summaryrefslogtreecommitdiff
path: root/libgomp/libgomp.texi
blob: 987ee5f04f36cf6a04f5efca15580a997cf0bb20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
\input texinfo @c -*-texinfo-*-

@c %**start of header
@setfilename libgomp.info
@settitle GNU libgomp
@c %**end of header


@copying
Copyright @copyright{} 2006-2016 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
``GNU Free Documentation License''.

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
@end copying

@ifinfo
@dircategory GNU Libraries
@direntry
* libgomp: (libgomp).          GNU Offloading and Multi Processing Runtime Library.
@end direntry

This manual documents libgomp, the GNU Offloading and Multi Processing
Runtime library.  This is the GNU implementation of the OpenMP and
OpenACC APIs for parallel and accelerator programming in C/C++ and
Fortran.

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

@insertcopying
@end ifinfo


@setchapternewpage odd

@titlepage
@title GNU Offloading and Multi Processing Runtime Library
@subtitle The GNU OpenMP and OpenACC Implementation
@page
@vskip 0pt plus 1filll
@comment For the @value{version-GCC} Version*
@sp 1
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage

@summarycontents
@contents
@page


@node Top
@top Introduction
@cindex Introduction

This manual documents the usage of libgomp, the GNU Offloading and
Multi Processing Runtime Library.  This includes the GNU
implementation of the @uref{http://www.openmp.org, OpenMP} Application
Programming Interface (API) for multi-platform shared-memory parallel
programming in C/C++ and Fortran, and the GNU implementation of the
@uref{http://www.openacc.org/, OpenACC} Application Programming
Interface (API) for offloading of code to accelerator devices in C/C++
and Fortran.

Originally, libgomp implemented the GNU OpenMP Runtime Library.  Based
on this, support for OpenACC and offloading (both OpenACC and OpenMP
4's target construct) has been added later on, and the library's name
changed to GNU Offloading and Multi Processing Runtime Library.



@comment
@comment  When you add a new menu item, please keep the right hand
@comment  aligned to the same column.  Do not use tabs.  This provides
@comment  better formatting.
@comment
@menu
* Enabling OpenMP::            How to enable OpenMP for your applications.
* Runtime Library Routines::   The OpenMP runtime application programming 
                               interface.
* Environment Variables::      Influencing runtime behavior with environment 
                               variables.
* Enabling OpenACC::           How to enable OpenACC for your
                               applications.
* OpenACC Runtime Library Routines:: The OpenACC runtime application
                               programming interface.
* OpenACC Environment Variables:: Influencing OpenACC runtime behavior with
                               environment variables.
* CUDA Streams Usage::         Notes on the implementation of
                               asynchronous operations.
* OpenACC Library Interoperability:: OpenACC library interoperability with the
                               NVIDIA CUBLAS library.
* The libgomp ABI::            Notes on the external ABI presented by libgomp.
* Reporting Bugs::             How to report bugs in the GNU Offloading and
                               Multi Processing Runtime Library.
* Copying::                    GNU general public license says
                               how you can copy and share libgomp.
* GNU Free Documentation License::
                               How you can copy and share this manual.
* Funding::                    How to help assure continued work for free 
                               software.
* Library Index::              Index of this documentation.
@end menu


@c ---------------------------------------------------------------------
@c Enabling OpenMP
@c ---------------------------------------------------------------------

@node Enabling OpenMP
@chapter Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time 
flag @command{-fopenmp} must be specified.  This enables the OpenMP directive
@code{#pragma omp} in C/C++ and @code{!$omp} directives in free form, 
@code{c$omp}, @code{*$omp} and @code{!$omp} directives in fixed form, 
@code{!$} conditional compilation sentinels in free form and @code{c$},
@code{*$} and @code{!$} sentinels in fixed form, for Fortran.  The flag also
arranges for automatic linking of the OpenMP runtime library 
(@ref{Runtime Library Routines}).

A complete description of all OpenMP directives accepted may be found in 
the @uref{http://www.openmp.org, OpenMP Application Program Interface} manual,
version 4.5.


@c ---------------------------------------------------------------------
@c Runtime Library Routines
@c ---------------------------------------------------------------------

@node Runtime Library Routines
@chapter Runtime Library Routines

The runtime routines described here are defined by Section 3 of the OpenMP
specification in version 4.5.  The routines are structured in following
three parts:

@menu
Control threads, processors and the parallel environment.  They have C
linkage, and do not throw exceptions.

* omp_get_active_level::        Number of active parallel regions
* omp_get_ancestor_thread_num:: Ancestor thread ID
* omp_get_cancellation::        Whether cancellation support is enabled
* omp_get_default_device::      Get the default device for target regions
* omp_get_dynamic::             Dynamic teams setting
* omp_get_level::               Number of parallel regions
* omp_get_max_active_levels::   Maximum number of active regions
* omp_get_max_task_priority::   Maximum task priority value that can be set
* omp_get_max_threads::         Maximum number of threads of parallel region
* omp_get_nested::              Nested parallel regions
* omp_get_num_devices::         Number of target devices
* omp_get_num_procs::           Number of processors online
* omp_get_num_teams::           Number of teams
* omp_get_num_threads::         Size of the active team
* omp_get_proc_bind::           Whether theads may be moved between CPUs
* omp_get_schedule::            Obtain the runtime scheduling method
* omp_get_team_num::            Get team number
* omp_get_team_size::           Number of threads in a team
* omp_get_thread_limit::        Maximum number of threads
* omp_get_thread_num::          Current thread ID
* omp_in_parallel::             Whether a parallel region is active
* omp_in_final::                Whether in final or included task region
* omp_is_initial_device::       Whether executing on the host device
* omp_set_default_device::      Set the default device for target regions
* omp_set_dynamic::             Enable/disable dynamic teams
* omp_set_max_active_levels::   Limits the number of active parallel regions
* omp_set_nested::              Enable/disable nested parallel regions
* omp_set_num_threads::         Set upper team size limit
* omp_set_schedule::            Set the runtime scheduling method

Initialize, set, test, unset and destroy simple and nested locks.

* omp_init_lock::            Initialize simple lock
* omp_set_lock::             Wait for and set simple lock
* omp_test_lock::            Test and set simple lock if available
* omp_unset_lock::           Unset simple lock
* omp_destroy_lock::         Destroy simple lock
* omp_init_nest_lock::       Initialize nested lock
* omp_set_nest_lock::        Wait for and set simple lock
* omp_test_nest_lock::       Test and set nested lock if available
* omp_unset_nest_lock::      Unset nested lock
* omp_destroy_nest_lock::    Destroy nested lock

Portable, thread-based, wall clock timer.

* omp_get_wtick::            Get timer precision.
* omp_get_wtime::            Elapsed wall clock time.
@end menu



@node omp_get_active_level
@section @code{omp_get_active_level} -- Number of parallel regions
@table @asis
@item @emph{Description}:
This function returns the nesting level for the active parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_active_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_active_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.20.
@end table



@node omp_get_ancestor_thread_num
@section @code{omp_get_ancestor_thread_num} -- Ancestor thread ID
@table @asis
@item @emph{Description}:
This function returns the thread identification number for the given
nesting level of the current thread.  For values of @var{level} outside
zero to @code{omp_get_level} -1 is returned; if @var{level} is
@code{omp_get_level} the result is identical to @code{omp_get_thread_num}.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_ancestor_thread_num(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.18.
@end table



@node omp_get_cancellation
@section @code{omp_get_cancellation} -- Whether cancellation support is enabled
@table @asis
@item @emph{Description}:
This function returns @code{true} if cancellation is activated, @code{false}
otherwise.  Here, @code{true} and @code{false} represent their language-specific
counterparts.  Unless @env{OMP_CANCELLATION} is set true, cancellations are
deactivated.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_cancellation(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_cancellation()}
@end multitable

@item @emph{See also}:
@ref{OMP_CANCELLATION}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.9.
@end table



@node omp_get_default_device
@section @code{omp_get_default_device} -- Get the default device for target regions
@table @asis
@item @emph{Description}:
Get the default device for target regions without device clause.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_default_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_default_device()}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_set_default_device}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.30.
@end table



@node omp_get_dynamic
@section @code{omp_get_dynamic} -- Dynamic teams setting
@table @asis
@item @emph{Description}:
This function returns @code{true} if enabled, @code{false} otherwise. 
Here, @code{true} and @code{false} represent their language-specific 
counterparts.

