1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
// FixAlloc: a free-list allocator for fixed-size objects,
// used to manage storage used by the allocator.
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
// MSpan: a run of pages managed by the MHeap.
// MCentral: a shared free list for a given size class.
// MCache: a per-thread (in Go, per-P) cache for small objects.
// MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding MCache free list.
// If the list is not empty, allocate an object from it.
// This can all be done without acquiring a lock.
//
// 2. If the MCache free list is empty, replenish it by
// taking a bunch of objects from the MCentral free list.
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
// 3. If the MCentral free list is empty, replenish it by
// allocating a run of pages from the MHeap and then
// chopping that memory into a objects of the given size.
// Allocating many objects amortizes the cost of locking
// the heap.
//
// 4. If the MHeap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
// 1. Look up the size class for the object and add it to
// the MCache free list.
//
// 2. If the MCache free list is too long or the MCache has
// too much memory, return some to the MCentral free lists.
//
// 3. If all the objects in a given span have returned to
// the MCentral list, return that span to the page heap.
//
// 4. If the heap has too much memory, return some to the
// operating system.
//
// TODO(rsc): Step 4 is not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// The small objects on the MCache and MCentral free lists
// may or may not be zeroed. They are zeroed if and only if
// the second word of the object is zero. A span in the
// page heap is zeroed unless s->needzero is set. When a span
// is allocated to break into small objects, it is zeroed if needed
// and s->needzero is set. There are two main benefits to delaying the
// zeroing this way:
//
// 1. stack frames allocated from the small object lists
// or the page heap can avoid zeroing altogether.
// 2. the cost of zeroing when reusing a small object is
// charged to the mutator, not the garbage collector.
//
// This C code was written with an eye toward translating to Go
// in the future. Methods have the form Type_Method(Type *t, ...).
typedef struct MCentral MCentral;
typedef struct MHeap MHeap;
typedef struct MSpan MSpan;
typedef struct MStats MStats;
typedef struct MLink MLink;
typedef struct MTypes MTypes;
typedef struct GCStats GCStats;
enum
{
PageShift = 13,
PageSize = 1<<PageShift,
PageMask = PageSize - 1,
};
typedef uintptr PageID; // address >> PageShift
enum
{
// Computed constant. The definition of MaxSmallSize and the
// algorithm in msize.c produce some number of different allocation
// size classes. NumSizeClasses is that number. It's needed here
// because there are static arrays of this length; when msize runs its
// size choosing algorithm it double-checks that NumSizeClasses agrees.
NumSizeClasses = 67,
// Tunable constants.
MaxSmallSize = 32<<10,
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
TinySize = 16,
TinySizeClass = 2,
FixAllocChunk = 16<<10, // Chunk size for FixAlloc
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
HeapAllocChunk = 1<<20, // Chunk size for heap growth
// Number of bits in page to span calculations (4k pages).
// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
#if __SIZEOF_POINTER__ == 8
#ifdef GOOS_windows
// Windows counts memory used by page table into committed memory
// of the process, so we can't reserve too much memory.
// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
MHeapMap_Bits = 35 - PageShift,
#else
MHeapMap_Bits = 37 - PageShift,
#endif
#else
MHeapMap_Bits = 32 - PageShift,
#endif
// Max number of threads to run garbage collection.
// 2, 3, and 4 are all plausible maximums depending
// on the hardware details of the machine. The garbage
// collector scales well to 8 cpus.
MaxGcproc = 8,
};
// Maximum memory allocation size, a hint for callers.
// This must be a #define instead of an enum because it
// is so large.
#if __SIZEOF_POINTER__ == 8
#define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
#else
#define MaxMem ((uintptr)-1)
#endif
// A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
struct MLink
{
MLink *next;
};
// SysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation. It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable. On some systems and in some
// cases SysReserve will simply check that the address space is
// available and not actually reserve it. If SysReserve returns
// non-nil, it sets *reserved to true if the address space is
// reserved, false if it has merely been checked.
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
// may use larger alignment, so the caller must be careful to realign the
// memory obtained by SysAlloc.
