
    // Clear the caches.
    copy.keys = null;
    copy.values = null;
    copy.entries = null;
    return copy;
  }

  /**
   * Converts this Hashtable to a String, surrounded by braces, and with
   * key/value pairs listed with an equals sign between, separated by a
   * comma and space. For example, <code>"{a=1, b=2}"</code>.<p>
   *
   * NOTE: if the <code>toString()</code> method of any key or value
   * throws an exception, this will fail for the same reason.
   *
   * @return the string representation
   */
  public synchronized String toString()
  {
    // Since we are already synchronized, and entrySet().iterator()
    // would repeatedly re-lock/release the monitor, we directly use the
    // unsynchronized EntryIterator instead.
    Iterator<Map.Entry<K, V>> entries = new EntryIterator();
    StringBuilder r = new StringBuilder("{");
    for (int pos = size; pos > 0; pos--)
      {
        r.append(entries.next());
        if (pos > 1)
          r.append(", ");
      }
    r.append("}");
    return r.toString();
  }

  /**
   * Returns a "set view" of this Hashtable's keys. The set is backed by
   * the hashtable, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.  The set is properly
   * synchronized on the original hashtable.  Sun has not documented the
   * proper interaction of null with this set, but has inconsistent behavior
   * in the JDK. Therefore, in this implementation, contains, remove,
   * containsAll, retainAll, removeAll, and equals just ignore a null key
   * rather than throwing a {@link NullPointerException}.
   *
   * @return a set view of the keys
   * @see #values()
   * @see #entrySet()
   * @since 1.2
   */
  public Set<K> keySet()
  {
    if (keys == null)
      {
        // Create a synchronized AbstractSet with custom implementations of
        // those methods that can be overridden easily and efficiently.
        Set<K> r = new AbstractSet<K>()
        {
          public int size()
          {
            return size;
          }

          public Iterator<K> iterator()
          {
            return new KeyIterator();
          }

          public void clear()
          {
            Hashtable.this.clear();
          }

          public boolean contains(Object o)
          {
            if (o == null)
              return false;
            return containsKey(o);
          }

          public boolean remove(Object o)
          {
            return Hashtable.this.remove(o) != null;
          }
        };
        // We must specify the correct object to synchronize upon, hence the
        // use of a non-public API
        keys = new Collections.SynchronizedSet<K>(this, r);
      }
    return keys;
  }

  /**
   * Returns a "collection view" (or "bag view") of this Hashtable's values.
   * The collection is backed by the hashtable, so changes in one show up
   * in the other.  The collection supports element removal, but not element
   * addition.  The collection is properly synchronized on the original
   * hashtable.  Sun has not documented the proper interaction of null with
   * this set, but has inconsistent behavior in the JDK. Therefore, in this
   * implementation, contains, remove, containsAll, retainAll, removeAll, and
   * equals just ignore a null value rather than throwing a
   * {@link NullPointerException}.
   *
   * @return a bag view of the values
   * @see #keySet()
   * @see #entrySet()
   * @since 1.2
   */
  public Collection<V> values()
  {
    if (values == null)
      {
        // We don't bother overriding many of the optional methods, as doing so
        // wouldn't provide any significant performance advantage.
        Collection<V> r = new AbstractCollection<V>()
        {
          public int size()
          {
            return size;
          }

          public Iterator<V> iterator()
          {
            return new ValueIterator();
          }

          public void clear()
          {
            Hashtable.this.clear();
          }
        };
        // We must specify the correct object to synchronize upon, hence the
        // use of a non-public API
        values = new Collections.SynchronizedCollection<V>(this, r);
      }
    return values;
  }

  /**
   * Returns a "set view" of this Hashtable's entries. The set is backed by
   * the hashtable, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.  The set is properly
   * synchronized on the original hashtable.  Sun has not documented the
   * proper interaction of null with this set, but has inconsistent behavior
   * in the JDK. Therefore, in this implementation, contains, remove,
   * containsAll, retainAll, removeAll, and equals just ignore a null entry,
   * or an entry with a null key or value, rather than throwing a
   * {@link NullPointerException}. However, calling entry.setValue(null)
   * will fail.
   * <p>
   *
   * Note that the iterators for all three views, from keySet(), entrySet(),
   * and values(), traverse the hashtable in the same sequence.
   *
   * @return a set view of the entries
   * @see #keySet()
   * @see #values()
   * @see Map.Entry
   * @since 1.2
   */
  public Set<Map.Entry<K, V>> entrySet()
  {
    if (entries == null)
      {
        // Create an AbstractSet with custom implementations of those methods
        // that can be overridden easily and efficiently.
        Set<Map.Entry<K, V>> r = new AbstractSet<Map.Entry<K, V>>()
        {
          public int size()
          {
            return size;
          }