The dynamic team setting may be initialized at startup by the 
@env{OMP_DYNAMIC} environment variable or at runtime using
@code{omp_set_dynamic}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_dynamic(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_dynamic()}
@end multitable

@item @emph{See also}:
@ref{omp_set_dynamic}, @ref{OMP_DYNAMIC}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.8.
@end table



@node omp_get_level
@section @code{omp_get_level} -- Obtain the current nesting level
@table @asis
@item @emph{Description}:
This function returns the nesting level for the parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_active_level}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.17.
@end table



@node omp_get_max_active_levels
@section @code{omp_get_max_active_levels} -- Maximum number of active regions
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed number of nested, active parallel regions.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_active_levels(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_active_levels()}
@end multitable

@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_get_active_level}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.16.
@end table


@node omp_get_max_task_priority
@section @code{omp_get_max_task_priority} -- Maximum priority value
that can be set for tasks.
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed priority number for tasks.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_task_priority(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_task_priority()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.29.
@end table


@node omp_get_max_threads
@section @code{omp_get_max_threads} -- Maximum number of threads of parallel region
@table @asis
@item @emph{Description}:
Return the maximum number of threads used for the current parallel region
that does not use the clause @code{num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.3.
@end table



@node omp_get_nested
@section @code{omp_get_nested} -- Nested parallel regions
@table @asis
@item @emph{Description}:
This function returns @code{true} if nested parallel regions are
enabled, @code{false} otherwise.  Here, @code{true} and @code{false}
represent their language-specific counterparts.

Nested parallel regions may be initialized at startup by the 
@env{OMP_NESTED} environment variable or at runtime using
@code{omp_set_nested}.  If undefined, nested parallel regions are
disabled by default.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_nested(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_nested()}
@end multitable

@item @emph{See also}:
@ref{omp_set_nested}, @ref{OMP_NESTED}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.11.
@end table



@node omp_get_num_devices
@section @code{omp_get_num_devices} -- Number of target devices
@table @asis
@item @emph{Description}:
Returns the number of target devices.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_devices(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_devices()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.31.
@end table



@node omp_get_num_procs
@section @code{omp_get_num_procs} -- Number of processors online
@table @asis
@item @emph{Description}:
Returns the number of processors online on that device.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_procs(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_procs()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.5.
@end table



@node omp_get_num_teams
@section @code{omp_get_num_teams} -- Number of teams
@table @asis
@item @emph{Description}:
Returns the number of teams in the current team region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_teams(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_teams()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.32.
@end table



@node omp_get_num_threads
@section @code{omp_get_num_threads} -- Size of the active team
@table @asis
@item @emph{Description}:
Returns the number of threads in the current team.  In a sequential section of
the program @code{omp_get_num_threads} returns 1.

The default team size may be initialized at startup by the 
@env{OMP_NUM_THREADS} environment variable.  At runtime, the size
of the current team may be set either by the @code{NUM_THREADS}
clause or by @code{omp_set_num_threads}.  If none of the above were
used to define a specific value and @env{OMP_DYNAMIC} is disabled,
one thread per CPU online is used.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.2.
@end table



@node omp_get_proc_bind
@section @code{omp_get_proc_bind} -- Whether theads may be moved between CPUs
@table @asis
@item @emph{Description}:
This functions returns the currently active thread affinity policy, which is
set via @env{OMP_PROC_BIND}.  Possible values are @code{omp_proc_bind_false},
@code{omp_proc_bind_true}, @code{omp_proc_bind_master},
@code{omp_proc_bind_close} and @code{omp_proc_bind_spread}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_proc_bind_t omp_get_proc_bind(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(kind=omp_proc_bind_kind) function omp_get_proc_bind()}
@end multitable

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY},

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.22.
@end table



@node omp_get_schedule
@section @code{omp_get_schedule} -- Obtain the runtime scheduling method
@table @asis
@item @emph{Description}:
Obtain the runtime scheduling method.  The @var{kind} argument will be
set to the value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  The second argument,
@var{chunk_size}, is set to the chunk size.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_get_schedule(omp_sched_t *kind, int *chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_get_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_set_schedule}, @ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.13.
@end table



@node omp_get_team_num
@section @code{omp_get_team_num} -- Get team number
@table @asis
@item @emph{Description}:
Returns the team number of the calling thread.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_num()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.33.
@end table



@node omp_get_team_size
@section @code{omp_get_team_size} -- Number of threads in a team
@table @asis
@item @emph{Description}:
This function returns the number of threads in a thread team to which
either the current thread or its ancestor belongs.  For values of @var{level}
outside zero to @code{omp_get_level}, -1 is returned; if @var{level} is zero,
1 is returned, and for @code{omp_get_level}, the result is identical
to @code{omp_get_num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_size(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.19.
@end table



@node omp_get_thread_limit
@section @code{omp_get_thread_limit} -- Maximum number of threads
@table @asis
@item @emph{Description}:
Return the maximum number of threads of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_limit(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.14.
@end table



@node omp_get_thread_num
@section @code{omp_get_thread_num} -- Current thread ID
@table @asis
@item @emph{Description}:
Returns a unique thread identification number within the current team.
In a sequential parts of the program, @code{omp_get_thread_num}
always returns 0.  In parallel regions the return value varies
from 0 to @code{omp_get_num_threads}-1 inclusive.  The return
value of the master thread of a team is always 0.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_num()}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.4.
@end table



@node omp_in_parallel
@section @code{omp_in_parallel} -- Whether a parallel region is active
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in parallel,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_parallel(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_parallel()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.6.
@end table


@node omp_in_final
@section @code{omp_in_final} -- Whether in final or included task region
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in a final
or included task region, @code{false} otherwise.  Here, @code{true}
and @code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_final(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_final()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.21.
@end table



@node omp_is_initial_device
@section @code{omp_is_initial_device} -- Whether executing on the host device
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running on the host device,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_is_initial_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_is_initial_device()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.34.
@end table



@node omp_set_default_device
@section @code{omp_set_default_device} -- Set the default device for target regions
@table @asis
@item @emph{Description}:
Set the default device for target regions without device clause.  The argument
shall be a nonnegative device number.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_device(int device_num);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_device(device_num)}
@item                   @tab @code{integer device_num}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_get_default_device}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.29.
@end table



@node omp_set_dynamic
@section @code{omp_set_dynamic} -- Enable/disable dynamic teams
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The function takes the language-specific equivalent
of @code{true} and @code{false}, where @code{true} enables dynamic 
adjustment of team sizes and @code{false} disables it.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_dynamic(int dynamic_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(dynamic_threads)}
@item                   @tab @code{logical, intent(in) :: dynamic_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_DYNAMIC}, @ref{omp_get_dynamic}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.7.
@end table



@node omp_set_max_active_levels
@section @code{omp_set_max_active_levels} -- Limits the number of active parallel regions
@table @asis
@item @emph{Description}:
This function limits the maximum allowed number of nested, active
parallel regions.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_max_active_levels(int max_levels);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_max_active_levels(max_levels)}
@item                   @tab @code{integer max_levels}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_get_active_level}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.15.
@end table



@node omp_set_nested
@section @code{omp_set_nested} -- Enable/disable nested parallel regions
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The function takes the language-specific
equivalent of @code{true} and @code{false}, where @code{true} enables 
dynamic adjustment of team sizes and @code{false} disables it.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nested(int nested);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nested(nested)}
@item                   @tab @code{logical, intent(in) :: nested}
@end multitable

@item @emph{See also}:
@ref{OMP_NESTED}, @ref{omp_get_nested}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.10.
@end table



@node omp_set_num_threads
@section @code{omp_set_num_threads} -- Set upper team size limit
@table @asis
@item @emph{Description}:
Specifies the number of threads used by default in subsequent parallel 
sections, if those do not specify a @code{num_threads} clause.  The
argument of @code{omp_set_num_threads} shall be a positive integer.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_threads(int num_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(num_threads)}
@item                   @tab @code{integer, intent(in) :: num_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.1.
@end table