//
// SysMap maps previously reserved address space for use.
// The reserved argument is true if the address space was really
// reserved, not merely checked.
//
// SysFault marks a (already SysAlloc'd) region to fault
// if accessed. Used only for debugging the runtime.
void* runtime_SysAlloc(uintptr nbytes, uint64 *stat);
void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
void runtime_SysUnused(void *v, uintptr nbytes);
void runtime_SysUsed(void *v, uintptr nbytes);
void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
void runtime_SysFault(void *v, uintptr nbytes);
// FixAlloc is a simple free-list allocator for fixed size objects.
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
// MCache and MSpan objects.
//
// Memory returned by FixAlloc_Alloc is not zeroed.
// The caller is responsible for locking around FixAlloc calls.
// Callers can keep state in the object but the first word is
// smashed by freeing and reallocating.
struct FixAlloc
{
uintptr size;
void (*first)(void *arg, byte *p); // called first time p is returned
void* arg;
MLink* list;
byte* chunk;
uint32 nchunk;
uintptr inuse; // in-use bytes now
uint64* stat;
};
void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
void* runtime_FixAlloc_Alloc(FixAlloc *f);
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
// Statistics.
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
struct MStats
{
// General statistics.
uint64 alloc; // bytes allocated and still in use
uint64 total_alloc; // bytes allocated (even if freed)
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
uint64 nlookup; // number of pointer lookups
uint64 nmalloc; // number of mallocs
uint64 nfree; // number of frees
// Statistics about malloc heap.
// protected by mheap.Lock
uint64 heap_alloc; // bytes allocated and still in use
uint64 heap_sys; // bytes obtained from system
uint64 heap_idle; // bytes in idle spans
uint64 heap_inuse; // bytes in non-idle spans
uint64 heap_released; // bytes released to the OS
uint64 heap_objects; // total number of allocated objects
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
uint64 stacks_inuse; // bootstrap stacks
uint64 stacks_sys;
uint64 mspan_inuse; // MSpan structures
uint64 mspan_sys;
uint64 mcache_inuse; // MCache structures
uint64 mcache_sys;
uint64 buckhash_sys; // profiling bucket hash table
uint64 gc_sys;
uint64 other_sys;
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
uint64 next_gc; // next GC (in heap_alloc time)
uint64 last_gc; // last GC (in absolute time)
uint64 pause_total_ns;
uint64 pause_ns[256];
uint64 pause_end[256];
uint32 numgc;
float64 gc_cpu_fraction;
bool enablegc;
bool debuggc;
// Statistics about allocation size classes.
struct {
uint32 size;
uint64 nmalloc;
uint64 nfree;
} by_size[NumSizeClasses];
};
extern MStats mstats
__asm__ (GOSYM_PREFIX "runtime.memStats");
void runtime_updatememstats(GCStats *stats);
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
int32 runtime_SizeToClass(int32);
uintptr runtime_roundupsize(uintptr);
extern int32 runtime_class_to_size[NumSizeClasses];
extern int32 runtime_class_to_allocnpages[NumSizeClasses];
extern int8 runtime_size_to_class8[1024/8 + 1];
extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
extern void runtime_InitSizes(void);
typedef struct MCacheList MCacheList;
struct MCacheList
{
MLink *list;
uint32 nlist;
};
// Per-thread (in Go, per-P) cache for small objects.
// No locking needed because it is per-thread (per-P).
struct MCache
{
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
int32 next_sample; // trigger heap sample after allocating this many bytes
intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.goc.
byte* tiny;
uintptr tinysize;
// The rest is not accessed on every malloc.
MSpan* alloc[NumSizeClasses]; // spans to allocate from
MCacheList free[NumSizeClasses];// lists of explicitly freed objects
// Local allocator stats, flushed during GC.
uintptr local_nlookup; // number of pointer lookups
uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize)
uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize)
uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
void runtime_MCache_ReleaseAll(MCache *c);
// MTypes describes the types of blocks allocated within a span.
