1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
|
/* Float.java -- object wrapper for float
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.lang;
/**
* Instances of class <code>Float</code> represent primitive
* <code>float</code> values.
*
* Additionally, this class provides various helper functions and variables
* related to floats.
*
* @author Paul Fisher
* @author Andrew Haley (aph@cygnus.com)
* @author Eric Blake (ebb9@email.byu.edu)
* @author Tom Tromey (tromey@redhat.com)
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
* @since 1.0
* @status partly updated to 1.5
*/
public final class Float extends Number implements Comparable<Float>
{
/**
* Compatible with JDK 1.0+.
*/
private static final long serialVersionUID = -2671257302660747028L;
/**
* The maximum positive value a <code>double</code> may represent
* is 3.4028235e+38f.
*/
public static final float MAX_VALUE = 3.4028235e+38f;
/**
* The minimum positive value a <code>float</code> may represent
* is 1.4e-45.
*/
public static final float MIN_VALUE = 1.4e-45f;
/**
* The value of a float representation -1.0/0.0, negative infinity.
*/
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
/**
* The value of a float representation 1.0/0.0, positive infinity.
*/
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final float NaN = 0.0f / 0.0f;
/**
* The primitive type <code>float</code> is represented by this
* <code>Class</code> object.
* @since 1.1
*/
public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
/**
* The number of bits needed to represent a <code>float</code>.
* @since 1.5
*/
public static final int SIZE = 32;
/**
* The immutable value of this Float.
*
* @serial the wrapped float
*/
private final float value;
/**
* Create a <code>Float</code> from the primitive <code>float</code>
* specified.
*
* @param value the <code>float</code> argument
*/
public Float(float value)
{
this.value = value;
}
/**
* Create a <code>Float</code> from the primitive <code>double</code>
* specified.
*
* @param value the <code>double</code> argument
*/
public Float(double value)
{
this.value = (float) value;
}
/**
* Create a <code>Float</code> from the specified <code>String</code>.
* This method calls <code>Float.parseFloat()</code>.
*
* @param s the <code>String</code> to convert
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public Float(String s)
{
value = parseFloat(s);
}
/**
* Convert the <code>float</code> to a <code>String</code>.
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "<code>[-]</code>" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<code><number></code>" means a string of digits ('0' to '9').
* "<code><digit></code>" means a single digit ('0' to '9').<br>
*
* <table border=1>
* <tr><th>Value of Float</th><th>String Representation</th></tr>
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
* <td><code>[-]number.number</code></td></tr>
* <tr><td>Other numeric value</td>
* <td><code>[-]<digit>.<number>
* E[-]<number></code></td></tr>
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
* </table>
*
* Yes, negative zero <em>is</em> a possible value. Note that there is
* <em>always</em> a <code>.</code> and at least one digit printed after
* it: even if the number is 3, it will be printed as <code>3.0</code>.
* After the ".", all digits will be printed except trailing zeros. The
* result is rounded to the shortest decimal number which will parse back
* to the same float.
*
* <p>To create other output formats, use {@link java.text.NumberFormat}.
*
* @XXX specify where we are not in accord with the spec.
*
* @param f the <code>float</code> to convert
* @return the <code>String</code> representing the <code>float</code>
*/
public static String toString(float f)
{
return VMFloat.toString(f);
}
/**
* Convert a float value to a hexadecimal string. This converts as
* follows:
* <ul>
* <li> A NaN value is converted to the string "NaN".
* <li> Positive infinity is converted to the string "Infinity".
* <li> Negative infinity is converted to the string "-Infinity".
* <li> For all other values, the first character of the result is '-'
* if the value is negative. This is followed by '0x1.' if the
* value is normal, and '0x0.' if the value is denormal. This is
* then followed by a (lower-case) hexadecimal representation of the
* mantissa, with leading zeros as required for denormal values.
* The next character is a 'p', and this is followed by a decimal
* representation of the unbiased exponent.