@node omp_set_schedule
@section @code{omp_set_schedule} -- Set the runtime scheduling method
@table @asis
@item @emph{Description}:
Sets the runtime scheduling method.  The @var{kind} argument can have the
value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  Except for
@code{omp_sched_auto}, the chunk size is set to the value of
@var{chunk_size} if positive, or to the default value if zero or negative.
For @code{omp_sched_auto} the @var{chunk_size} argument is ignored.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_schedule(omp_sched_t kind, int chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_get_schedule}
@ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.2.12.
@end table



@node omp_init_lock
@section @code{omp_init_lock} -- Initialize simple lock
@table @asis
@item @emph{Description}:
Initialize a simple lock.  After initialization, the lock is in
an unlocked state.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(out) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.1.
@end table



@node omp_set_lock
@section @code{omp_set_lock} -- Wait for and set simple lock
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  The calling thread is blocked until the lock 
is available.  If the lock is already held by the current thread, 
a deadlock occurs.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_test_lock
@section @code{omp_test_lock} -- Test and set simple lock if available
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  Contrary to @code{omp_set_lock}, @code{omp_test_lock} 
does not block if the lock is not available.  This function returns
@code{true} upon success, @code{false} otherwise.  Here, @code{true} and
@code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node omp_unset_lock
@section @code{omp_unset_lock} -- Unset simple lock
@table @asis
@item @emph{Description}:
A simple lock about to be unset must have been locked by @code{omp_set_lock}
or @code{omp_test_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_lock}.  Then, the lock becomes unlocked.  If one
or more threads attempted to set the lock before, one of them is chosen to,
again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_set_lock}, @ref{omp_test_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_destroy_lock
@section @code{omp_destroy_lock} -- Destroy simple lock
@table @asis
@item @emph{Description}:
Destroy a simple lock.  In order to be destroyed, a simple lock must be
in the unlocked state. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_init_nest_lock
@section @code{omp_init_nest_lock} -- Initialize nested lock
@table @asis
@item @emph{Description}:
Initialize a nested lock.  After initialization, the lock is in
an unlocked state and the nesting count is set to zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(out) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_nest_lock}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.1.
@end table


@node omp_set_nest_lock
@section @code{omp_set_nest_lock} -- Wait for and set nested lock
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  The calling thread is blocked until the lock
is available.  If the lock is already held by the current thread, the
nesting count for the lock is incremented.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_test_nest_lock
@section @code{omp_test_nest_lock} -- Test and set nested lock if available
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  Contrary to @code{omp_set_nest_lock},
@code{omp_test_nest_lock} does not block if the lock is not available. 
If the lock is already held by the current thread, the new nesting count 
is returned.  Otherwise, the return value equals zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable


@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node omp_unset_nest_lock
@section @code{omp_unset_nest_lock} -- Unset nested lock
@table @asis
@item @emph{Description}:
A nested lock about to be unset must have been locked by @code{omp_set_nested_lock}
or @code{omp_test_nested_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_nested_lock}.  If the nesting count drops to zero, the
lock becomes unlocked.  If one ore more threads attempted to set the lock before,
one of them is chosen to, again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_set_nest_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_destroy_nest_lock
@section @code{omp_destroy_nest_lock} -- Destroy nested lock
@table @asis
@item @emph{Description}:
Destroy a nested lock.  In order to be destroyed, a nested lock must be
in the unlocked state and its nesting count must equal zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_get_wtick
@section @code{omp_get_wtick} -- Get timer precision
@table @asis
@item @emph{Description}:
Gets the timer precision, i.e., the number of seconds between two 
successive clock ticks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtick(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtick()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtime}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.4.2.
@end table



@node omp_get_wtime
@section @code{omp_get_wtime} -- Elapsed wall clock time
@table @asis
@item @emph{Description}:
Elapsed wall clock time in seconds.  The time is measured per thread, no
guarantee can be made that two distinct threads measure the same time.
Time is measured from some "time in the past", which is an arbitrary time
guaranteed not to change during the execution of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtime(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtime()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtick}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 3.4.1.
@end table



@c ---------------------------------------------------------------------
@c Environment Variables
@c ---------------------------------------------------------------------

@node Environment Variables
@chapter Environment Variables

The environment variables which beginning with @env{OMP_} are defined by
section 4 of the OpenMP specification in version 4.5, while those
beginning with @env{GOMP_} are GNU extensions.

@menu
* OMP_CANCELLATION::        Set whether cancellation is activated
* OMP_DISPLAY_ENV::         Show OpenMP version and environment variables
* OMP_DEFAULT_DEVICE::      Set the device used in target regions
* OMP_DYNAMIC::             Dynamic adjustment of threads
* OMP_MAX_ACTIVE_LEVELS::   Set the maximum number of nested parallel regions
* OMP_MAX_TASK_PRIORITY::   Set the maximum task priority value
* OMP_NESTED::              Nested parallel regions
* OMP_NUM_THREADS::         Specifies the number of threads to use
* OMP_PROC_BIND::           Whether theads may be moved between CPUs
* OMP_PLACES::              Specifies on which CPUs the theads should be placed
* OMP_STACKSIZE::           Set default thread stack size
* OMP_SCHEDULE::            How threads are scheduled
* OMP_THREAD_LIMIT::        Set the maximum number of threads
* OMP_WAIT_POLICY::         How waiting threads are handled
* GOMP_CPU_AFFINITY::       Bind threads to specific CPUs
* GOMP_DEBUG::              Enable debugging output
* GOMP_STACKSIZE::          Set default thread stack size
* GOMP_SPINCOUNT::          Set the busy-wait spin count
* GOMP_RTEMS_THREAD_POOLS:: Set the RTEMS specific thread pools
@end menu


@node OMP_CANCELLATION
@section @env{OMP_CANCELLATION} -- Set whether cancellation is activated
@cindex Environment Variable
@table @asis
@item @emph{Description}:
If set to @code{TRUE}, the cancellation is activated.  If set to @code{FALSE} or
if unset, cancellation is disabled and the @code{cancel} construct is ignored.

@item @emph{See also}:
@ref{omp_get_cancellation}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.11
@end table



@node OMP_DISPLAY_ENV
@section @env{OMP_DISPLAY_ENV} -- Show OpenMP version and environment variables
@cindex Environment Variable
@table @asis
@item @emph{Description}:
If set to @code{TRUE}, the OpenMP version number and the values
associated with the OpenMP environment variables are printed to @code{stderr}.
If set to @code{VERBOSE}, it additionally shows the value of the environment
variables which are GNU extensions.  If undefined or set to @code{FALSE},
this information will not be shown.


@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.12
@end table



@node OMP_DEFAULT_DEVICE
@section @env{OMP_DEFAULT_DEVICE} -- Set the device used in target regions
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Set to choose the device which is used in a @code{target} region, unless the
value is overridden by @code{omp_set_default_device} or by a @code{device}
clause.  The value shall be the nonnegative device number. If no device with
the given device number exists, the code is executed on the host.  If unset,
device number 0 will be used.


@item @emph{See also}:
@ref{omp_get_default_device}, @ref{omp_set_default_device},

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.13
@end table



@node OMP_DYNAMIC
@section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The value of this environment variable shall be 
@code{TRUE} or @code{FALSE}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{See also}:
@ref{omp_set_dynamic}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.3
@end table



@node OMP_MAX_ACTIVE_LEVELS
@section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximum number of nested parallel regions
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the initial value for the maximum number of nested parallel
regions.  The value of this variable shall be a positive integer.
If undefined, the number of active levels is unlimited.

@item @emph{See also}:
@ref{omp_set_max_active_levels}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.9
@end table



@node OMP_MAX_TASK_PRIORITY
@section @env{OMP_MAX_TASK_PRIORITY} -- Set the maximum priority
number that can be set for a task.
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the initial value for the maximum priority value that can be
set for a task.  The value of this variable shall be a non-negative
integer, and zero is allowed.  If undefined, the default priority is
0.