// The compression field describes the layout of the data.
//
// MTypes_Empty:
// All blocks are free, or no type information is available for
// allocated blocks.
// The data field has no meaning.
// MTypes_Single:
// The span contains just one block.
// The data field holds the type information.
// The sysalloc field has no meaning.
// MTypes_Words:
// The span contains multiple blocks.
// The data field points to an array of type [NumBlocks]uintptr,
// and each element of the array holds the type of the corresponding
// block.
// MTypes_Bytes:
// The span contains at most seven different types of blocks.
// The data field points to the following structure:
// struct {
// type [8]uintptr // type[0] is always 0
// index [NumBlocks]byte
// }
// The type of the i-th block is: data.type[data.index[i]]
enum
{
MTypes_Empty = 0,
MTypes_Single = 1,
MTypes_Words = 2,
MTypes_Bytes = 3,
};
struct MTypes
{
byte compression; // one of MTypes_*
uintptr data;
};
enum
{
KindSpecialFinalizer = 1,
KindSpecialProfile = 2,
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
};
typedef struct Special Special;
struct Special
{
Special* next; // linked list in span
uint16 offset; // span offset of object
byte kind; // kind of Special
};
// The described object has a finalizer set for it.
typedef struct SpecialFinalizer SpecialFinalizer;
struct SpecialFinalizer
{
Special;
FuncVal* fn;
const FuncType* ft;
const PtrType* ot;
};
// The described object is being heap profiled.
typedef struct Bucket Bucket; // from mprof.goc
typedef struct SpecialProfile SpecialProfile;
struct SpecialProfile
{
Special;
Bucket* b;
};
// An MSpan is a run of pages.
enum
{
MSpanInUse = 0,
MSpanFree,
MSpanListHead,
MSpanDead,
};
struct MSpan
{
MSpan *next; // in a span linked list
MSpan *prev; // in a span linked list
PageID start; // starting page number
uintptr npages; // number of pages in span
MLink *freelist; // list of free objects
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// h->sweepgen is incremented by 2 after every GC
uint32 sweepgen;
uint16 ref; // capacity - number of objects in freelist
uint8 sizeclass; // size class
bool incache; // being used by an MCache
uint8 state; // MSpanInUse etc
uint8 needzero; // needs to be zeroed before allocation
uintptr elemsize; // computed from sizeclass or from npages
int64 unusedsince; // First time spotted by GC in MSpanFree state
uintptr npreleased; // number of pages released to the OS
byte *limit; // end of data in span
MTypes types; // types of allocated objects in this span
Lock specialLock; // guards specials list
Special *specials; // linked list of special records sorted by offset.
MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet
};
void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
void runtime_MSpan_EnsureSwept(MSpan *span);
bool runtime_MSpan_Sweep(MSpan *span);
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
void runtime_MSpanList_Init(MSpan *list);
bool runtime_MSpanList_IsEmpty(MSpan *list);
void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
// Central list of free objects of a given size.
struct MCentral
{
Lock;
int32 sizeclass;
MSpan nonempty; // list of spans with a free object
MSpan empty; // list of spans with no free objects (or cached in an MCache)
int32 nfree; // # of objects available in nonempty spans
};
void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
MSpan* runtime_MCentral_CacheSpan(MCentral *c);
void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
struct MHeap
{
Lock;
MSpan free[MaxMHeapList]; // free lists of given length
MSpan freelarge; // free lists length >= MaxMHeapList
MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
MSpan **allspans; // all spans out there
MSpan **sweepspans; // copy of allspans referenced by sweeper
uint32 nspan;
uint32 nspancap;
uint32 sweepgen; // sweep generation, see comment in MSpan
uint32 sweepdone; // all spans are swept
// span lookup
MSpan** spans;
uintptr spans_mapped;
// range of addresses we might see in the heap
byte *bitmap;
uintptr bitmap_mapped;
byte *arena_start;
byte *arena_used;
byte *arena_end;
bool arena_reserved;
// central free lists for small size classes.