          public Iterator<Map.Entry<K, V>> iterator()
          {
            return new EntryIterator();
          }

          public void clear()
          {
            Hashtable.this.clear();
          }

          public boolean contains(Object o)
          {
            return getEntry(o) != null;
          }

          public boolean remove(Object o)
          {
            HashEntry<K, V> e = getEntry(o);
            if (e != null)
              {
                Hashtable.this.remove(e.key);
                return true;
              }
            return false;
          }
        };
        // We must specify the correct object to synchronize upon, hence the
        // use of a non-public API
        entries = new Collections.SynchronizedSet<Map.Entry<K, V>>(this, r);
      }
    return entries;
  }

  /**
   * Returns true if this Hashtable equals the supplied Object <code>o</code>.
   * As specified by Map, this is:
   * <code>
   * (o instanceof Map) && entrySet().equals(((Map) o).entrySet());
   * </code>
   *
   * @param o the object to compare to
   * @return true if o is an equal map
   * @since 1.2
   */
  public boolean equals(Object o)
  {
    // no need to synchronize, entrySet().equals() does that.
    if (o == this)
      return true;
    if (!(o instanceof Map))
      return false;

    return entrySet().equals(((Map) o).entrySet());
  }

  /**
   * Returns the hashCode for this Hashtable.  As specified by Map, this is
   * the sum of the hashCodes of all of its Map.Entry objects
   *
   * @return the sum of the hashcodes of the entries
   * @since 1.2
   */
  public synchronized int hashCode()
  {
    // Since we are already synchronized, and entrySet().iterator()
    // would repeatedly re-lock/release the monitor, we directly use the
    // unsynchronized EntryIterator instead.
    Iterator<Map.Entry<K, V>> itr = new EntryIterator();
    int hashcode = 0;
    for (int pos = size; pos > 0; pos--)
      hashcode += itr.next().hashCode();

    return hashcode;
  }

  /**
   * Helper method that returns an index in the buckets array for `key'
   * based on its hashCode().
   *
   * @param key the key
   * @return the bucket number
   * @throws NullPointerException if key is null
   */
  private int hash(Object key)
  {
    // Note: Inline Math.abs here, for less method overhead, and to avoid
    // a bootstrap dependency, since Math relies on native methods.
    int hash = key.hashCode() % buckets.length;
    return hash < 0 ? -hash : hash;
  }

  /**
   * Helper method for entrySet(), which matches both key and value
   * simultaneously. Ignores null, as mentioned in entrySet().
   *
   * @param o the entry to match
   * @return the matching entry, if found, or null
   * @see #entrySet()
   */
  // Package visible, for use in nested classes.
  HashEntry<K, V> getEntry(Object o)
  {
    if (! (o instanceof Map.Entry))
      return null;
    K key = ((Map.Entry<K, V>) o).getKey();
    if (key == null)
      return null;

    int idx = hash(key);
    HashEntry<K, V> e = buckets[idx];
    while (e != null)
      {
        if (e.equals(o))
          return e;
        e = e.next;
      }
    return null;
  }

  /**
   * A simplified, more efficient internal implementation of putAll(). clone() 
   * should not call putAll or put, in order to be compatible with the JDK 
   * implementation with respect to subclasses.
   *
   * @param m the map to initialize this from
   */
  void putAllInternal(Map<? extends K, ? extends V> m)
  {
    final Map<K,V> addMap = (Map<K,V>) m;
    final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
    size = 0;
    while (it.hasNext())
      {
	final Map.Entry<K,V> e = it.next();
        size++;
	K key = e.getKey();
	int idx = hash(key);
	HashEntry<K, V> he = new HashEntry<K, V>(key, e.getValue());
	he.next = buckets[idx];
	buckets[idx] = he;
      }
  }