@item @emph{See also}:
@ref{omp_get_max_task_priority}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.14
@end table



@node OMP_NESTED
@section @env{OMP_NESTED} -- Nested parallel regions
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The value of this environment variable 
shall be @code{TRUE} or @code{FALSE}.  If undefined, nested parallel 
regions are disabled by default.

@item @emph{See also}:
@ref{omp_set_nested}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.6
@end table



@node OMP_NUM_THREADS
@section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Specifies the default number of threads to use in parallel regions.  The 
value of this variable shall be a comma-separated list of positive integers;
the value specified the number of threads to use for the corresponding nested
level.  If undefined one thread per CPU is used.

@item @emph{See also}:
@ref{omp_set_num_threads}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.2
@end table



@node OMP_PROC_BIND
@section @env{OMP_PROC_BIND} -- Whether theads may be moved between CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether threads may be moved between processors.  If set to
@code{TRUE}, OpenMP theads should not be moved; if set to @code{FALSE}
they may be moved.  Alternatively, a comma separated list with the
values @code{MASTER}, @code{CLOSE} and @code{SPREAD} can be used to specify
the thread affinity policy for the corresponding nesting level.  With
@code{MASTER} the worker threads are in the same place partition as the
master thread.  With @code{CLOSE} those are kept close to the master thread
in contiguous place partitions.  And with @code{SPREAD} a sparse distribution
across the place partitions is used.

When undefined, @env{OMP_PROC_BIND} defaults to @code{TRUE} when
@env{OMP_PLACES} or @env{GOMP_CPU_AFFINITY} is set and @code{FALSE} otherwise.

@item @emph{See also}:
@ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.4
@end table



@node OMP_PLACES
@section @env{OMP_PLACES} -- Specifies on which CPUs the theads should be placed
@cindex Environment Variable
@table @asis
@item @emph{Description}:
The thread placement can be either specified using an abstract name or by an
explicit list of the places.  The abstract names @code{threads}, @code{cores}
and @code{sockets} can be optionally followed by a positive number in
parentheses, which denotes the how many places shall be created.  With
@code{threads} each place corresponds to a single hardware thread; @code{cores}
to a single core with the corresponding number of hardware threads; and with
@code{sockets} the place corresponds to a single socket.  The resulting
placement can be shown by setting the @env{OMP_DISPLAY_ENV} environment
variable.

Alternatively, the placement can be specified explicitly as comma-separated
list of places.  A place is specified by set of nonnegative numbers in curly
braces, denoting the denoting the hardware threads.  The hardware threads
belonging to a place can either be specified as comma-separated list of
nonnegative thread numbers or using an interval.  Multiple places can also be
either specified by a comma-separated list of places or by an interval.  To
specify an interval, a colon followed by the count is placed after after
the hardware thread number or the place.  Optionally, the length can be
followed by a colon and the stride number -- otherwise a unit stride is
assumed.  For instance, the following specifies the same places list:
@code{"@{0,1,2@}, @{3,4,6@}, @{7,8,9@}, @{10,11,12@}"};
@code{"@{0:3@}, @{3:3@}, @{7:3@}, @{10:3@}"}; and @code{"@{0:2@}:4:3"}.

If @env{OMP_PLACES} and @env{GOMP_CPU_AFFINITY} are unset and
@env{OMP_PROC_BIND} is either unset or @code{false}, threads may be moved
between CPUs following no placement policy.

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind},
@ref{OMP_DISPLAY_ENV}

@item @emph{Reference}:
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.5
@end table



@node OMP_STACKSIZE
@section @env{OMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes, unless the number
is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which
case the size is, respectively, in bytes, kilobytes, megabytes
or gigabytes.  This is different from @code{pthread_attr_setstacksize}
which gets the number of bytes as an argument.  If the stack size cannot
be set due to system constraints, an error is reported and the initial
stack size is left unchanged.  If undefined, the stack size is system
dependent.

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.7
@end table



@node OMP_SCHEDULE
@section @env{OMP_SCHEDULE} -- How threads are scheduled
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Allows to specify @code{schedule type} and @code{chunk size}. 
The value of the variable shall have the form: @code{type[,chunk]} where
@code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto}
The optional @code{chunk} size shall be a positive integer.  If undefined,
dynamic scheduling and a chunk size of 1 is used.

@item @emph{See also}:
@ref{omp_set_schedule}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Sections 2.7.1.1 and 4.1
@end table



@node OMP_THREAD_LIMIT
@section @env{OMP_THREAD_LIMIT} -- Set the maximum number of threads
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies the number of threads to use for the whole program.  The
value of this variable shall be a positive integer.  If undefined,
the number of threads is not limited.

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_thread_limit}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.10
@end table



@node OMP_WAIT_POLICY
@section @env{OMP_WAIT_POLICY} -- How waiting threads are handled
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether waiting threads should be active or passive.  If
the value is @code{PASSIVE}, waiting threads should not consume CPU
power while waiting; while the value is @code{ACTIVE} specifies that
they should.  If undefined, threads wait actively for a short time
before waiting passively.

@item @emph{See also}:
@ref{GOMP_SPINCOUNT}

@item @emph{Reference}: 
@uref{http://www.openmp.org/, OpenMP specification v4.5}, Section 4.8
@end table



@node GOMP_CPU_AFFINITY
@section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Binds threads to specific CPUs.  The variable should contain a space-separated
or comma-separated list of CPUs.  This list may contain different kinds of 
entries: either single CPU numbers in any order, a range of CPUs (M-N) 
or a range with some stride (M-N:S).  CPU numbers are zero based.  For example,
@code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} will bind the initial thread
to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to 
CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12,
and 14 respectively and then start assigning back from the beginning of
the list.  @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity
specification is in effect.  As a workaround, language-specific library 
functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in 
Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY} 
environment variable.  A defined CPU affinity on startup cannot be changed 
or disabled during the runtime of the application.

If both @env{GOMP_CPU_AFFINITY} and @env{OMP_PROC_BIND} are set,
@env{OMP_PROC_BIND} has a higher precedence.  If neither has been set and
@env{OMP_PROC_BIND} is unset, or when @env{OMP_PROC_BIND} is set to
@code{FALSE}, the host system will handle the assignment of threads to CPUs.

@item @emph{See also}:
@ref{OMP_PLACES}, @ref{OMP_PROC_BIND}
@end table



@node GOMP_DEBUG
@section @env{GOMP_DEBUG} -- Enable debugging output
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable debugging output.  The variable should be set to @code{0}
(disabled, also the default if not set), or @code{1} (enabled).

If enabled, some debugging output will be printed during execution.
This is currently not specified in more detail, and subject to change.
@end table



@node GOMP_STACKSIZE
@section @env{GOMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes.  This is different from
@code{pthread_attr_setstacksize} which gets the number of bytes as an 
argument.  If the stack size cannot be set due to system constraints, an 
error is reported and the initial stack size is left unchanged.  If undefined,
the stack size is system dependent.

@item @emph{See also}:
@ref{OMP_STACKSIZE}

@item @emph{Reference}: 
@uref{http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html, 
GCC Patches Mailinglist}, 
@uref{http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html,
GCC Patches Mailinglist}
@end table



@node GOMP_SPINCOUNT
@section @env{GOMP_SPINCOUNT} -- Set the busy-wait spin count
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Determines how long a threads waits actively with consuming CPU power
before waiting passively without consuming CPU power.  The value may be
either @code{INFINITE}, @code{INFINITY} to always wait actively or an
integer which gives the number of spins of the busy-wait loop.  The
integer may optionally be followed by the following suffixes acting
as multiplication factors: @code{k} (kilo, thousand), @code{M} (mega,
million), @code{G} (giga, billion), or @code{T} (tera, trillion).
If undefined, 0 is used when @env{OMP_WAIT_POLICY} is @code{PASSIVE},
300,000 is used when @env{OMP_WAIT_POLICY} is undefined and
30 billion is used when @env{OMP_WAIT_POLICY} is @code{ACTIVE}.
If there are more OpenMP threads than available CPUs, 1000 and 100
spins are used for @env{OMP_WAIT_POLICY} being @code{ACTIVE} or
undefined, respectively; unless the @env{GOMP_SPINCOUNT} is lower
or @env{OMP_WAIT_POLICY} is @code{PASSIVE}.