* </ul>
* @param f the float value
* @return the hexadecimal string representation
* @since 1.5
*/
public static String toHexString(float f)
{
if (isNaN(f))
return "NaN";
if (isInfinite(f))
return f < 0 ? "-Infinity" : "Infinity";
int bits = floatToIntBits(f);
StringBuilder result = new StringBuilder();
if (bits < 0)
result.append('-');
result.append("0x");
final int mantissaBits = 23;
final int exponentBits = 8;
int mantMask = (1 << mantissaBits) - 1;
int mantissa = bits & mantMask;
int expMask = (1 << exponentBits) - 1;
int exponent = (bits >>> mantissaBits) & expMask;
result.append(exponent == 0 ? '0' : '1');
result.append('.');
// For Float only, we have to adjust the mantissa.
mantissa <<= 1;
result.append(Integer.toHexString(mantissa));
if (exponent == 0 && mantissa != 0)
{
// Treat denormal specially by inserting '0's to make
// the length come out right. The constants here are
// to account for things like the '0x'.
int offset = 4 + ((bits < 0) ? 1 : 0);
// The silly +3 is here to keep the code the same between
// the Float and Double cases. In Float the value is
// not a multiple of 4.
int desiredLength = offset + (mantissaBits + 3) / 4;
while (result.length() < desiredLength)
result.insert(offset, '0');
}
result.append('p');
if (exponent == 0 && mantissa == 0)
{
// Zero, so do nothing special.
}
else
{
// Apply bias.
boolean denormal = exponent == 0;
exponent -= (1 << (exponentBits - 1)) - 1;
// Handle denormal.
if (denormal)
++exponent;
}
result.append(Integer.toString(exponent));
return result.toString();
}
/**
* Creates a new <code>Float</code> object using the <code>String</code>.
*
* @param s the <code>String</code> to convert
* @return the new <code>Float</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public static Float valueOf(String s)
{
return new Float(parseFloat(s));
}
/**
* Returns a <code>Float</code> object wrapping the value.
* In contrast to the <code>Float</code> constructor, this method
* may cache some values. It is used by boxing conversion.
*
* @param val the value to wrap
* @return the <code>Float</code>
* @since 1.5
*/
public static Float valueOf(float val)
{
// We don't actually cache, but we could.
return new Float(val);
}
/**
* Parse the specified <code>String</code> as a <code>float</code>. The
* extended BNF grammar is as follows:<br>
* <pre>
* <em>DecodableString</em>:
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
* [ <code>f</code> | <code>F</code> | <code>d</code>
* | <code>D</code>] )
* <em>FloatingPoint</em>:
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
* [ <em>Exponent</em> ] )
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
* <em>Exponent</em>:
* ( ( <code>e</code> | <code>E</code> )
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
* </pre>
*
* <p>NaN and infinity are special cases, to allow parsing of the output
* of toString. Otherwise, the result is determined by calculating
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
* to the nearest float. Remember that many numbers cannot be precisely
* represented in floating point. In case of overflow, infinity is used,
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
* this does not accept Unicode digits outside the ASCII range.
*
* <p>If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Leading and trailing
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
* internal to the actual number are not allowed.
*
* <p>To parse numbers according to another format, consider using
* {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the <code>float</code> value of <code>s</code>
* @throws NumberFormatException if <code>str</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>str</code> is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public static float parseFloat(String str)
{
return VMFloat.parseFloat(str);
}
/**
* Return <code>true</code> if the <code>float</code> has the same
* value as <code>NaN</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is <code>NaN</code>
*/
public static boolean isNaN(float v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
return v != v;
}
/**
* Return <code>true</code> if the <code>float</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is (-/+) infinity
*/
public static boolean isInfinite(float v)
{
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is <code>NaN</code>
*/
public boolean isNaN()
{
return isNaN(value);
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is (-/+) infinity
*/
public boolean isInfinite()
{
return isInfinite(value);
}
/**
* Convert the <code>float</code> value of this <code>Float</code>
* to a <code>String</code>. This method calls
* <code>Float.toString(float)</code> to do its dirty work.