  /**
   * Increases the size of the Hashtable and rehashes all keys to new array
   * indices; this is called when the addition of a new value would cause
   * size() &gt; threshold. Note that the existing Entry objects are reused in
   * the new hash table.
   * <p>
   *
   * This is not specified, but the new size is twice the current size plus
   * one; this number is not always prime, unfortunately. This implementation
   * is not synchronized, as it is only invoked from synchronized methods.
   */
  protected void rehash()
  {
    HashEntry<K, V>[] oldBuckets = buckets;

    int newcapacity = (buckets.length * 2) + 1;
    threshold = (int) (newcapacity * loadFactor);
    buckets = (HashEntry<K, V>[]) new HashEntry[newcapacity];

    for (int i = oldBuckets.length - 1; i >= 0; i--)
      {
        HashEntry<K, V> e = oldBuckets[i];
        while (e != null)
          {
            int idx = hash(e.key);
            HashEntry<K, V> dest = buckets[idx];

            if (dest != null)
              {
                HashEntry next = dest.next;
                while (next != null)
                  {
                    dest = next;
                    next = dest.next;
                  }
                dest.next = e;
              }
            else
              {
                buckets[idx] = e;
              }

            HashEntry<K, V> next = e.next;
            e.next = null;
            e = next;
          }
      }
  }

  /**
   * Serializes this object to the given stream.
   *
   * @param s the stream to write to
   * @throws IOException if the underlying stream fails
   * @serialData the <i>capacity</i> (int) that is the length of the
   *             bucket array, the <i>size</i> (int) of the hash map
   *             are emitted first.  They are followed by size entries,
   *             each consisting of a key (Object) and a value (Object).
   */
  private synchronized void writeObject(ObjectOutputStream s)
    throws IOException
  {
    // Write the threshold and loadFactor fields.
    s.defaultWriteObject();

    s.writeInt(buckets.length);
    s.writeInt(size);
    // Since we are already synchronized, and entrySet().iterator()
    // would repeatedly re-lock/release the monitor, we directly use the
    // unsynchronized EntryIterator instead.
    Iterator<Map.Entry<K, V>> it = new EntryIterator();
    while (it.hasNext())
      {
        HashEntry<K, V> entry = (HashEntry<K, V>) it.next();
        s.writeObject(entry.key);
        s.writeObject(entry.value);
      }
  }

  /**
   * Deserializes this object from the given stream.
   *
   * @param s the stream to read from
   * @throws ClassNotFoundException if the underlying stream fails
   * @throws IOException if the underlying stream fails
   * @serialData the <i>capacity</i> (int) that is the length of the
   *             bucket array, the <i>size</i> (int) of the hash map
   *             are emitted first.  They are followed by size entries,
   *             each consisting of a key (Object) and a value (Object).
   */
  private void readObject(ObjectInputStream s)
    throws IOException, ClassNotFoundException
  {
    // Read the threshold and loadFactor fields.
    s.defaultReadObject();

    // Read and use capacity.
    buckets = (HashEntry<K, V>[]) new HashEntry[s.readInt()];
    int len = s.readInt();

    // Read and use key/value pairs.
    // TODO: should we be defensive programmers, and check for illegal nulls?
    while (--len >= 0)
      put((K) s.readObject(), (V) s.readObject());
  }

  /**
   * A class which implements the Iterator interface and is used for
   * iterating over Hashtables.
   * This implementation iterates entries. Subclasses are used to
   * iterate key and values. It also allows the removal of elements,
   * as per the Javasoft spec.  Note that it is not synchronized; this
   * is a performance enhancer since it is never exposed externally
   * and is only used within synchronized blocks above.
   *
   * @author Jon Zeppieri
   * @author Fridjof Siebert
   */
  private class EntryIterator 
      implements Iterator<Entry<K,V>>
  {
    /**
     * The number of modifications to the backing Hashtable that we know about.
     */
    int knownMod = modCount;
    /** The number of elements remaining to be returned by next(). */
    int count = size;
    /** Current index in the physical hash table. */
    int idx = buckets.length;
    /** The last Entry returned by a next() call. */
    HashEntry<K, V> last;
    /**
     * The next entry that should be returned by next(). It is set to something
     * if we're iterating through a bucket that contains multiple linked
     * entries. It is null if next() needs to find a new bucket.
     */
    HashEntry<K, V> next;