@item @emph{See also}:
@ref{OMP_WAIT_POLICY}
@end table



@node GOMP_RTEMS_THREAD_POOLS
@section @env{GOMP_RTEMS_THREAD_POOLS} -- Set the RTEMS specific thread pools
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
This environment variable is only used on the RTEMS real-time operating system.
It determines the scheduler instance specific thread pools.  The format for
@env{GOMP_RTEMS_THREAD_POOLS} is a list of optional
@code{<thread-pool-count>[$<priority>]@@<scheduler-name>} configurations
separated by @code{:} where:
@itemize @bullet
@item @code{<thread-pool-count>} is the thread pool count for this scheduler
instance.
@item @code{$<priority>} is an optional priority for the worker threads of a
thread pool according to @code{pthread_setschedparam}.  In case a priority
value is omitted, then a worker thread will inherit the priority of the OpenMP
master thread that created it.  The priority of the worker thread is not
changed after creation, even if a new OpenMP master thread using the worker has
a different priority.
@item @code{@@<scheduler-name>} is the scheduler instance name according to the
RTEMS application configuration.
@end itemize
In case no thread pool configuration is specified for a scheduler instance,
then each OpenMP master thread of this scheduler instance will use its own
dynamically allocated thread pool.  To limit the worker thread count of the
thread pools, each OpenMP master thread must call @code{omp_set_num_threads}.
@item @emph{Example}:
Lets suppose we have three scheduler instances @code{IO}, @code{WRK0}, and
@code{WRK1} with @env{GOMP_RTEMS_THREAD_POOLS} set to
@code{"1@@WRK0:3$4@@WRK1"}.  Then there are no thread pool restrictions for
scheduler instance @code{IO}.  In the scheduler instance @code{WRK0} there is
one thread pool available.  Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP master thread
that created it.  In the scheduler instance @code{WRK1} there are three thread
pools available and their worker threads run at priority four.
@end table



@c ---------------------------------------------------------------------
@c Enabling OpenACC
@c ---------------------------------------------------------------------

@node Enabling OpenACC
@chapter Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time 
flag @option{-fopenacc} must be specified.  This enables the OpenACC directive
@code{#pragma acc} in C/C++ and @code{!$accp} directives in free form,
@code{c$acc}, @code{*$acc} and @code{!$acc} directives in fixed form,
@code{!$} conditional compilation sentinels in free form and @code{c$},
@code{*$} and @code{!$} sentinels in fixed form, for Fortran.  The flag also
arranges for automatic linking of the OpenACC runtime library 
(@ref{OpenACC Runtime Library Routines}).

A complete description of all OpenACC directives accepted may be found in 
the @uref{http://www.openacc.org/, OpenACC} Application Programming
Interface manual, version 2.0.

Note that this is an experimental feature and subject to
change in future versions of GCC.  See
@uref{https://gcc.gnu.org/wiki/OpenACC} for more information.



@c ---------------------------------------------------------------------
@c OpenACC Runtime Library Routines
@c ---------------------------------------------------------------------

@node OpenACC Runtime Library Routines
@chapter OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC
specifications in version 2.0.
They have C linkage, and do not throw exceptions.
Generally, they are available only for the host, with the exception of
@code{acc_on_device}, which is available for both the host and the
acceleration device.

@menu
* acc_get_num_devices::         Get number of devices for the given device
                                type.
* acc_set_device_type::         Set type of device accelerator to use.
* acc_get_device_type::         Get type of device accelerator to be used.
* acc_set_device_num::          Set device number to use.
* acc_get_device_num::          Get device number to be used.
* acc_async_test::              Tests for completion of a specific asynchronous
                                operation.
* acc_async_test_all::          Tests for completion of all asychronous
                                operations.
* acc_wait::                    Wait for completion of a specific asynchronous
                                operation.
* acc_wait_all::                Waits for completion of all asyncrhonous
                                operations.
* acc_wait_all_async::          Wait for completion of all asynchronous
                                operations.
* acc_wait_async::              Wait for completion of asynchronous operations.
* acc_init::                    Initialize runtime for a specific device type.
* acc_shutdown::                Shuts down the runtime for a specific device
                                type.
* acc_on_device::               Whether executing on a particular device
* acc_malloc::                  Allocate device memory.
* acc_free::                    Free device memory.
* acc_copyin::                  Allocate device memory and copy host memory to
                                it.
* acc_present_or_copyin::       If the data is not present on the device,
                                allocate device memory and copy from host
                                memory.
* acc_create::                  Allocate device memory and map it to host
                                memory.
* acc_present_or_create::       If the data is not present on the device,
                                allocate device memory and map it to host
                                memory.
* acc_copyout::                 Copy device memory to host memory.
* acc_delete::                  Free device memory.
* acc_update_device::           Update device memory from mapped host memory.
* acc_update_self::             Update host memory from mapped device memory.
* acc_map_data::                Map previously allocated device memory to host
                                memory.
* acc_unmap_data::              Unmap device memory from host memory.
* acc_deviceptr::               Get device pointer associated with specific
                                host address.
* acc_hostptr::                 Get host pointer associated with specific
                                device address.
* acc_is_present::              Indiciate whether host variable / array is
                                present on device.
* acc_memcpy_to_device::        Copy host memory to device memory.
* acc_memcpy_from_device::      Copy device memory to host memory.

API routines for target platforms.

* acc_get_current_cuda_device:: Get CUDA device handle.
* acc_get_current_cuda_context::Get CUDA context handle.
* acc_get_cuda_stream::         Get CUDA stream handle.
* acc_set_cuda_stream::         Set CUDA stream handle.
@end menu



@node acc_get_num_devices
@section @code{acc_get_num_devices} -- Get number of devices for given device type
@table @asis
@item @emph{Description}
This function returns a value indicating the number of devices available
for the device type specified in @var{devicetype}. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_num_devices(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function acc_get_num_devices(devicetype)}
@item                  @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.1.
@end table



@node acc_set_device_type
@section @code{acc_set_device_type} -- Set type of device accelerator to use.
@table @asis
@item @emph{Description}
This function indicates to the runtime library which device typr, specified
in @var{devicetype}, to use when executing a parallel or kernels region. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_type(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_type(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.2.
@end table



@node acc_get_device_type
@section @code{acc_get_device_type} -- Get type of device accelerator to be used.
@table @asis
@item @emph{Description}
This function returns what device type will be used when executing a
parallel or kernels region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_type(void)}
@item                  @tab @code{integer(kind=acc_device_kind) acc_get_device_type}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.3.
@end table



@node acc_set_device_num
@section @code{acc_set_device_num} -- Set device number to use.
@table @asis
@item @emph{Description}
This function will indicate to the runtime which device number,
specified by @var{num}, associated with the specifed device
type @var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_num(int num, acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_num(devicenum, devicetype)}
@item                   @tab @code{integer devicenum}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.4.
@end table



@node acc_get_device_num
@section @code{acc_get_device_num} -- Get device number to be used.
@table @asis
@item @emph{Description}
This function returns which device number associated with the specified device
type @var{devicetype}, will be used when executing a parallel or kernels
region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_device_num(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_num(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@item                   @tab @code{integer acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.5.
@end table



@node acc_async_test
@section @code{acc_async_test} -- Test for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function tests for completion of the asynchrounous operation specified
in @var{arg}. In C/C++, a non-zero value will be returned to indicate
the specified asynchronous operation has completed. While Fortran will return
a @code{true}. If the asynchrounous operation has not completed, C/C++ returns
a zero and Fortran returns a @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test(int arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test(arg)}
@item                   @tab @code{integer(kind=acc_handle_kind) arg}
@item                   @tab @code{logical acc_async_test}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.6.
@end table



@node acc_async_test_all
@section @code{acc_async_test_all} -- Tests for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function tests for completion of all asynchrounous operations.
In C/C++, a non-zero value will be returned to indicate all asynchronous
operations have completed. While Fortran will return a @code{true}. If
any asynchronous operation has not completed, C/C++ returns a zero and
Fortran returns a @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test()}
@item                   @tab @code{logical acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.7.
@end table