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
// gets its own cache line.
struct {
MCentral;
byte pad[64];
} central[NumSizeClasses];
FixAlloc spanalloc; // allocator for Span*
FixAlloc cachealloc; // allocator for MCache*
FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
FixAlloc specialprofilealloc; // allocator for SpecialProfile*
Lock speciallock; // lock for sepcial record allocators.
// Malloc stats.
uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
extern MHeap runtime_mheap;
void runtime_MHeap_Init(MHeap *h);
MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
void runtime_MHeap_MapBits(MHeap *h);
void runtime_MHeap_MapSpans(MHeap *h);
void runtime_MHeap_Scavenger(void*);
void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
void runtime_gc(int32 force);
uintptr runtime_sweepone(void);
void runtime_markscan(void *v);
void runtime_marknogc(void *v);
void runtime_checkallocated(void *v, uintptr n);
void runtime_markfreed(void *v);
void runtime_checkfreed(void *v, uintptr n);
extern int32 runtime_checking;
void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
void runtime_unmarkspan(void *v, uintptr size);
void runtime_purgecachedstats(MCache*);
void* runtime_cnew(const Type*);
void* runtime_cnewarray(const Type*, intgo);
void runtime_tracealloc(void*, uintptr, uintptr);
void runtime_tracefree(void*, uintptr);
void runtime_tracegc(void);
uintptr runtime_gettype(void*);
enum
{
// flags to malloc
FlagNoScan = 1<<0, // GC doesn't have to scan object
FlagNoProfiling = 1<<1, // must not profile
FlagNoGC = 1<<2, // must not free or scan for pointers
FlagNoZero = 1<<3, // don't zero memory
FlagNoInvokeGC = 1<<4, // don't invoke GC
};
typedef struct Obj Obj;
struct Obj
{
byte *p; // data pointer
uintptr n; // size of data in bytes
uintptr ti; // type info
};
void runtime_MProf_Malloc(void*, uintptr);
void runtime_MProf_Free(Bucket*, uintptr, bool);
void runtime_MProf_GC(void);
void runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
int32 runtime_gcprocs(void);
void runtime_helpgc(int32 nproc);
void runtime_gchelper(void);
void runtime_createfing(void);
G* runtime_wakefing(void);
extern bool runtime_fingwait;
extern bool runtime_fingwake;
void runtime_setprofilebucket(void *p, Bucket *b);
struct __go_func_type;
struct __go_ptr_type;
bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
void runtime_removefinalizer(void*);
void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
enum
{
TypeInfo_SingleObject = 0,
TypeInfo_Array = 1,
TypeInfo_Chan = 2,
// Enables type information at the end of blocks allocated from heap
DebugTypeAtBlockEnd = 0,
};
// Information from the compiler about the layout of stack frames.
typedef struct BitVector BitVector;
struct BitVector
{
int32 n; // # of bits
uint32 *data;
};
typedef struct StackMap StackMap;
struct StackMap
{
int32 n; // number of bitmaps
int32 nbit; // number of bits in each bitmap
uint32 data[];
};
enum {
// Pointer map
BitsPerPointer = 2,
BitsDead = 0,
BitsScalar = 1,
BitsPointer = 2,
BitsMultiWord = 3,
// BitsMultiWord will be set for the first word of a multi-word item.
// When it is set, one of the following will be set for the second word.
BitsString = 0,
BitsSlice = 1,
BitsIface = 2,
BitsEface = 3,
};
// Returns pointer map data for the given stackmap index
// (the index is encoded in PCDATA_StackMapIndex).
BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
// defined in mgc0.go
void runtime_gc_m_ptr(Eface*);
void runtime_gc_g_ptr(Eface*);
void runtime_gc_itab_ptr(Eface*);
void runtime_memorydump(void);
int32 runtime_setgcpercent(int32);
// Value we use to mark dead pointers when GODEBUG=gcdead=1.
#define PoisonGC ((uintptr)0xf969696969696969ULL)
#define PoisonStack ((uintptr)0x6868686868686868ULL)
struct Workbuf;
void runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
|