    /**
     * Construct a new EntryIterator
     */
    EntryIterator()
    {
    }


    /**
     * Returns true if the Iterator has more elements.
     * @return true if there are more elements
     */
    public boolean hasNext()
    {
      return count > 0;
    }

    /**
     * Returns the next element in the Iterator's sequential view.
     * @return the next element
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws NoSuchElementException if there is none
     */
    public Map.Entry<K,V> next()
    {
      if (knownMod != modCount)
        throw new ConcurrentModificationException();
      if (count == 0)
        throw new NoSuchElementException();
      count--;
      HashEntry<K, V> e = next;

      while (e == null)
	if (idx <= 0)
	  return null;
	else
	  e = buckets[--idx];

      next = e.next;
      last = e;
      return e;
    }

    /**
     * Removes from the backing Hashtable the last element which was fetched
     * with the <code>next()</code> method.
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws IllegalStateException if called when there is no last element
     */
    public void remove()
    {
      if (knownMod != modCount)
        throw new ConcurrentModificationException();
      if (last == null)
        throw new IllegalStateException();

      Hashtable.this.remove(last.key);
      last = null;
      knownMod++;
    }
  } // class EntryIterator

  /**
   * A class which implements the Iterator interface and is used for
   * iterating over keys in Hashtables.  This class uses an
   * <code>EntryIterator</code> to obtain the keys of each entry.
   *
   * @author Fridtjof Siebert
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private class KeyIterator 
      implements Iterator<K>
  {

    /**
     * This entry iterator is used for most operations.  Only
     * <code>next()</code> gives a different result, by returning just
     * the key rather than the whole element.
     */
    private final EntryIterator iterator;

    /**
     * Construct a new KeyIterator
     */
    KeyIterator()
    {
	iterator = new EntryIterator();
    }


    /**
     * Returns true if the entry iterator has more elements.
     *
     * @return true if there are more elements
     * @throws ConcurrentModificationException if the hashtable was modified
     */
    public boolean hasNext()
    {
	return iterator.hasNext();
    }

    /**
     * Returns the next element in the Iterator's sequential view.
     *
     * @return the next element
     *
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws NoSuchElementException if there is none
     */
    public K next()
    {
      return ((HashEntry<K,V>) iterator.next()).key;
    }

    /**
     * Removes the last element used by the <code>next()</code> method
     * using the entry iterator.
     *
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws IllegalStateException if called when there is no last element
     */
    public void remove()
    {
      iterator.remove();
    }
  } // class KeyIterator
 
  /**
   * A class which implements the Iterator interface and is used for
   * iterating over values in Hashtables.  This class uses an
   * <code>EntryIterator</code> to obtain the values of each entry.
   *
   * @author Fridtjof Siebert
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private class ValueIterator
      implements Iterator<V>
  {

    /**
     * This entry iterator is used for most operations.  Only
     * <code>next()</code> gives a different result, by returning just
     * the value rather than the whole element.
     */
    private final EntryIterator iterator;

    /**
     * Construct a new KeyIterator
     */
    ValueIterator()
    {
	iterator = new EntryIterator();
    }


    /**
     * Returns true if the entry iterator has more elements.
     *
     * @return true if there are more elements
     * @throws ConcurrentModificationException if the hashtable was modified
     */
    public boolean hasNext()
    {
	return iterator.hasNext();
    }

    /**
     * Returns the value of the next element in the iterator's sequential view.
     *
     * @return the next value
     *
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws NoSuchElementException if there is none
     */
    public V next()
    {
      return ((HashEntry<K,V>) iterator.next()).value;
    }

    /**
     * Removes the last element used by the <code>next()</code> method
     * using the entry iterator.
     *
     * @throws ConcurrentModificationException if the hashtable was modified
     * @throws IllegalStateException if called when there is no last element
     */
    public void remove()
    {
      iterator.remove();
    }

  } // class ValueIterator

  /**
   * Enumeration view of the entries in this Hashtable, providing
   * sequential access to its elements.
   *
   * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
   * as this could cause a rehash and we'd completely lose our place.  Even
   * without a rehash, it is undetermined if a new element added would
   * appear in the enumeration.  The spec says nothing about this, but
   * the "Java Class Libraries" book implies that modifications to the
   * hashtable during enumeration causes indeterminate results.  Don't do it!
   *
   * @author Jon Zeppieri
   * @author Fridjof Siebert
   */
  private class EntryEnumerator 
      implements Enumeration<Entry<K,V>>
  {
    /** The number of elements remaining to be returned by next(). */
    int count = size;
    /** Current index in the physical hash table. */
    int idx = buckets.length;
    /**
     * Entry which will be returned by the next nextElement() call. It is
     * set if we are iterating through a bucket with multiple entries, or null
     * if we must look in the next bucket.
     */
    HashEntry<K, V> next;