@node acc_wait
@section @code{acc_wait} -- Wait for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function waits for completion of the asynchronous operation
specified in @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait(arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait(arg)}
@item                   @tab @code{integer(acc_handle_kind) arg}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.8.
@end table



@node acc_wait_all
@section @code{acc_wait_all} -- Waits for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function waits for the completion of all asynchronous operations.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_async()}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.10.
@end table



@node acc_wait_all_async
@section @code{acc_wait_all_async} -- Wait for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on the queue @var{async} for any
and all asynchronous operations that have been previously enqueued on
any queue.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all_async(int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all_async(async)}
@item                   @tab @code{integer(acc_handle_kind) async}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.11.
@end table



@node acc_wait_async
@section @code{acc_wait_async} -- Wait for completion of asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on queue @var{async} for any and all
asynchronous operations enqueued on queue @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_async(int arg, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_async(arg, async)}
@item                   @tab @code{integer(acc_handle_kind) arg, async}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.9.
@end table



@node acc_init
@section @code{acc_init} -- Initialize runtime for a specific device type.
@table @asis
@item @emph{Description}
This function initializes the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_init(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_init(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.12.
@end table



@node acc_shutdown
@section @code{acc_shutdown} -- Shuts down the runtime for a specific device type.
@table @asis
@item @emph{Description}
This function shuts down the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_shutdown(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_shutdown(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.13.
@end table



@node acc_on_device
@section @code{acc_on_device} -- Whether executing on a particular device
@table @asis
@item @emph{Description}:
This function returns whether the program is executing on a particular
device specified in @var{devicetype}. In C/C++ a non-zero value is
returned to indicate the device is execiting on the specified device type.
In Fortran, @code{true} will be returned. If the program is not executing
on the specified device type C/C++ will return a zero, while Fortran will
return @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_on_device(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_on_device(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@item                   @tab @code{logical acc_on_device}
@end multitable


@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.14.
@end table



@node acc_malloc
@section @code{acc_malloc} -- Allocate device memory.
@table @asis
@item @emph{Description}
This function allocates @var{len} bytes of device memory. It returns
the device address of the allocated memory.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{d_void* acc_malloc(size_t len);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.15.
@end table



@node acc_free
@section @code{acc_free} -- Free device memory.
@table @asis
@item @emph{Description}
Free previously allocated device memory at the device address @code{a}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_free(d_void *a);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.16.
@end table



@node acc_copyin
@section @code{acc_copyin} -- Allocate device memory and copy host memory to it.
@table @asis
@item @emph{Description}
In C/C++, this function allocates @var{len} bytes of device memory
and maps it to the specified host address in @var{a}. The device
address of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a
variable or array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_copyin(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.17.
@end table



@node acc_present_or_copyin
@section @code{acc_present_or_copyin} -- If the data is not present on the device, allocate device memory and copy from host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specifed by @var{a} and of length
@var{len} is present or not. If it is not present, then device memory
will be allocated and the host memory copied. The device address of
the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_pcopyin(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.18.
@end table



@node acc_create
@section @code{acc_create} -- Allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function allocates device memory and maps it to host memory specified
by the host address @var{a} with a length of @var{len} bytes. In C/C++,
the function returns the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_create(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.19.
@end table



@node acc_present_or_create
@section @code{acc_present_or_create} -- If the data is not present on the device, allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specifed by @var{a} and of length
@var{len} is present or not. If it is not present, then device memory
will be allocated and mapped to host memory. In C/C++, the device address
of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.


@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_create(h_void *a, size_t len)}
@item @emph{Prototype}: @tab @code{void *acc_pcreate(h_void *a, size_t len)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.20.
@end table



@node acc_copyout
@section @code{acc_copyout} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies mapped device memory to host memory which is specified
by host address @var{a} for a length @var{len} bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_copyout(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.21.
@end table



@node acc_delete
@section @code{acc_delete} -- Free device memory.
@table @asis
@item @emph{Description}
This function frees previously allocated device memory specified by
the device address @var{a} and the length of @var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_delete(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_delete(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.22.
@end table



@node acc_update_device
@section @code{acc_update_device} -- Update device memory from mapped host memory.
@table @asis
@item @emph{Description}
This function updates the device copy from the previously mapped host memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.23.
@end table



@node acc_update_self
@section @code{acc_update_self} -- Update host memory from mapped device memory.
@table @asis
@item @emph{Description}
This function updates the host copy from the previously mapped device memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_self(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.24.
@end table



@node acc_map_data
@section @code{acc_map_data} -- Map previously allocated device memory to host memory.
@table @asis
@item @emph{Description}
This function maps previously allocated device and host memory. The device
memory is specified with the device address @var{d}. The host memory is
specified with the host address @var{h} and a length of @var{len}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_map_data(h_void *h, d_void *d, size_t len);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.25.
@end table



@node acc_unmap_data
@section @code{acc_unmap_data} -- Unmap device memory from host memory.
@table @asis
@item @emph{Description}
This function unmaps previously mapped device and host memory. The latter
specified by @var{h}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_unmap_data(h_void *h);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.26.
@end table



@node acc_deviceptr
@section @code{acc_deviceptr} -- Get device pointer associated with specific host address.
@table @asis
@item @emph{Description}
This function returns the device address that has been mapped to the
host address specified by @var{h}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_deviceptr(h_void *h);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.27.
@end table



@node acc_hostptr
@section @code{acc_hostptr} -- Get host pointer associated with specific device address.
@table @asis
@item @emph{Description}
This function returns the host address that has been mapped to the
device address specified by @var{d}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_hostptr(d_void *d);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.28.
@end table



@node acc_is_present
@section @code{acc_is_present} -- Indicate whether host variable / array is present on device.
@table @asis
@item @emph{Description}
This function indicates whether the specified host address in @var{a} and a
length of @var{len} bytes is present on the device. In C/C++, a non-zero
value is returned to indicate the presence of the mapped memory on the
device. A zero is returned to indicate the memory is not mapped on the
device.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes. If the host
memory is mapped to device memory, then a @code{true} is returned. Otherwise,
a @code{false} is return to indicate the mapped memory is not present.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_is_present(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_is_present(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{logical acc_is_present}
@item @emph{Interface}: @tab @code{function acc_is_present(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{logical acc_is_present}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.29.
@end table



@node acc_memcpy_to_device
@section @code{acc_memcpy_to_device} -- Copy host memory to device memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of @var{src} to
device memory specified by the device address @var{dest} for a length of
@var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_memcpy_to_device(d_void *dest, h_void *src, size_t bytes);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.30.
@end table



@node acc_memcpy_from_device
@section @code{acc_memcpy_from_device} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of @var{src} from
device memory specified by the device address @var{dest} for a length of
@var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_memcpy_from_device(d_void *dest, h_void *src, size_t bytes);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
3.2.31.
@end table



@node acc_get_current_cuda_device
@section @code{acc_get_current_cuda_device} -- Get CUDA device handle.
@table @asis
@item @emph{Description}
This function returns the CUDA device handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_device(void);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
A.2.1.1.
@end table



@node acc_get_current_cuda_context
@section @code{acc_get_current_cuda_context} -- Get CUDA context handle.
@table @asis
@item @emph{Description}
This function returns the CUDA context handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_get_current_cuda_context(void);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
A.2.1.2.
@end table



@node acc_get_cuda_stream
@section @code{acc_get_cuda_stream} -- Get CUDA stream handle.
@table @asis
@item @emph{Description}
This function returns the CUDA stream handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_get_cuda_stream(void);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
A.2.1.3.
@end table



@node acc_set_cuda_stream
@section @code{acc_set_cuda_stream} -- Set CUDA stream handle.
@table @asis
@item @emph{Description}
This function associates the stream handle specified by @var{stream} with
the asynchronous value specified by @var{async}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_cuda_stream(int async void *stream);}
@end multitable

@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
A.2.1.4.
@end table



@c ---------------------------------------------------------------------
@c OpenACC Environment Variables
@c ---------------------------------------------------------------------

@node OpenACC Environment Variables
@chapter OpenACC Environment Variables

The variables @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}
are defined by section 4 of the OpenACC specification in version 2.0.
The variable @env{GCC_ACC_NOTIFY} is used for diagnostic purposes.