*
* @return the <code>String</code> representation
* @see #toString(float)
*/
public String toString()
{
return toString(value);
}
/**
* Return the value of this <code>Float</code> as a <code>byte</code>.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this <code>Float</code> as a <code>short</code>.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this <code>Integer</code> as an <code>int</code>.
*
* @return the int value
*/
public int intValue()
{
return (int) value;
}
/**
* Return the value of this <code>Integer</code> as a <code>long</code>.
*
* @return the long value
*/
public long longValue()
{
return (long) value;
}
/**
* Return the value of this <code>Float</code>.
*
* @return the float value
*/
public float floatValue()
{
return value;
}
/**
* Return the value of this <code>Float</code> as a <code>double</code>
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Return a hashcode representing this Object. <code>Float</code>'s hash
* code is calculated by calling <code>floatToIntBits(floatValue())</code>.
*
* @return this Object's hash code
* @see #floatToIntBits(float)
*/
public int hashCode()
{
return floatToIntBits(value);
}
/**
* Returns <code>true</code> if <code>obj</code> is an instance of
* <code>Float</code> and represents the same float value. Unlike comparing
* two floats with <code>==</code>, this treats two instances of
* <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
* <code>-0.0</code> as unequal.
*
* <p>Note that <code>f1.equals(f2)</code> is identical to
* <code>floatToIntBits(f1.floatValue()) ==
* floatToIntBits(f2.floatValue())</code>.
*
* @param obj the object to compare
* @return whether the objects are semantically equal
*/
public boolean equals(Object obj)
{
if (! (obj instanceof Float))
return false;
float f = ((Float) obj).value;
// Avoid call to native method. However, some implementations, like gcj,
// are better off using floatToIntBits(value) == floatToIntBits(f).
// Check common case first, then check NaN and 0.
if (value == f)
return (value != 0) || (1 / value == 1 / f);
return isNaN(value) && isNaN(f);
}
/**
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function collapses all
* versions of NaN to 0x7fc00000. The result of this function can be used
* as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
* original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static int floatToIntBits(float value)
{
if (isNaN(value))
return 0x7fc00000;
else
return VMFloat.floatToRawIntBits(value);
}
/**
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
* rather than collapsing to a canonical value. The result of this function
* can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
* obtain the original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static int floatToRawIntBits(float value)
{
return VMFloat.floatToRawIntBits(value);
}
/**
* Convert the argument in IEEE 754 floating-point "single format" bit
* layout to the corresponding float. Bit 31 (the most significant) is the
* sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
* bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
* NaN alone, so that you can recover the bit pattern with
* <code>Float.floatToRawIntBits(float)</code>.
*
* @param bits the bits to convert
* @return the <code>float</code> represented by the bits
* @see #floatToIntBits(float)
* @see #floatToRawIntBits(float)
*/
public static float intBitsToFloat(int bits)
{
return VMFloat.intBitsToFloat(bits);
}
/**
* Compare two Floats numerically by comparing their <code>float</code>
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal. However, this special
* cases NaN and signed zero as follows: NaN is considered greater than
* all other floats, including <code>POSITIVE_INFINITY</code>, and positive
* zero is considered greater than negative zero.
*
* @param f the Float to compare
* @return the comparison
* @since 1.2
*/
public int compareTo(Float f)
{
return compare(value, f.value);
}
/**
* Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
* other words this compares two floats, special casing NaN and zero,
* without the overhead of objects.
*
* @param x the first float to compare
* @param y the second float to compare
* @return the comparison
* @since 1.4
*/
public static int compare(float x, float y)
{
// handle the easy cases:
if (x < y)
return -1;
if (x > y)
return 1;
// handle equality respecting that 0.0 != -0.0 (hence not using x == y):
int ix = floatToRawIntBits(x);
int iy = floatToRawIntBits(y);
if (ix == iy)
return 0;
// handle NaNs:
if (x != x)
return (y != y) ? 0 : 1;
else if (y != y)
return -1;
// handle +/- 0.0
return (ix < iy) ? -1 : 1;
}
}
|