    /**
     * Construct the enumeration.
     */
    EntryEnumerator()
    {
      // Nothing to do here.
    }

    /**
     * Checks whether more elements remain in the enumeration.
     * @return true if nextElement() will not fail.
     */
    public boolean hasMoreElements()
    {
      return count > 0;
    }

    /**
     * Returns the next element.
     * @return the next element
     * @throws NoSuchElementException if there is none.
     */
    public Map.Entry<K,V> nextElement()
    {
      if (count == 0)
        throw new NoSuchElementException("Hashtable Enumerator");
      count--;
      HashEntry<K, V> e = next;

      while (e == null)
        if (idx <= 0)
          return null;
        else
          e = buckets[--idx];

      next = e.next;
      return e;
    }
  } // class EntryEnumerator


  /**
   * Enumeration view of this Hashtable, providing sequential access to its
   * elements.
   *
   * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
   * as this could cause a rehash and we'd completely lose our place.  Even
   * without a rehash, it is undetermined if a new element added would
   * appear in the enumeration.  The spec says nothing about this, but
   * the "Java Class Libraries" book implies that modifications to the
   * hashtable during enumeration causes indeterminate results.  Don't do it!
   *
   * @author Jon Zeppieri
   * @author Fridjof Siebert
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private final class KeyEnumerator
      implements Enumeration<K>
  {
    /**
     * This entry enumerator is used for most operations.  Only
     * <code>nextElement()</code> gives a different result, by returning just
     * the key rather than the whole element.
     */
    private final EntryEnumerator enumerator;

    /**
     * Construct a new KeyEnumerator
     */
    KeyEnumerator()
    {
      enumerator = new EntryEnumerator();
    }


    /**
     * Returns true if the entry enumerator has more elements.
     *
     * @return true if there are more elements
     * @throws ConcurrentModificationException if the hashtable was modified
     */
    public boolean hasMoreElements()
    {
	return enumerator.hasMoreElements();
    }

    /**
     * Returns the next element.
     * @return the next element
     * @throws NoSuchElementException if there is none.
     */
    public K nextElement()
    {
      HashEntry<K,V> entry = (HashEntry<K,V>) enumerator.nextElement();
      K retVal = null;
      if (entry != null)
        retVal = entry.key;
      return retVal;
    }
  } // class KeyEnumerator


  /**
   * Enumeration view of this Hashtable, providing sequential access to its
   * values.
   *
   * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
   * as this could cause a rehash and we'd completely lose our place.  Even
   * without a rehash, it is undetermined if a new element added would
   * appear in the enumeration.  The spec says nothing about this, but
   * the "Java Class Libraries" book implies that modifications to the
   * hashtable during enumeration causes indeterminate results.  Don't do it!
   *
   * @author Jon Zeppieri
   * @author Fridjof Siebert
   * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
   */
  private final class ValueEnumerator
      implements Enumeration<V>
  {
    /**
     * This entry enumerator is used for most operations.  Only
     * <code>nextElement()</code> gives a different result, by returning just
     * the value rather than the whole element.
     */
    private final EntryEnumerator enumerator;

    /**
     * Construct a new ValueEnumerator
     */
    ValueEnumerator()
    {
      enumerator = new EntryEnumerator();
    }


    /**
     * Returns true if the entry enumerator has more elements.
     *
     * @return true if there are more elements
     * @throws ConcurrentModificationException if the hashtable was modified
     */
    public boolean hasMoreElements()
    {
	return enumerator.hasMoreElements();
    }

    /**
     * Returns the next element.
     * @return the next element
     * @throws NoSuchElementException if there is none.
     */
    public V nextElement()
    {
      HashEntry<K,V> entry = (HashEntry<K,V>) enumerator.nextElement();
      V retVal = null;
      if (entry != null)
        retVal = entry.value;
      return retVal;
    }
  } // class ValueEnumerator

} // class Hashtable