@menu
* ACC_DEVICE_TYPE::
* ACC_DEVICE_NUM::
* GCC_ACC_NOTIFY::
@end menu



@node ACC_DEVICE_TYPE
@section @code{ACC_DEVICE_TYPE}
@table @asis
@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
4.1.
@end table



@node ACC_DEVICE_NUM
@section @code{ACC_DEVICE_NUM}
@table @asis
@item @emph{Reference}:
@uref{http://www.openacc.org/, OpenACC specification v2.0}, section
4.2.
@end table



@node GCC_ACC_NOTIFY
@section @code{GCC_ACC_NOTIFY}
@table @asis
@item @emph{Description}:
Print debug information pertaining to the accelerator.
@end table



@c ---------------------------------------------------------------------
@c CUDA Streams Usage
@c ---------------------------------------------------------------------

@node CUDA Streams Usage
@chapter CUDA Streams Usage

This applies to the @code{nvptx} plugin only.

The library provides elements that perform asynchronous movement of
data and asynchronous operation of computing constructs.  This
asynchronous functionality is implemented by making use of CUDA
streams@footnote{See "Stream Management" in "CUDA Driver API",
TRM-06703-001, Version 5.5, for additional information}.

The primary means by that the asychronous functionality is accessed
is through the use of those OpenACC directives which make use of the
@code{async} and @code{wait} clauses.  When the @code{async} clause is
first used with a directive, it creates a CUDA stream.  If an
@code{async-argument} is used with the @code{async} clause, then the
stream is associated with the specified @code{async-argument}.

Following the creation of an association between a CUDA stream and the
@code{async-argument} of an @code{async} clause, both the @code{wait}
clause and the @code{wait} directive can be used.  When either the
clause or directive is used after stream creation, it creates a
rendezvous point whereby execution waits until all operations
associated with the @code{async-argument}, that is, stream, have
completed.

Normally, the management of the streams that are created as a result of
using the @code{async} clause, is done without any intervention by the
caller.  This implies the association between the @code{async-argument}
and the CUDA stream will be maintained for the lifetime of the program.
However, this association can be changed through the use of the library
function @code{acc_set_cuda_stream}.  When the function
@code{acc_set_cuda_stream} is called, the CUDA stream that was
originally associated with the @code{async} clause will be destroyed.
Caution should be taken when changing the association as subsequent
references to the @code{async-argument} refer to a different
CUDA stream.



@c ---------------------------------------------------------------------
@c OpenACC Library Interoperability
@c ---------------------------------------------------------------------

@node OpenACC Library Interoperability
@chapter OpenACC Library Interoperability

@section Introduction

The OpenACC library uses the CUDA Driver API, and may interact with
programs that use the Runtime library directly, or another library
based on the Runtime library, e.g., CUBLAS@footnote{See section 2.26,
"Interactions with the CUDA Driver API" in
"CUDA Runtime API", Version 5.5, and section 2.27, "VDPAU
Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5,
for additional information on library interoperability.}.
This chapter describes the use cases and what changes are
required in order to use both the OpenACC library and the CUBLAS and Runtime
libraries within a program.

@section First invocation: NVIDIA CUBLAS library API

In this first use case (see below), a function in the CUBLAS library is called
prior to any of the functions in the OpenACC library. More specifically, the
function @code{cublasCreate()}.

When invoked, the function initializes the library and allocates the
hardware resources on the host and the device on behalf of the caller. Once
the initialization and allocation has completed, a handle is returned to the
caller. The OpenACC library also requires initialization and allocation of
hardware resources. Since the CUBLAS library has already allocated the
hardware resources for the device, all that is left to do is to initialize
the OpenACC library and acquire the hardware resources on the host.

Prior to calling the OpenACC function that initializes the library and
allocate the host hardware resources, you need to acquire the device number
that was allocated during the call to @code{cublasCreate()}. The invoking of the
runtime library function @code{cudaGetDevice()} accomplishes this. Once
acquired, the device number is passed along with the device type as
parameters to the OpenACC library function @code{acc_set_device_num()}.

Once the call to @code{acc_set_device_num()} has completed, the OpenACC
library uses the  context that was created during the call to
@code{cublasCreate()}. In other words, both libraries will be sharing the
same context.

@smallexample
    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Get the device number */
    e = cudaGetDevice(&dev);
    if (e != cudaSuccess)
    @{
        fprintf(stderr, "cudaGetDevice failed %d\n", e);
        exit(EXIT_FAILURE);
    @}

    /* Initialize OpenACC library and use device 'dev' */
    acc_set_device_num(dev, acc_device_nvidia);

@end smallexample
@center Use Case 1 

@section First invocation: OpenACC library API

In this second use case (see below), a function in the OpenACC library is
called prior to any of the functions in the CUBLAS library. More specificially,
the function @code{acc_set_device_num()}.

In the use case presented here, the function @code{acc_set_device_num()}
is used to both initialize the OpenACC library and allocate the hardware
resources on the host and the device. In the call to the function, the
call parameters specify which device to use and what device
type to use, i.e., @code{acc_device_nvidia}. It should be noted that this
is but one method to initialize the OpenACC library and allocate the
appropriate hardware resources. Other methods are available through the
use of environment variables and these will be discussed in the next section.

Once the call to @code{acc_set_device_num()} has completed, other OpenACC
functions can be called as seen with multiple calls being made to
@code{acc_copyin()}. In addition, calls can be made to functions in the
CUBLAS library. In the use case a call to @code{cublasCreate()} is made
subsequent to the calls to @code{acc_copyin()}.
As seen in the previous use case, a call to @code{cublasCreate()}
initializes the CUBLAS library and allocates the hardware resources on the
host and the device.  However, since the device has already been allocated,
@code{cublasCreate()} will only initialize the CUBLAS library and allocate
the appropriate hardware resources on the host. The context that was created
as part of the OpenACC initialization is shared with the CUBLAS library,
similarly to the first use case.

@smallexample
    dev = 0;

    acc_set_device_num(dev, acc_device_nvidia);

    /* Copy the first set to the device */
    d_X = acc_copyin(&h_X[0], N * sizeof (float));
    if (d_X == NULL)
    @{ 
        fprintf(stderr, "copyin error h_X\n");
        exit(EXIT_FAILURE);
    @}

    /* Copy the second set to the device */
    d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));
    if (d_Y == NULL)
    @{ 
        fprintf(stderr, "copyin error h_Y1\n");
        exit(EXIT_FAILURE);
    @}

    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Perform saxpy using CUBLAS library function */
    s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasSaxpy failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Copy the results from the device */
    acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));

@end smallexample
@center Use Case 2

@section OpenACC library and environment variables

There are two environment variables associated with the OpenACC library
that may be used to control the device type and device number:
@env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}, respecively. These two
environement variables can be used as an alternative to calling
@code{acc_set_device_num()}. As seen in the second use case, the device
type and device number were specified using @code{acc_set_device_num()}.
If however, the aforementioned environment variables were set, then the
call to @code{acc_set_device_num()} would not be required.


The use of the environment variables is only relevant when an OpenACC function
is called prior to a call to @code{cudaCreate()}. If @code{cudaCreate()}
is called prior to a call to an OpenACC function, then you must call
@code{acc_set_device_num()}@footnote{More complete information
about @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM} can be found in
sections 4.1 and 4.2 of the @uref{http://www.openacc.org/, OpenACC}
Application Programming Interfaceā€¯, Version 2.0.}



@c ---------------------------------------------------------------------
@c The libgomp ABI
@c ---------------------------------------------------------------------

@node The libgomp ABI
@chapter The libgomp ABI

The following sections present notes on the external ABI as 
presented by libgomp.  Only maintainers should need them.

@menu
* Implementing MASTER construct::
* Implementing CRITICAL construct::
* Implementing ATOMIC construct::
* Implementing FLUSH construct::
* Implementing BARRIER construct::
* Implementing THREADPRIVATE construct::
* Implementing PRIVATE clause::
* Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses::
* Implementing REDUCTION clause::
* Implementing PARALLEL construct::
* Implementing FOR construct::
* Implementing ORDERED construct::
* Implementing SECTIONS construct::
* Implementing SINGLE construct::
* Implementing OpenACC's PARALLEL construct::
@end menu


@node Implementing MASTER construct
@section Implementing MASTER construct

@smallexample
if (omp_get_thread_num () == 0)
  block
@end smallexample

Alternately, we generate two copies of the parallel subfunction
and only include this in the version run by the master thread.
Surely this is not worthwhile though...



@node Implementing CRITICAL construct
@section Implementing CRITICAL construct

Without a specified name,

@smallexample
  void GOMP_critical_start (void);
  void GOMP_critical_end (void);
@end smallexample

so that we don't get COPY relocations from libgomp to the main
application.

With a specified name, use omp_set_lock and omp_unset_lock with
name being transformed into a variable declared like

@smallexample
  omp_lock_t gomp_critical_user_<name> __attribute__((common))
@end smallexample

Ideally the ABI would specify that all zero is a valid unlocked
state, and so we wouldn't need to initialize this at
startup.



@node Implementing ATOMIC construct
@section Implementing ATOMIC construct

The target should implement the @code{__sync} builtins.

Failing that we could add

@smallexample
  void GOMP_atomic_enter (void)
  void GOMP_atomic_exit (void)
@end smallexample

which reuses the regular lock code, but with yet another lock
object private to the library.



@node Implementing FLUSH construct
@section Implementing FLUSH construct

Expands to the @code{__sync_synchronize} builtin.



@node Implementing BARRIER construct
@section Implementing BARRIER construct

@smallexample
  void GOMP_barrier (void)
@end smallexample


@node Implementing THREADPRIVATE construct
@section Implementing THREADPRIVATE construct

In _most_ cases we can map this directly to @code{__thread}.  Except
that OMP allows constructors for C++ objects.  We can either
refuse to support this (how often is it used?) or we can 
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions
to the main pthreads library.  Failing that, we can have a set
of entry points to register ctor functions to be called.



@node Implementing PRIVATE clause
@section Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent
of a PARALLEL block, the variable becomes a local variable in
the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new
automatic variable within the current function.  This preserves
the semantic of new variable creation.



@node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
@section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks.  Create a private 
struct for communicating between the parent and subfunction.
In the parent, copy in values for scalar and "small" structs;
copy in addresses for others TREE_ADDRESSABLE types.  In the 
subfunction, copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks.
The only thing I can figure is that we do something like:

@smallexample
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
  body;
@end smallexample

which becomes

@smallexample
@{
  int x = x, y;

  // for stuff

  if (i == n)
    y = y;
@}
@end smallexample

where the "x=x" and "y=y" assignments actually have different
uids for the two variables, i.e. not something you could write
directly in C.  Presumably this only makes sense if the "outer"
x and y are global variables.

COPYPRIVATE would work the same way, except the structure 
broadcast would have to happen via SINGLE machinery instead.



@node Implementing REDUCTION clause
@section Implementing REDUCTION clause

The private struct mentioned in the previous section should have 
a pointer to an array of the type of the variable, indexed by the 
thread's @var{team_id}.  The thread stores its final value into the 
array, and after the barrier, the master thread iterates over the
array to collect the values.


@node Implementing PARALLEL construct
@section Implementing PARALLEL construct

@smallexample
  #pragma omp parallel
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    use data;
    body;
  @}

  setup data;
  GOMP_parallel_start (subfunction, &data, num_threads);
  subfunction (&data);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
@end smallexample

The @var{FN} argument is the subfunction to be run in parallel.

The @var{DATA} argument is a pointer to a structure used to 
communicate data in and out of the subfunction, as discussed
above with respect to FIRSTPRIVATE et al.

The @var{NUM_THREADS} argument is 1 if an IF clause is present
and false, or the value of the NUM_THREADS clause, if
present, or 0.

The function needs to create the appropriate number of
threads and/or launch them from the dock.  It needs to
create the team structure and assign team ids.

@smallexample
  void GOMP_parallel_end (void)
@end smallexample

Tears down the team and returns us to the previous @code{omp_in_parallel()} state.



@node Implementing FOR construct
@section Implementing FOR construct

@smallexample
  #pragma omp parallel for
  for (i = lb; i <= ub; i++)
    body;
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    long _s0, _e0;
    while (GOMP_loop_static_next (&_s0, &_e0))
    @{
      long _e1 = _e0, i;
      for (i = _s0; i < _e1; i++)
        body;
    @}
    GOMP_loop_end_nowait ();
  @}

  GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);
  subfunction (NULL);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  #pragma omp for schedule(runtime)
  for (i = 0; i < n; i++)
    body;
@end smallexample

becomes

@smallexample
  @{
    long i, _s0, _e0;
    if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))
      do @{
        long _e1 = _e0;
        for (i = _s0, i < _e0; i++)
          body;
      @} while (GOMP_loop_runtime_next (&_s0, _&e0));
    GOMP_loop_end ();
  @}
@end smallexample

Note that while it looks like there is trickiness to propagating
a non-constant STEP, there isn't really.  We're explicitly allowed
to evaluate it as many times as we want, and any variables involved
should automatically be handled as PRIVATE or SHARED like any other
variables.  So the expression should remain evaluable in the 
subfunction.  We can also pull it into a local variable if we like,
but since its supposed to remain unchanged, we can also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be
able to get away with no work-sharing context at all, since we can
simply perform the arithmetic directly in each thread to divide up
the iterations.  Which would mean that we wouldn't need to call any
of these routines.

There are separate routines for handling loops with an ORDERED
clause.  Bookkeeping for that is non-trivial...



@node Implementing ORDERED construct
@section Implementing ORDERED construct

@smallexample
  void GOMP_ordered_start (void)
  void GOMP_ordered_end (void)
@end smallexample



@node Implementing SECTIONS construct
@section Implementing SECTIONS construct

A block as 

@smallexample
  #pragma omp sections
  @{
    #pragma omp section
    stmt1;
    #pragma omp section
    stmt2;
    #pragma omp section
    stmt3;
  @}
@end smallexample

becomes

@smallexample
  for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
    switch (i)
      @{
      case 1:
        stmt1;
        break;
      case 2:
        stmt2;
        break;
      case 3:
        stmt3;
        break;
      @}
  GOMP_barrier ();
@end smallexample


@node Implementing SINGLE construct
@section Implementing SINGLE construct

A block like 

@smallexample
  #pragma omp single
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  if (GOMP_single_start ())
    body;
  GOMP_barrier ();
@end smallexample

while 

@smallexample
  #pragma omp single copyprivate(x)
    body;
@end smallexample

becomes

@smallexample
  datap = GOMP_single_copy_start ();
  if (datap == NULL)
    @{
      body;
      data.x = x;
      GOMP_single_copy_end (&data);
    @}
  else
    x = datap->x;
  GOMP_barrier ();
@end smallexample



@node Implementing OpenACC's PARALLEL construct
@section Implementing OpenACC's PARALLEL construct

@smallexample
  void GOACC_parallel ()
@end smallexample



@c ---------------------------------------------------------------------
@c Reporting Bugs
@c ---------------------------------------------------------------------

@node Reporting Bugs
@chapter Reporting Bugs

Bugs in the GNU Offloading and Multi Processing Runtime Library should
be reported via @uref{http://gcc.gnu.org/bugzilla/, Bugzilla}.  Please add
"openacc", or "openmp", or both to the keywords field in the bug
report, as appropriate.



@c ---------------------------------------------------------------------
@c GNU General Public License
@c ---------------------------------------------------------------------

@include gpl_v3.texi



@c ---------------------------------------------------------------------
@c GNU Free Documentation License
@c ---------------------------------------------------------------------

@include fdl.texi



@c ---------------------------------------------------------------------
@c Funding Free Software
@c ---------------------------------------------------------------------

@include funding.texi

@c ---------------------------------------------------------------------
@c Index
@c ---------------------------------------------------------------------

@node Library Index
@unnumbered Library Index

@printindex cp

@bye